综合题专项训练
高中物理选修一综合测试题专项训练(带答案)

高中物理选修一综合测试题专项训练单选题1、如图所示为冲击摆实验装置,一飞行子弹射入沙箱后与沙箱合为一体,共同摆起一定的高度,则下面有关能量的转化的说法中正确的是( )A .子弹的动能转变成沙箱和子弹的内能B .子弹的动能转变成了沙箱和子弹的热能C .子弹的动能转变成了沙箱和子弹的动能D .子弹的动能一部分转变成沙箱和子弹的内能,另一部分转变成沙箱和子弹的机械能答案:D子弹在射入沙箱瞬间,要克服摩擦阻力做功,有一部分动能转变成沙箱和子弹的内能,然后共同摆起一定高度的过程中系统机械能守恒,子弹和沙箱的动能完全转化为系统的重力势能,所以全过程子弹的动能是一部分转变成沙箱和子弹的内能,另一部分转变成沙箱和子弹的机械能,故ABC 错误,D 正确。
故选D 。
2、2021年5月15日,中国自主研发的火星探测器“天问一号”成功着陆火星。
已知在火星表面一摆长为L 的单摆完成n 次全振动所用的时间为t 。
探测器在离开火星表面返回时,在离火星表面高度为h 的圆轨道以速度v 绕其运行一周所用时间为T 。
已知引力常量为G ,火星可视为匀质球体,则火星的密度为( )A .6n 2π2LGt 2(vT−2πℎ)B .3πGT 2C .6π2LGt 2(vT−2πℎ)D .6n 2π2LGTvt 2答案:A根据单摆的周期公式得t n =2π√Lg根据黄金代换式mg=G MmR2根据圆周运动得v=2π(R+ℎ)T根据密度公式M=ρ⋅43πR3解得ρ=6n2π2LGt2(vT−2πℎ)故选A。
3、固定的半圆形玻璃砖的横截面如图所示,O点为圆心,OO'为直径MN的垂线。
足够大的光屏盯紧靠在玻璃砖的左侧且垂直于MN。
一细束单色光沿半径方向射向圆心O点,入射光线与OO'夹角为θ。
已知半圆形玻璃砖半径R=20cm,该玻璃砖的折射率为n=√3。
刚开始θ角较小时,光屏EF上出现两个光斑(图中未画出)。
现逐渐增大θ角,当光屏EF上恰好仅剩一个光斑时,这个光斑与M点之间的距离为()A.10√2cmB.10√3cmC.20√2cmD.20√3cm答案:CA. 当θ较小时,由于反射和折射现象,所以EF屏上拙现两个光斑。
数学综合算式专项训练题夯实基础迈向高阶

数学综合算式专项训练题夯实基础迈向高阶在学习数学的过程中,算式是一个不可或缺的基础内容。
通过解题练习,可以帮助我们夯实数学的基础,提高解题能力。
本文将为大家提供一些数学综合算式专项训练题,旨在帮助读者加深对数学算式的理解,并进行高阶思考。
一、整数运算1. 求解下列算式的结果:(1) 25 + (-17) - 8 =(2) (-72) - (-18) + 45 - (-29) =(3) 32 × (-4) + 15 ÷ (-3) × 5 =(4) 68 ÷ (-4) - 23 × (-6) ÷ 3 =二、分数运算1. 求解下列算式的结果:(1) 3/4 - 1/6 + 2/9 =(2) 2/5 × 3/8 - 1/4 × 1/2 =(3) 5/6 ÷ 2/3 × 3/4 =(4) 1/3 × (2/5 + 3/10) - 1/2 =三、小数运算1. 求解下列算式的结果:(1) 1.5 + 0.75 - 1.2 =(2) 3.12 × 2.5 - 0.48 × 1.2 =(3) 6.3 ÷ 2.1 × 0.3 =(4) 1.4 - (0.5 + 0.3) ÷ 0.2 =四、代数式运算1. 求解下列算式的结果:(1) 2x + 3y - 4x + 5y =(2) 3(x - y) + 2(x + y) =(3) 4(a + b) - 2(a - b) =(4) 5(x + y) - 2(x - y) - 3(x + y) =五、平方根计算1. 求解下列算式的结果:(1) √16 + √9 =(2) √25 - √4 =(3) √36 × √64 =(4) √81 ÷ √9 =六、综合运算1. 求解下列算式的结果:(1) 2 × (3 + 4) - 5 ÷ (6 - 2) =(2) 3 + 4 × (2 - 1) ÷ (6 - 3) =(3) 6 - 4 ÷ 2 + 3 × 2 =(4) (2 + 3) × (4 - 1) ÷ 5 =通过以上练习题目的训练,相信读者们已经对数学综合算式的解题方法和答案求解有了更深入的了解。
三年级列综合算式专项训练题

三年级列综合算式专项训练题在三年级的数学学习中,综合算式是一个重要的内容。
综合算式要求学生综合运用加法、减法、乘法和除法等数学运算符号,根据给定的条件来计算出结果。
通过练习综合算式,学生能够提高运算能力和逻辑思维能力。
下面是一些三年级综合算式的专项训练题。
1. 小明有15本书,他借给小红3本,又借给小华5本。
小明还剩下多少本书?解析:小明有15本书,借给小红3本,剩下15-3=12本书。
然后,又借给小华5本,剩下12-5=7本书。
小明还剩下7本书。
2. 一桶水有36升,小明用了10升,小华用了15升,小红用了8升,还剩下多少升水?解析:一桶水有36升,小明用了10升,剩下36-10=26升水。
然后,小华用了15升,剩下26-15=11升水。
最后,小红用了8升,剩下11-8=3升水。
3. 小明买了一袋糖果,里面有24颗。
他拿出了6颗糖果吃了,还剩下多少颗?解析:小明买了一袋糖果,里面有24颗,吃了6颗,剩下24-6=18颗糖果。
4. 一架飞机上有80名乘客,每个座位上有5个空位,还有多少个空位?解析:一架飞机上有80名乘客,每个座位上有5个空位,所以总共有80*5=400个座位。
飞机上还有400-80=320个空位。
5. 一只杯子里有200毫升的果汁,小明喝了一半,还剩下多少毫升?解析:一只杯子里有200毫升的果汁,小明喝了一半,所以剩下200/2=100毫升的果汁。
6. 小华有100元钱,她花了30元买了一本书,又花了40元买了一件衣服,还剩下多少钱?解析:小华有100元钱,买了一本书花了30元,剩下100-30=70元。
然后,又花了40元买了一件衣服,剩下70-40=30元。
通过以上练习题,学生可以巩固和应用所学的数学运算知识。
同时,综合算式的训练也能培养学生的逻辑思维能力和解决问题的能力。
在解答问题的过程中,学生需要分析问题、提取关键信息、运用适当的运算符号进行计算,并给出准确的答案。
为了更好地掌握综合算式,学生可以多进行类似的练习,并且注重理解问题的本质和意义。
六年级上册语文试题-专项习题:综合题 人教(部编版)(含解析)

六年级上册语文试题综合题一、综合题1.综合实践。
同学们,对于生活中的很多事情,大家可能会有不同的意见,这时需要协商才能解决。
那么遇到下面这样的情况,应该怎么办呢?请根据材料完成练习。
【交际材料】爆竹声声辞旧岁,银花朵朵贺新年。
噼里啪啦的爆竹、五彩缤纷的烟花,给人们带来浓浓的年味和喜庆气氛,但也在环保、安全等方面带来很多问题。
一些城市在燃放鞭炮方面的政策也在不断摇摆。
那么,春节到底该不该燃放烟花爆竹呢?(1)六(1)班分成几个小组进行讨论。
讨论时,如果听到不同的意见,要换位思考,积极沟通。
以下是几位同学关于“倾听”的想法,不恰当的是()。
A.王红:我认为对就是对,错就是错,不需要参与讨论,不需要倾听。
B.张明:认真倾听他人的话,站在别人的角度想一想,然后思考,表达清楚自己的观点。
C.李刚:尊重不同意见,倾听时要有耐心,不能心不在焉。
(2)【学习交际】从“普通市民、消防队员、环卫工人、鞭炮厂工人”中选择一个身份,来谈一谈春节到底该不该燃放烟花爆竹。
2.找出广告语中的错别字并改正,再说说你对这种用词现象的看法。
有痔之士,无后股之忧(某肛肠医院)改正:________我的看法:________3.阅读非连续性文本,完成后面的题目。
某校图书馆学生阅览室共有10万册图书,最近学校对图书损坏情况做了调查,并做了如下统计。
(1)从此表中,我知道了,这是关于________的调查。
(2)我发现损坏较重和严重损坏的一共有________册,占了全部图书的________。
(3)从此表中,我得出了一个结论________,看来要对同学们________。
4.附加题。
(1)《故乡的“水墨画”》是作家吴建写的一篇回忆故乡的文章。
古代诗人也有许多表达思乡之情的诗词,你知道的有哪些?请你选择两句写在下面的横线上。
(2)下列对联各咏的是谁?①一门父子三词客,千古文章四大家。
________②豪气压群雄,能使力士脱靴,贵妃捧砚;仙才媲美,不让参军俊逸,开府清新。
角度计算的综合大题专项训练(30道)(含答案)

专题11.7 角度计算的综合大题专项训练(30道)考卷信息:本套训练卷共30题,培优篇15题,拔尖篇15题,题型针对性较高,覆盖面广,选题有深度,渗透角度计算由一般到特殊的思想!1.(2021春•平顶山期末)如图,已知△ABC,AD平分∠BAC交BC于点D,AE⊥BC于点E,∠B<∠C.(1)若∠B=44°,∠C=72°,求∠DAE的度数;(2)若∠B=27°,当∠DAE=21度时,∠ADC=∠C.【解题思路】(1)利用三角形的内角和求出∠BAC,再利用内角与外角的关系先求出∠ADC,再求出∠DAE;(2)利用三角形的内角和定理及推论,用含∠C的代数式表示出∠BAC、∠ADC,根据∠C=∠ADC得到关于∠C的方程,先求出∠C,再求出∠DAE的度数.【解答过程】解:∵AD平分∠BAC交BC于点D,AE⊥BC于点E,∴∠BAD=∠CAD=12∠BAC,∠AED=90°.(1)∵∠B=44°,∠C=72°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣44°﹣72°=64°.∴∠BAD=12×64°=32°.∵∠ADC=∠B+∠BAD =44°+32°=76°,∴∠DAE=90°﹣∠ADC=90°﹣76°=24°.(2))∵∠B=27°,∠C=∠ADC,∴∠BAC=180°﹣∠B﹣∠C=180°﹣27°﹣∠C=153°﹣∠C.∴∠BAD=12×(153°﹣∠C)=76.5°−12∠C.∴∠ADC=∠B+∠BAD=27°+76.5°−12∠C=103.5°−12∠C.∵∠ADC=∠C,∴103.5°−12∠C=∠C.∴∠ADC=∠C=69°.∴∠DAE=∠AED﹣∠ADC=90°﹣69°=21°.故答案为:21.2.(2021春•长春期末)如图,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO和∠ABO的角平分线,BC延长线交OM于点G.解决问题:(1)若∠OBA=80°,∠OAB=40°,则∠ACG=60°;(直接写出答案)(2)若∠MON=100°,求出∠ACG的度数.【解题思路】(1)由角平分线的定义可求出∠CBA和∠CAB的度数,再根据三角形外角的性质求出∠ACG的度数即可;(2)先根据三角形内角和定理求出∠OBA+∠OAB的度数,然后再根据角平分线的定义求出∠CBA+∠CAB的度数,最后根据三角形外角的性质求出结果即可.【解答过程】解:(1)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∵∠OBA=80°,∠OAB=40°,∴∠CBA=40°,∠CAB=20°,∴∠ACG=∠CBA+∠CAB=60°.故答案为:60°.(2)∵∠MON=100°,∴∠BAO+∠ABO=180°﹣100°=80°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=12×80°=40°,∴∠ACG=∠CBA+∠CAB=40°.3.(2021春•兴化市期末)如图,在△ABC中,∠ACB=90°,AE平分∠CAB,CD⊥AB,AE、CD相交于点F.(1)若∠DCB=50°,求∠CEF的度数;(2)求证:∠CEF=∠CFE.【解题思路】(1)根据直角三角形的性质得到∠DCB+∠B=90°,∠CAB+∠B=90°,进而得到∠CAB =∠DCB,根据角平分线的定义计算即可;(2)根据角平分线的定义得到∠BAE=∠CAE,根据直角三角形的性质得到∠CEF=∠AFD,根据对顶角相等证明结论.【解答过程】(1)解:∵CD⊥AB,∴∠DCB+∠B=90°,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠CAB=∠DCB=50°,∵AE平分∠CAB,∴∠CAE=12∠CAB=25°,∴∠CEF=90°﹣∠CAE=65°;(2)证明:∵AE平分∠CAB,∴∠BAE=∠CAE,∵∠CAE+∠CEF=90°,∠BAE+∠AFD=90°,∴∠CEF=∠AFD,∵∠CFE=∠AFD,∴∠CEF=∠CFE.4.(2021春•海陵区期末)如图,CD是△ABC的角平分线,DE∥BC,交AB于点E.(1)若∠A=45°,∠BDC=70°,求∠CED的度数;(2)若∠A﹣∠ACD=34°,∠EDB=97°,求∠A的度数.【解题思路】(1)利用三角形内角和定理求出∠ACB,再求出∠ECD,∠EDC,可得结论.(2)设∠A=x,则∠ACD=x﹣34°,根据∠EDB=∠A+∠AED,构建方程求解即可.【解答过程】解:(1)∵∠CDB=∠A+∠ACD,∴∠ACD=70°﹣45°=25°,∵CD平分∠ACB,∴∠DCB=∠ACB=25°,∵DE∥CB,∴∠EDC=∠BCD=25°,∴∠DEC=180°﹣25°﹣25°=130°.(2)设∠A=x,则∠ACD=x﹣34°,∵CD平分∠ACB,∴∠ACB=2x﹣68°,∵DE∥CB,∴∠AED=∠ACB=2x+68°,∵∠EDB=∠A+∠AED,∴97°=x+2x﹣68°,∴x=55°,∴∠A=55°.5.(2021春•宽城区期末)如图,在△ABC中,点E是边AC上一点,∠AEB=∠ABC.(1)如图1,作∠BAC的平分线交CB、BE于D、F两点.求证:∠EFD=∠ADC.(2)如图2,作△ABC的外角∠BAG的平分线,交CB的延长线于点D,延长BE、DA交于点F,试探究(1)中的结论是否成立?请说明理由.【解题思路】(1)首先根据角平分线的性质可得∠BAD=∠DAC,再根据内角与外角的性质可得∠EFD =∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,进而得到∠EFD=∠ADC;(2)首先根据角平分线的性质可得∠BAD=∠DAG,再根据等量代换可得∠F AE=∠BAD,然后再根据内角与外角的性质可得∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,进而得∠EFD=∠ADC.【解答过程】解:(1)∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC;(2)探究(1)中结论仍成立;理由:∵AD平分∠BAG,∴∠BAD=∠GAD,∵∠F AE=∠GAD,∴∠F AE=∠BAD,∵∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC.6.(2021春•镇江期中)如图,将一张三角形纸片ABC的一角折叠,使得点A落在四边形BCDE的外部A'的位置,且A'与点C在直线AB的异侧,折痕为DE,已知∠C=90°,∠A=30°.(1)求∠1﹣∠2的度数;(2)若保持△A′DE的一边与BC平行,求∠ADE的度数.【解题思路】(1)先求出∠B的度数,在根据四边形内角和求出∠1+∠BFD的度数,由∠BFD=∠A′FE和∠A’的度数可求出答案.(2)分EA'∥BC和DA'∥BC两种情况讨论.当DA'∥BC时,先求出∠A′DA=90°,再根据折叠可得出∠ADE=45°;当EA'∥BC时,根据平行线的性质求出∠2=∠ABC=60°,由(1)得出∠1=120°,再根据折叠可求出∠ADE的度数.【解答过程】解:(1)由折叠可知,∠A′=∠A=30°,在△A′EF中,∠A′+∠2+∠A′FE=180°,∴∠2=180°﹣∠A′﹣∠A′FE=150°﹣∠A′FE,在△ABC中,∠B=180°﹣∠C﹣∠A=60°,在四边形BCDF中,∠1+∠C+∠B+∠BFD=360°,∴∠1=360°﹣∠C﹣∠B﹣∠BFD=210°﹣∠BFD,∵∠BFD=∠A′FE,∴∠1﹣∠2=210°﹣150°=60°;(2)当DA'∥BC时,如图,∠A′DA=∠ACB=90°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=45°,当EA'∥BC时,如图,∠2=∠ABC=60°.由(1)知,∠1﹣∠2=60°,∴∠1=∠2+60°=120°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=(180°﹣∠1)=30°.综上所述∠ADE的度数为:45°或30°.7.(2021春•常熟市期中)已知△ABC中,AD⊥BC于点D,AE平分∠BAC,过点A作直线GH∥BC,且∠GAB=60°,∠C=40°.(1)求△ABC的外角∠CAF的度数;(2)求∠DAE的度数.【解题思路】(1)根据平行线的性质、对顶角相等计算即可;(2)根据角平分线的定义得到∠BAE=40°,根据平行线的性质求出∠GAD=90°,结合图形计算,得到答案.【解答过程】解:(1)∵GH∥BC,∠C=40°,∴∠HAC=∠C=40°,∵∠F AH=∠GAB=60°,∴∠CAF=∠HAC+∠F AH=100°;(2)∵∠HAC=40°,∠GAB=60°,∴∠BAC=80°,∵AE平分∠BAC,∴∠BAE=40°,∵GH∥BC,AD⊥BC,∴∠GAD=90°,∴∠BAD=90°﹣60°=30°,∴∠DAE=∠BAE﹣∠BAD=10°.8.(2020秋•红桥区期末)如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的大小.【解题思路】根据三角形高线可得∠ADC=90°,利用三角形的内角和定理可求解∠DAC的度数;由三角形的内角和可求解∠B的度数,再根据角平分线的定义可求出∠BAO和∠ABO的度数,再利用三角形的内角和定理可求解.【解答过程】解:∵AD是△ABC的高线,∴∠ADC=90°,∵∠ADC+∠C+∠CAD=180°,∠C=70°,∴∠CAD=180°﹣90°﹣70°=20°;∵∠ABC+∠C+∠CAB=180°,∠C=70°,∠BAC=50°,∴∠ABC=180°﹣70°﹣50°=60°,∵AE,BF分别平分∠BAC,∠ABC,AE,BF相交于点O,∴∠BAO=12∠BAC=25°,∠ABO=12∠ABC=30°,∵∠ABO+∠BAO+∠AOB=180°,∴∠AOB=180°﹣25°﹣30°=125°.9.(2020秋•涪城区期末)如图,在△ABC中,∠1=∠2=∠3.(1)证明:∠BAC=∠DEF;(2)∠BAC=70°,∠DFE=50°,求∠ABC的度数.【解题思路】(1)利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质解决问题即可.【解答过程】(1)证明:∵∠BAC=∠1+∠CAE,∠DEF=∠3+∠CAE,∠1=∠3,∴∠BAC=∠DEF.(2)∵∠ABC=∠2+∠ABD,∠1=∠2,∴∠ABC=∠1+∠ABD=∠EDF,由(1)可知∠DEF=∠BAC=70°,∴∠ABC=∠1+∠ABD=∠EDF=180°﹣∠DEF﹣∠DFE=180°﹣70°﹣50°=60°,∴∠ABC=60°.10.(2021春•苏州期末)如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD 于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.【解题思路】(1)由角平分线定义得∠ABE=∠CBE,再根据三角形的外角性质得∠AEF=∠AFE;(2)由角平分线定义得∠AFE=∠GFE,进而得∠AEF=∠GFE,由平行线的判定得FG∥AC,再根据平行线的性质求得结果.【解答过程】解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.11.(2020秋•恩施市期末)已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.【解题思路】(1)根据三角形的外角性质即可得出结论;(2)根据三角形内角和和互余进行分析解答即可.【解答过程】解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°.12.(2020秋•白银期末)(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.【解题思路】(1)作射线OA,由三角形外角的性质可知∠1+∠B=∠3,∠2+∠C=∠4,两式相加即可得出结论;(2)连接AD,由(1)的结论可知∠F+∠2+∠3=∠DEF,∠1+∠4+∠C=∠ABC,两式相加即可得出结论.【解答过程】解:(1)作射线OA,∵∠3是△ABO的外角,∴∠1+∠B=∠3,①∵∠4是△AOC的外角,∴∠2+∠C=∠4,②①+②得,∠1+∠B+∠2+∠C=∠3+∠4,即∠BOC=∠A+∠B+∠C;(2)连接AD,同(1)可得,∠F+∠2+∠3=∠DEF③,∠1+∠4+∠C=∠ABC④,③+④得,∠F+∠2+∠3+∠1+∠4+∠C=∠DEF+∠ABC=130°+100°=230°,即∠A+∠C+∠D+∠F=230°.13.(2021春•新蔡县期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.【解题思路】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答过程】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.14.(2020春•香坊区校级月考)如图,在△ABC中,∠C=40°,AE、BF分别为△ABC的角平分线,它们相交于点O.(1)求∠EOF的度数.(2)AD是△ABC的高,∠AFB=80°时,求∠DAE的度数.【解题思路】(1)先根据三角形内角和定理得∠C=180°﹣(∠BAC+∠ABC)的度数,由角平分线的定义和三角形内角和定理可得结论;(2)先根据垂直的定义及三角形内角和可得到∠CAD的度数,再求出∠1的度数,最后根据三角形内角和即可求解.【解答过程】解:(1)∵∠CAB+∠ABC=180°﹣∠C,∵AE、BF是角平分线,∴∠EAB=12∠BAC,∠FBA=12∠ABC,∴∠EAB+∠FBA=12(∠BAC+∠ABC)=12(180°﹣∠C)=90°−12∠C,∴∠AOB=180°﹣(90°−12∠C)=90°+12∠C,∵∠C=40°,∴∠AOB=110°,∴∠EOF=∠AOB=110°.(2)∵AD⊥BC,∠C=40°,∴∠CAD=50°,∵∠AFB=80°,∴∠1=180°﹣50°﹣80°=50°,∴∠DAE=180°﹣∠1﹣∠AOB=180°﹣50°﹣110°=20°.15.(2021春•海陵区校级月考)如图1,△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,CF∥AD.(1)如图1,∠B=30°,∠ACB=70°,求∠CFE的度数;(2)若(1)中的∠B=α,∠ACB=β(α<β),则∠CFE=12β−12α;(用α、β表示)(3)如图2,(2)中的结论还成立么?请说明理由.【解题思路】(1)求∠CFE的度数,求出∠DAE的度数即可,只要求出∠BAE﹣∠BAD的度数,由平分和垂直易得∠BAE和∠BAD的度数即可;(2)由(1)类推得出答案即可;(3)类比以上思路,把问题转换为∠CFE=90°﹣∠ECF即可解决问题.【解答过程】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∠B=α,∠ACB=β,∴∠CFE=∠DAE=20°;(2)∵∠BAE=90°﹣∠B,∠BAD=12∠BAC=12(180°﹣∠B﹣∠ACB),∵CF ∥AD ,∴∠CFE =∠DAE =∠BAE ﹣∠BAD =90°﹣∠B −12(180°﹣∠B ﹣∠BCA )=12(∠ACB ﹣∠B )=12β−12α, 故答案为:12β−12α; (3)(2)中的结论成立.∵∠B =α,∠ACB =β,∴∠BAC =180°﹣α﹣β,∵AD 平分∠BAC ,∴∠DAC =12∠BAC =90°−12α−12β,∵CF ∥AD ,∴∠ACF =∠DAC =90°−12α−12β,∴∠BCF =β+90°−12α−12β=90°−12α+12β,∴∠ECF =180°﹣∠BCF =90°+12α−12β,∵AE ⊥BC ,∴∠FEC =90°,∴∠CFE =90°﹣∠ECF =12β−12α.16.(2021春•市北区期末)阅读并填空将三角尺(△MPN ,∠MPN =90°)放置在△ABC 上(点P 在△ABC 内),如图1所示,三角尺的两边PM 、PN 恰好经过点B 和点C .我们来探究:∠ABP 与∠ACP 是否存在某种数量关系.(1)特例探索:若∠A =50°,则∠PBC +∠PCB = 90 度;∠ABP +∠ACP = 40 度;(2)类比探索:∠ABP、∠ACP、∠A的关系是∠ABP+∠ACP=90°﹣∠A;(3)变式探索:如图2所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是∠ACP﹣∠ABP=90°﹣∠A.【解题思路】(1)利用三角形内角和定理即可解决问题.(2)结论:∠ABP+∠ACP=90°﹣∠A.利用三角形内角和定理即可证明.(3)不成立;存在结论:∠ACP﹣∠ABP=90°﹣∠A.利用三角形内角和定理即可解决问题.【解答过程】解:(1)∵∠A=50°,∴∠ABC+∠ACB=130°,∵∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP+∠ACP=130°﹣90°=40°,故答案为:90,40;(2)结论:∠ABP+∠ACP=90°﹣∠A.证明:∵(∠PBC+∠PCB)+(∠ABP+∠ACP)+∠A=180°,∴90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°﹣∠A.故答案为:∠ABP+∠ACP=90°﹣∠A;(3)结论:∠ACP﹣∠ABP=90°﹣∠A,理由是:设AB交PC于O,如图2:∵∠AOC=∠POB,∴∠ACO+∠A=∠P+∠PBO,即∠ACP+∠A=90°+∠ABP,∴∠ACP﹣∠ABP=90°﹣∠A,故答案为:∠ACP﹣∠ABP=90°﹣∠A.17.(2021春•东海县期末)如图1.△ABC的外角平分线BF、CF交于点F.(1)若∠A=50°.则∠F的度数为65°;(2)如图2,过点F作直线MN∥BC,交AB,AC延长线于点M、N.若设∠MFB=α,∠NFC=β,则∠A与a+β满足的数量关系是α+β−12∠A=90°;(3)在(2)的条件下,将直线MN绕点F转动.①如图3,当直线MN与线段BC没有交点时,试探索∠A与α,β之间满足的数量关系,并说明理由;②当直线MN与线段BC有交点时,试问①中∠A与α,β之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出三者之间满足的数量关系.【解题思路】(1)根据三角形内角和定理以及角平分线的定义,即可得到∠F的度数;(2)根据三角形内角和定理以及角平分线的定义,即可得到∠BFC的度数,再根据平行线的性质,即可得到∠A与α+β的数量关系;(3)①根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系;②分两种情况进行讨论,根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系.【解答过程】解:(1)如图1,∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠DBC﹣∠ECB=360°﹣130°=230°,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECD)=12×230°=115°,∴△BCF中∠F=180°﹣115°=65°,故答案为65°;(2)如图2,∵∠ABC+∠ACB=180°﹣∠A,∴∠DBC+∠ECB=360°﹣(180°﹣∠A)=180°+∠A,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECB)=12×(180°+∠A)=90°+12∠A,∴△BCF中,∠BFC=180°﹣(90°+12∠A)=90°−12∠A,又∵∠MFB=α,∠NFC=β,MN∥BC,∴∠FBC=α,∠FCB=β,∵△BCF中,∠FBC+∠FCB+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,故答案为:α+β−12∠A=90°;(3)①α+β−12∠A=90°,理由如下:如图3,由(2)可得,∠BFC=90°−12∠A,∵∠MFB+∠NFC+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,②当直线MN与线段BC有交点时,①中∠A与α,β之间的数量关系不成立,分两种情况:如图4,当M在线段AB上,N在AC延长线上时,由(2)可得,∠BFC=90°−12∠A,∵∠BFC﹣∠MFB+∠NFC=180°,∴90°−12∠A﹣α+β=180°,即β﹣α−12∠A=90°;如图5,当M在AB的延长线上,N在线段AC上时,由(2)可得,∠BFC=90°−12∠A,∴∠BFC﹣∠NFC+∠MFB=180°,∴90°−12∠A﹣β+α=180°,即α﹣β−12∠A=90°;综上所述,∠A与α,β之间的数量关系为β﹣α−12∠A=90°或α﹣β−12∠A=90°.18.(2021春•宽城区期末)在△ABC中,∠ACB=90°,点D、E分别是边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)如图1,点P在斜边AB上运动.①若∠α=70°,则∠1+∠2=160度.②写出∠α、∠1、∠2之间的关系,并说明理由.(2)如图2,点P在斜边AB的延长线上运动(CE<CD),BE、PD交于点F,试说明∠1﹣∠2=90°+∠α.(3)如图3,点P在△ABC外运动(只需研究图③的情形),直接写出∠α、∠1、∠2之间的关系.【解题思路】(1)①求出∠CEP+∠CDP,可得结论.②结论:∠1+∠2=90°+∠α.连接PC,利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质以及三角形内角和定理证明即可.(3)利用基本结论∠C+∠3=∠P+∠4,构建关系式,可得结论.【解答过程】解:(1)①∵∠C=90°,α=70°,∴∠CEP+∠CDP=360°﹣(90°+70°)=200°,∴∠1+∠2=360°﹣200°=160°,故答案为:160.②结论:∠1+∠2=90°+∠α.理由:如图1中,连结CP.∵∠1=∠DCP+∠CPD,∠2=∠ECP+∠CPE,∴∠1+∠2=∠DCP+∠CPD+∠ECP+∠CPE,∵∠DCP+∠ECP=∠ACB=90°,∠CPD+∠CPE=∠DPE=∠α,∴∠1+∠2=90°+∠α.(2)如图2中,∵∠1=∠ACB+∠CFD,∠CFD=∠2+∠α,∴∠1=∠ACB+∠2+∠α.∵∠ACB=90°,∴∠1=90°+∠2+∠α.∴∠1﹣∠2=90°+∠α.(3)结论:∠2﹣∠1=90°﹣∠α.理由:如图3中,∵∠C+∠3=∠P+∠4,∠C=90°,∠P=α,∴90°+(180°﹣∠2)=α+(180°﹣∠1),∴∠2﹣∠1=90°﹣∠α.19.(2021春•延庆区期末)在三角形ABC中,点D在线段AC上,ED∥BC交AB于点E,点F在线段AB上(点F不与点A,E,B重合),连接DF,过点F作FG⊥FD交射线CB于点G.(1)如图1,点F在线段BE上,用等式表示∠EDF与∠BGF的数量关系,并证明;(2)如图2,点F在线段BE上,求证:∠ABC+∠BFG﹣∠EDF=90°;(3)当点F在线段AE上时,依题意,在图3中补全图形,请直接用等式表示∠EDF与∠BGF的数量关系,不需证明.【解题思路】(1)结论:∠EDF+∠BGF=90°.如图1中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(2)如图2中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(3)作出图形,利用平行线的性质求解即可.【解答过程】(1)解:结论:∠EDF+∠BGF=90°.理由:如图1中,过点F作FH∥BC交AC于点H.∵ED∥BC,∴ED∥FH.∴∠EDF=∠1.∵FH∥BC,∴∠BGF=∠2.∵FG⊥FD,∴∠DFG=90°.∴∠1+∠2=90°.∴∠EDF+∠BGF=90°.(2)证明:如图2中,过点F作FH∥BC交AC于点H.∴∠ABC=∠AFH.∴∠ABC=∠1+∠3.∴∠3=∠ABC﹣∠1.∵∠EDF=∠1,∴∠3=∠ABC﹣∠EDF.∵FG⊥FD,∴∠DFG=90°.∴∠BFG+∠3=90°.∴∠3=90°﹣∠BFG.∴90°﹣∠BFG=∠ABC﹣∠EDF.∴∠ABC+∠BFG﹣∠EDF=90°.(3)解:结论:∠BGF﹣∠EDF=90°.理由:设DE 交FG 于J .∵DE ∥BC ,∴∠BGF =∠FJE ,∵∠FJE =∠DEJ +∠EDF ,∠DEJ =90°,∴∠BGF ﹣∠EDF =90°20.(2021春•中山市期末)同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC 的平分线与∠EGC 的平分线相交于点Q ,求∠FQG 的大小;(3)如图3,点P 是线段AD 上的动点(不与A ,D 重合),连接PF 、PG ,∠DFP+∠FPG ∠EGP 的值是否变化?如果不变,请求出比值;如果变化,请说明理由.【解题思路】(1)如图1,延长AM 交EG 于M .由题意知:DF ∥EG ,∠ACB =90°,故∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.进而推断出∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°,得∠1=∠GNC ,∠CGN +∠GNC =90°,故∠1+∠CGN =90°.因为∠DFC 的平分线与∠EGC 的平分线相交于点Q ,所以∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1,∠GQC =90°−12∠CGN .那么,∠FQG =360°﹣∠QFC ﹣∠QGC﹣∠ACB =135°.(3)由题意知:DF ∥EG ,得∠FOG =∠EGO ,故∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1.【解答过程】解:(1)如图1,延长AM 交EG 于M .∠β+∠α=90°,理由如下:由题意知:DF ∥EG ,∠ACB =90°.∴∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.∵∠EGB 和∠CGM 是 对顶角,∴∠β=∠CGM .∴∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°.∴∠1=∠GNC ,∠CGN +∠GNC =90°.∴∠1+∠CGN =90°.∵QF 平分∠DFC ,∴∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1.同理可得:∠GQC =90°−12∠CGN .∵四边形QFCG 的内角和等于360°.∴∠FQG =360°﹣∠QFC ﹣∠QGC ﹣∠ACB =360°﹣(90°−12∠1)﹣(90°−12∠CGN )﹣90°. ∴∠FQG =135°.(3)如图3,由题意知:DF ∥EG .∴∠FOG =∠EGO .∴∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1. ∴∠DFP+∠FPG ∠EGP 的值不变.21.(2021春•禅城区期末)△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,求∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 与∠B 、∠C 的数量关系;(3)拓展:如图3,四边形ABDC 中,AE 是∠BAC 的角平分线,DA 是∠BDC 的角平分线,猜想:∠DAE 与∠B 、∠C 的数量关系是否改变.说明理由.【解题思路】(1)根据三角形的内角和定理可求得∠BAC =80°,由角平分线的定义可得∠CAD 的度数,利用三角形的高线可求∠CAE 得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE、∠B、∠C的数量关系;(3)连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据角平分线的定义得到∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),求得∠MAD=∠ADN,根据角的和差即可得到结论.【解答过程】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE=12∠BAC﹣(90°﹣∠C)=12(180°﹣∠B﹣∠C)﹣90°+∠C=12∠C−12∠B,即∠DAE=12∠C−12∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN=12(∠ACB﹣∠ABC)+12(∠BCD﹣∠CBD)=12(∠ACD﹣∠ABD).22.(2021春•侯马市期末)(1)已知:如图①的图形我们把它称为“8字形”,试说明:∠A+∠B=∠C+∠D.(2)如图②,AP,CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=90°+12(∠B+∠D);(4)如图(4),直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=180°−12(∠B+∠D).【解题思路】(1)根据三角形的内角和等于180°列式整理即可得证;(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;(3)表示出∠P AD和∠PCD,再根据(1)的结论列出等式并整理即可得解;(4)根据四边形的内角和等于360°可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解.【解答过程】解:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)∵AP,CP分别平分∠BAD,∠BCD,∴∠BAP=∠P AD,∠BCP=∠PCD,由(1)的结论得,∠P+∠BCP=∠ABC+∠BAP,①,∠P+∠P AD=∠ADC+∠PCD②,①+②得,2∠P+∠BCP+∠P AD=∠BAP+∠PCD+∠ABC+∠ADC,∴2∠P=∠ABC+∠ADC,∵∠ABC=36°,∠ADC=16°,∴∠P=26°.(3)∵直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠P AB=∠P AD,∠PCB=∠PCE,∴2∠P AB+∠B=180°﹣2∠PCB+∠D,∴180°﹣2(∠P AB+∠PCB)+∠D=∠B,∵∠P+∠P AD=∠PCB+∠AOC=∠PCB+∠B+2∠P AD,∴∠P=∠P AD+∠B+∠PCB=∠P AB+∠B+∠PCB,∴∠P AB+∠PCB=∠P﹣∠B,∴180°﹣2(∠P﹣∠B)+∠D=∠B,即∠P=90°+12(∠B+∠D).故答案为:∠P=90°+12(∠B+∠D).(4)∵直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∴∠F AP=∠P AO,∠PCE=∠PCB,在四边形APCB中,(180°﹣∠F AP)+∠P+∠PCB+∠B=360°①,在四边形APCD中,∠P AD+∠P+(180°﹣∠PCE)+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,∴∠P=180°−12(∠B+∠D).故答案为:∠P=180°−12(∠B+∠D).23.(2020春•西城区校级期末)在△ABC中,BD,CE是它的两条角平分线,且BD,CE相交于点M,MN⊥BC于点N.将∠MBN记为∠1,∠MCN记为∠2,∠CMN记为∠3.(1)如图1,若∠A=110°,∠BEC=130°,则∠2=20°,∠3﹣∠1=55°;(2)如图2,猜想∠3﹣∠1与∠A的数量关系,并证明你的结论;(3)若∠BEC=α,∠BDC=β,用含α和β的代数式表示∠3﹣∠1的度数.(直接写出结果即可)解:(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.(3)∠3﹣∠1=α+β3−30°.【解题思路】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠BEC﹣∠A,再根据角平分线的定义可得∠2=∠ACE;根据角平分线的定义求出∠ACB,再根据三角形的内角和定理求出∠ABC,然后求出∠1,根据直角三角形两锐角互余求出∠3,然后相减即可得解;(2)根据角平分线的定义可得∠1=12∠ABC,∠2=12∠ACB,再根据直角三角形两锐角互余表示出∠3,然后表示出∠3﹣∠1=90°−12∠ACB−12∠ABC,再根据三角形的内角和定理可得∠ACB+∠ABC=180°﹣∠A,然后代入整理即可得解;(3)在△BCE和△BCD中,根据三角形内角和定理列式整理得到∠1+∠2,再根据三角形的内角和定理和角平分线的定义用∠A表示出∠1+∠2,然后根据∠3﹣∠1=12∠A整理即可得解.【解答过程】(1)解:在△ACE中,∠ACE=∠BEC﹣∠A=130°﹣110°=20°,∵CE平分∠ACE,∴∠2=∠ACE=20°,∴∠ACB=2∠2=2×20°=40°,在△ABC中,∠ABC=180°﹣∠A﹣∠ACB=180°﹣110°﹣40°=30°,∵BD平分∠ABC,∴∠1=12∠ABC=12×30°=15°,∵MN⊥BC,∴∠3=90°﹣∠2=90°﹣20°=70°,∴∠3﹣∠1=70°﹣15°=55°,故答案为:20,55;(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.证明:在△ABC中,BD,CE是它的两条角平分线,∴∠1=12∠ABC,∠2=12∠ACB,∵MN⊥BC于点N,∴∠MNC=90°,在△MNC中,∠3=90°﹣∠2,∴∠3﹣∠1=90°﹣∠2﹣∠1,=90°−12∠ACB−12∠ABC,=90°−12(∠ACB+∠ABC),∵在△ABC中,∠ACB+∠ABC=180°﹣∠A,∴∠3﹣∠1=90°−12(180°﹣∠A)=12∠A;故答案为:∠3﹣∠1=12∠A ;(3)∵BD ,CE 是△ABC 的两条角平分线, ∴∠ABC =2∠1,∠ACB =2∠2,在△BCE 和△BCD 中,∠1+2∠2+β=180°, ∠2+2∠1+α=180°, ∴∠1+∠2=120°−α+β3,∵∠1+∠2=12(∠ACB +∠ABC )=12(180°﹣∠A ), ∴120°−α+β3=12(180°﹣∠A ), 整理得,12∠A =α+β3−30°,∴∠3﹣∠1=α+β3−30°. 故答案为:α+β3−30°.24.(2020春•福山区期中)直线在同一平面内有平行和相交两种位置关系,线段首尾连接可以变换出很多不同的图形,这些不同的角又有很多不同关系,今天我们就来探究一下这些奇妙的图形吧! 【问题探究】(1)如图1,请直接写出∠A +∠B +∠C +∠D +∠E = 180° ;(2)将图1变形为图2,∠A +∠DBE +∠C +∠D +∠E 的结果如何?请写出证明过程; (3)将图1变形为图3,则∠A +∠B +∠C +∠D +∠E 的结果如何?请写出证明过程. 【变式拓展】(4)将图3变形为图4,已知∠BGF =160°,那么∠A +∠B +∠C +∠D +∠E +∠F 的度数是 320° .【解题思路】(1)根据三角形外角的性质,得到∠2=∠C+∠E,∠1=∠A+∠2,根据三角形内角和等于180°即可求解.(2)根据三角形外角的性质,得到∠ABE=∠C+∠E,∠DBC=∠A+∠D,即可证明此结论.(3)根据三角形外角的性质,得到∠DFG=∠B+∠E,∠FGD=∠A+∠C,即可证明此结论;(4)根据三角形外角的性质,得到∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∠BGF=∠1+∠E=160°,∠1=∠A+∠C,即可得到结论.【解答过程】(1)解:如图1,∵∠2=∠C+∠E,∠1=∠A+∠2,∴∠A+∠B+∠C+∠D+∠E=∠1+∠B+∠D=180°,故答案为:180°;(2)证明:∵∠ABE=∠C+∠E,∠DBC=∠A+∠D,∠ABE+∠DBE+∠DBC=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°∴将图①变形成图②∠A+∠DBE+∠C+∠D+∠E仍然为180°;(3)证明:∵在△FGD中,∠DFG+∠FGD+∠D=180°,∠DFG=∠B+∠E,∠FGD=∠A+∠C,∴∠A+∠B+∠C+∠D+∠E=180°,∴将图①变形成图③,则∠A+∠B+∠C+∠D+∠E还为180°;(4)解:∵∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∴∠B+∠D+∠F=160°,∵∠BGF=∠1+∠E=160°,∠1=∠A+∠C,∴∠A+∠C+∠E=160°,∴∠A+∠B+∠C+∠D+∠E+∠F=320°,故答案为:320°.25.(2020春•蓬溪县期末)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=122°;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC 与∠A的数量关系,并说明理由.(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC=119°,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R=29°.【解题思路】(1)根据三角形的内角和角平分线的定义;(2)由角平分线得出∠ECB=12∠ACB,∠EBD=12∠ABD.由三角形外角的性质知∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,根据∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB可得答案;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠QBC与∠QCB,然后再根据三角形的内角和定理列式整理即可得解;(4)结合(1)(2)(3)的解析即可求得.【解答过程】解:(1)∵PB、PC分别平分∠ABC和∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB(角平分线的定义),∵∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=180°﹣90°+12∠A=90°+12∠A=90°+12×64°=122°.故答案为:122°;(2)∵BE是∠ABD的平分线,CE是∠ACB的平分线,∴∠ECB=12∠ACB,∠EBD=12∠ABD.∵∠ABD是△ABC的外角,∠EBD是△BCE的外角,∴∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,∴∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB,即12∠A+∠ECB=∠ECB+∠BEC,∴∠BEC=12∠A=12α;(3)结论:∠BQC=90°−12∠A.理由如下:∵∠CBM与∠BCN是△ABC的外角,∴∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC,∵BQ,CQ分别是∠ABC与∠ACB外角的平分线,∴∠QBC=12(∠A+∠ACB),∠QCB=12(∠A+∠ABC).∵∠QBC+∠QCB+∠BQC=180°,∴∠BQC=180°﹣∠QBC﹣∠QCB,=180°−12(∠A+∠ACB)−12(∠A+∠ABC),=180°−12∠A−12(∠A+∠ABC+∠ACB),=180°−12∠A﹣90°=90°−12∠A;(4)由(3)可知,∠BQC=90°−12∠A=90°−12×64°=58°,由(1)可知∠BPC=90°+12∠BQC=90°+12×58°=119°;由(2)可知,∠R=12∠BQC=29°故答案为119,29.26.(2021春•鄂州期末)探究知:任何一个三角形都满足三角形三内角和等于180°,我们把这个结论称之为三角形三内角和定理.如图1,AB∥CD,且∠BED+∠CDE=120°,请根据题目条件,结合三角形三内角和定理,探究下列问题:(1)如图2,在图1基础上作:∠BEF=12∠DEF,∠CDE=3∠CDF,EF与DF交于点F,求∠EFD的度数;(2)如图3,在图1基础上作:过B作BG⊥AB,交CD于点F,且∠CDG=34∠CDE,求∠G∠E的值.【解题思路】(1)设∠BEF=α,∠CDF=β,根据角之间的比例关系可得∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,进而可得∠DEF+∠EDF=80°,所以可得答案;(2)根据垂直可得∠CDG =90°﹣∠G ,再根据∠E +∠CDE =120°经过整理得3∠E =4∠G ,进而可得答案.【解答过程】解:(1)∵∠BEF =12∠DEF , ∴∠DEF =2∠BEF , 又∵∠CDE =3∠CDF , ∴设∠BEF =α,∠CDF =β,∴∠DEF =2α,∠DEB =3α,∠CDE =3β,∠EDF =2β, ∵∠BED +∠CDE =120°, ∴3α+3β=120°, ∴α+β=40°, ∴2α+2β=80°,∴∠EFD =180°﹣∠DEF ﹣∠EDF =180°﹣(2α+2β)=180°﹣80°=100°, 答:∠EFD 的度数为100°; (2)∵BF ⊥AB , ∴∠ABG =90°, ∵AB ∥CD ,∴∠ABG +∠BFC =180°, ∴∠BFC =∠GFD =90°,在△GFD 中,∠GFD +∠CDG +∠G =180°, ∴∠CDG =90°﹣∠G ,∵∠E +∠CDE =120°,∠CDG =34∠CDE ,∴∠E +43∠CDG =120°,∠E +43(90°﹣∠G )=120°, 整理得:3∠E =4∠G , ∴∠G ∠E=34.27.(2020秋•南昌期中)【问题探究】将三角形ABC 纸片沿DE 折叠,使点A 落在点A ′处(1)如图1,当点A 落在四边形BCDE 的边CD 上时,直接写出∠A 与∠1之间的数量关系; (2)如图2,当点A 落在四边形BCDE 的内部时,求证:∠1+∠2=2∠A ;(3)如图3,当点A落在四边形BCDE的外部时,探索∠1,∠2,∠A之间的数量关系,并加以证明;【拓展延伸】(4)如图4,若把四边形ABCD纸片沿EF折叠,使点A、D落在四边形BCFE的内部点A′、D′的位置,请你探索此时∠1,∠2,∠A,∠D之间的数量关系,写出你发现的结论,并说明理由.【解题思路】(1)运用折叠原理及三角形的外角性质即可解决问题;(2)运用折叠原理及四边形的内角和定理即可解决问题;(3)运用三角形的外角性质即可解决问题;(4)根据三角形的内角和和四边形的内角和即可得到结论.【解答过程】解:(1)如图1,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A;(2)如图2,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2;(3)如图3,∠1﹣∠2=2∠A,理由:∵∠1+2∠AED=180°,2∠ADE﹣∠2=180°,∴∠1﹣∠2+2∠AED+2∠AED=360°,∵∠A+∠AED+∠ADE=180°,∴2∠A+2∠AED+2∠ADE=360°,∴∠1﹣∠2=2∠A;(4)∠1+∠2=2(∠A+∠D)﹣360°,理由:∵∠1+2∠AEF=180°,∠2+2∠DFE=180°,∴∠1+∠2+2∠AEF+2∠DFE=360°,∵∠A+∠D+∠AEF+∠DFE=360°,∴2∠A+2∠D+2∠AEF+2∠DFE=720°,∴∠1+∠2=2(∠A+∠D)﹣360°.28.(2021春•桥西区期末)请认真思考,完成下面的探究过程.已知在△ABC中,AE是∠BAC的角平分线,∠B=60°,∠C=40°.【解决问题】如图1,若AD⊥BC于点D,求∠DAE的度数;【变式探究】如图2,若F为AE上一个动点(F不与E重合),且FD⊥BC于点D时,则∠DFE=10°;【拓展延伸】如图2,△ABC中,∠B=x°,∠C=y°,(且∠B>∠C),若F为线段AE上一个动点(F不与E重合),且FD⊥BC于点D时,试用x,y表示∠DFE的度数,并说明理由.【解题思路】(1)由∠B=60°,∠C=40°,得∠BAC=180°﹣∠B﹣∠C=80°.由角平分线的定义,得∠EAC=40°.根据三角形外角的性质,得∠FED=80°.由FD⊥BC,根据三角形内角和定理,故可求得∠DFE.(2)与(1)同理.(3)与(1)同理.【解答过程】解:(1)解决问题:∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=80°.又∵AE是∠BAC的角平分线,∴∠EAC=12∠BAC=40°.∴∠AED=∠C+∠EAC=40°+40°=80°.∵AD⊥BC,∴∠ADE=90°.∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣90°﹣80°=10°.(2)变式探究:由(1)知:∠AED=80°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣80°=10°.故答案为:10°.(3)拓展延伸:∠DFE=12x°−12y°,理由如下:∵∠B=x°,∠C=y°,∴∠BAC=180°﹣x°﹣y°.又∵AE是∠BAC的角平分线,∴∠CAE=12∠BAC=12(180°−x°−y°)=90°−12x°−12y°.∴∠AED=∠C+∠CAE=y°+90°−12x°−12y°=90°−12x°+12y°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣(90°−12x°+12y°)=12x°−12y°.29.(2021春•庐江县期末)如图1,AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,则∠F的度数是45°(直接写出答案即可);(3)如图3,EH平分∠CED,EH的反向延长线交∠BAE的平分线AF于点G.求证:EG⊥AF.(提示:三角形内角和等于180°)【解题思路】(1)根据垂直得到直角三角形,由直角三角形两锐角互余利用等量代换证明结论;(2)通过作FM∥AB∥CD可证∠DF A=∠CDF+∠BAF,因为∠CDE+∠BAE=90°和角平分线的定义可得∠F=12(∠CDE+∠BAE),继而得到答案;(3)根据角平分线的定义得∠CEH=∠DEH=∠GEB=∠BAG=∠EAF,由于∠B=90°,∠BAE+∠BEA =90°,在△AEG中,可证得∠EAG+∠AEG=90°,从而证得结论.【解答过程】(1)证明:∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠CED=90°,∴∠BAE=∠CED.(2)解:答案为45°;过点F作FM∥AB,如图,∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴AB∥CD,∵∠C=90°,∴∠CED+∠CDE=90°,∵∠BAE=∠CED,∴∠BAE+∠CDE=90°,∵AF、DF分别平分∠BAE和∠CDE,∴∠CDF=12∠CDE,∠BAF=12∠BAE,∴∠CDF+∠BAF=12(∠BAE+∠CDE)=45°,∵FM∥AB∥CD,∴∠CDF=∠DFM,∠BAF=∠AFM,∴∠AFD=∠CDF+∠BAF=45°.(3)∵EH平分∠CED,∴∠CEH=12∠CED,∴∠BEG=12∠CED,∵AF平分∠BAE,∴∠BAG=12∠BAE,∵∠BAE=∠CED,∴∠BAG=∠BEG,∵∠BAE+∠BEA=90°,∴∠BAG+∠GAE+∠AEB=90°,即∠GAE+∠AEB+∠BEG=90°,∴∠AGE=90°,∴EG⊥AF.30.(2021春•崇川区期末)在△ABC中,BD是△ABC的角平分线,E为边AC上一点,EF⊥BC,垂足为F,EG平分∠AEF交BC于点G.(1)如图1,若∠BAC=90°,延长AB、EG交于点M,∠M=α.①用含α的式子表示∠AEF为180°﹣2α;②求证:BD∥ME;(2)如图2,∠BAC<90°,延长DB,EG交于点N,请用等式表示∠A与∠N的数量关系,并证明.。
四年级上册语文试题-专项习题:综合题 人教(部编版)(含解析)

四年级上册语文试题 综合题一、综合题1.综合·性学习。
班里准备开一个历史人物故事会。
请你根据下面的材料完成信息卡片,以帮助你在故事会上发挥出最好的水平。
祭七星坛借东风三国时,孙刘联盟对抗曹操,周瑜为火攻没有东南风而病倒在床上。
诸葛亮给周瑜开了个“药方”,上面写着:“万事俱备,只欠东风。
”说他能借来东风。
诸葛亮让周瑜为他搭起高九尺的七星坛,然后自己在坛上作法。
当夜,果然刮起了东南风。
故事名称:________ 主人公:________故事起因:________故事经过:________故事结果:________2.综合实践。
我们班开展了“走进红色岁月,珍惜幸福生活”的综合性学习活动。
(1)下面是各小组设计的几种方案,与本次主题无关的一项是( )。
A.讲革命故事,继承先烈遗志B.唱爱国歌曲,颂扬伟大祖国C.游革命基地,弘扬革命精神D.赛花样跳绳,增强师生体质(2)经过讨论,班里决定组织参观革命传统教育基地。
每人推荐一个地方,可以推荐本地的革命基地,也可以推荐延安等传统革命基地。
我推荐________,因为________。
(3)周末,老师带领同学们一起参观革命基地。
在游览期问,我发现同学阳阳在建筑物上乱涂乱画。
于是,我提醒他说:“________”3.按要求完成练习。
①海棠②茉莉③花圃④花蕊⑤玫瑰⑥花卉⑦牡丹⑧花蕾 (1)词语“花圃.、花卉.、花蕾.、花蕊.”中加点字的读音,完全正确的一项是( )。
A.pǔ huì léi ruǐB.pǔ huì lěi ruǐC.bǔ huí lěi ruìD.bǔ huí léi ruì(2)上面词语中表示花的部位的有:________。
(填序号)(3)看图片选出花名。
(填序号)(4)我知道的花名还有:________、________、________。
4.[写法训练]按要求完成练习,体会观察日记的写法。
中考地理专题复习:综合题专项训练(七年级上册)【附解析】
中考地理专题复习:综合题专项训练七年级上册1.读东西半球图,回答下列问题。
(1)写出数码代表的大洲:①________;③________。
(2)左图为________半球,中国位于________洲,全部位于北半球的大洋是________(填字母)。
(3)跨经度最广的大洲是________。
黑色人种主要分布在________。
(4)巴拿马运河是________洲和________洲的分界线,苏伊士运河是________洲和________洲的分界线。
(填代号)2.读“板块运动示意图”,回答下列问题。
(1)板块学说认为,由岩石组成的地球表层并不是整体一块,而是分为六大板块。
写出图中板块的名称:A、__________D、______________(2)喜马拉雅山是________板块和_________板块碰撞挤压而成的。
(3)根据板块运动方向来推断,地中海会不断________(缩小或扩大)。
3.读东、西半球示意图,按要求完成下列问题。
(1)A图表示________半球。
(2)①处为________洋。
③处为________洲,与⑧大洲陆地相接,以________运河为界。
(3)④处为______洲,它与⑤所在的大洲之间的陆上分界线是____________山脉、乌拉尔河、大高加索山脉、_______________海峡。
(4)赤道横穿_________大陆中部和_________大洲北部。
(5)七大洲、四大洋中,跨经度最广的大洋是________洋,跨纬度最大的大洲是________洲。
(6)全部位于南半球的大洲有________(填名称)。
四大洋中,全部位于东半球的大洋是________洋。
4.《海底两万里》是法国小说家儒勒·凡尔纳的代表作之一,他带领读者登上鹦鹉螺号,随着尼摩船长和他的“客人们”饱览变幻无穷的海底世界。
结合“鹦鹉螺号航行路线图”,回答下列各题。
(1)鹦鹉螺号航行证明地球表面海陆分布特点是___。
专题30 四边形的判定与性质综合大题专项训练(30道)
专题5.4 四边形的判定与性质综合大题专项训练(30道)【浙教版】1.(2021秋•九江期末)如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF =GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.2.(2021秋•崂山区期末)如图,在▱ABCD中,AC⊥CD.(1)延长DC到E,使CE=CD,连接BE,求证:四边形ABEC是矩形;(2)若点F,G分别是BC,AD的中点,连接AFCG,试判断四边形AFCG是什么特殊的四边形?并证明你的结论.3.(2021秋•渝中区校级期末)如图,平行四边形ABCD的对角线AC,BD相交于O点,DE⊥AC于E点,BF⊥AC于F.(1)求证:四边形DEBF为平行四边形;(2)若AB=20,AD=13,AC=21,求△DOE的面积.4.(2021秋•沙坪坝区校级期末)如图,在▱ABCD中,E、F分别为AB、CD边上两点,FB平分∠EFC.(1)如图1,若AE=2,EF=5,求CD的长;(2)如图2,∠BCD=45°,BC⊥BD,若G为EF上一点,且∠GBF=∠EFD,求证:FG+2FD=AB.5.(2021秋•莱芜区期末)点E是▱ABCD的边CD上的一点,连接EA并延长,使EA=AM,连接EB并延长,使EB=BN,连接MN,F为MN的中点,连接CF,DM.(1)求证:四边形DMFC是平行四边形;(2)连接EF,交AB于点O,若OF=2,求EF的长.6.(2021秋•市南区期末)已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?7.(2021秋•砚山县期末)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE ⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,垂足为F,∠ECA=60°.(1)求证:四边形CEHF是菱形;(2)已知四边形CEHF的周长为16cm,求菱形ABCD的面积.8.(2021秋•寿光市期末)如图,点E是平行四边形ABCD对角线AC上一点,点F在BE延长线上,且EF=BE,EF与CD交于点G.(I)求证:DF∥AC;(2)连接DE、CF,若2AB=BF,G恰好是CD的中点,求证:四边形CFDE是矩形.9.(2021秋•成都期末)如图,在四边形ABCD中AD∥CB,O为对角线AC的中点,过点O作直线分别与四边形ABCD的边AD,BC交于M,N两点,连接CM,AN.(1)求证;四边形ANCM为平行四边形;(2)当MN平分∠AMC时,①求证;四边形ANCM为菱形;②当四边形ABCD是矩形时,若AD=8,AC=4√5,求DM的长.10.(2021秋•南岗区期末)已知:在▱ABCD中,对角线AC与BD交于点O,过点O作EF⊥BD,分别交AB,DC于点E,F,连接BF,DE.(1)如图1,求证:四边形DEBF是菱形;(2)如图2,AD∥EF,且AD=AE,在不添加任何辅助线的条件下,请直接写出图2中四个度数为30°的角.11.(2021秋•和平县期末)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:CF=AE;(2)当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.12.(2021秋•太平区期末)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)13.(2021秋•法库县期末)如图,在四边形ABCD中,AC、BD相交于点O,AD∥BC,∠ADC=∠ABC,OA=OB.(1)如图1,求证:四边形ABCD为矩形;(2)如图2,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,若AD=12,AB=5,求PE+PF 的值.14.(2021秋•兰州期末)如图,在正方形ABCD中,点E、F分别为边BC、CD上两点,∠EAF=45°,过点A 作∠GAB=∠F AD,且点G为边CB延长线上一点.①△GAB≌△F AD吗?说明理由.②若线段DF=4,BE=8,求线段EF的长度.③若DF=4,CF=8.求线段EF的长度.15.(2020秋•安丘市期末)如图,在平行四边形ABCD中,对角线AC与BD交于点O,点M,N分别为OA、OC 的中点,延长BM至点E,使EM=BM,连接DE.(1)求证:△AMB≌△CND;(2)若BD=2AB,且AM=3,DN=4,求四边形DEMN的面积.16.(2020秋•市南区期末)已知:如图,在平行四边形ABCD中,E、F分别为AB、CD的中点,G、H分别为DE、BF的中点.(1)试判断四边形EHFG的形状,并证明;(2)若∠ABC=90°,试判断四边形EHFG的形状并加以证明.17.(2020秋•沈北新区校级期末)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=12AC,连接AE、CE.(1)求证:四边形OCED为矩形;(2)若菱形ABCD的边长为8,∠BCD=60°,则AE=.18.(2021春•冠县期末)如图,在△ABC中,O是AC边上一点,过点O作BC的平行线,交∠BCA的平分线于点E,交外角∠ACD的平分线于点F.(1)求证:EO=OF;(2)连接AE,AF,当点O沿AC移动时,四边形AECF是否能成为一个矩形?此时,点O在什么位置?说明理由19.(2021•长兴县模拟)如图,在▱ABCD中,对角线AC,BD相交于点O,BD=2AD,点E在线段OC上,且OE=CE.(1)求证:∠OBE=12∠ADO;(2)若F,G分别是OD,AB的中点,且BC=10,①求证:△EFG是等腰三角形;②当EF⊥EG时,求▱ABCD 的面积.20.(2021春•富平县期末)在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.21.(2021春•临沧期末)如图,菱形ABCD的对角线AC、BD相交于点O,过点B作BE∥AC,且BE=12AC,连接EC.(1)求证:四边形BECO是矩形;(2)连接ED交AC于点F,连接BF,若AC=6,AB=5,求BF的长.22.(2021春•淮阳区校级期末)如图,在平行四边形ABCD中,M,N是对角线BD上的点,且BM=DN,DE平分∠ADB交AB于点E,BF平分∠DBC交CD于点F.(1)求证:四边形EMFN是平行四边形;(2)当四边形EMFN是菱形时,求证:四边形BEDF是菱形.23.(2021春•肥东县期末)如图1,在平行四边形ABCD中,AB=8,AD=14,∠BAD的平分线交BC于点E交DC的延长线于F,以EC,CF为邻边作▱ECFG.(1)求EC的长;24.(2021春•大连期末)如图,四边形ABCD和CEFG都是正方形,点E在BC的延长线上,且CE<BC,连接BG并延长交DE于H.(1)写出BH与DE的位置关系,并证明;(2)求证:∠BHC=45°.25.(2021春•法库县期末)如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,点F在CD上,BF交CG于点E,连接AE,AE⊥AD.(1)若BG=1,BC=√5,求EF的长度;(2)求证:△BCG≌△EAG;(3)直接写出三条线段CD,CE,BE之间的数量关系.26.(2021春•迁安市期末)已知:如图,在▱ABCD中,对角线AC、BD相交于点O,点G、H分别是AD、BC 的中点,点E、O、F分别是对角线BD上的四等分点,顺次连接G、E、H、F.(1)求证:四边形GEHF是平行四边形;(2)若四边形GEHF是菱形.①线段AB和BD有何位置关系?请说明理由.②若AB=2,BD=2AB时,求四边形GEHF的面积.27.(2021春•上城区校级期末)如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE是菱形(填“可能”或“不可能”).请说明理由.28.(2021春•酒泉期末)(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,连接AE、BF交于点H.请直接写出线段AE与BF的数量关系和位置关系.(2)如图2,在正方形ABCD中,E、F分别是BC、CD边上的点,连接BF,过点E作EG⊥BF于点H,交AD 于点G,试判断线段BF与GE的数量关系,并证明你的结论.29.(2021春•鞍山期末)如图,在正方形ABCD中,边长为3.点M,N是边AB,BC上两点,且BM=CN=1,连接CM,DN;(1)则DN与CM的数量关系是,位置关系是.(2)若点E,F分别是DN与CM的中点,计算EF的长;(3)延长CM至P,连接BP,若∠BPC=45°,试求PM的长.30.(2021春•修水县期末)如图,在▱ABCD中,对角线AC,BD相交于点O,OA=5cm,E,F为直线BD上的两个动点(点E,F始终在▱ABCD的外面),连接AE,CE,CF,AF.(1)若DE=12OD,BF=12OB,①求证:四边形AFCE为平行四边形;②若CA平分∠BCD,∠AEC=60°,求四边形AFCE的周长.(2)若DE=13OD,BF=13OB,四边形AFCE还是平行四边形吗?请写出结论并说明理由.若DE=1n OD,BF=1n OB呢?请直接写出结论.。
平面直角坐标系综合解答题专项训练
平面直角坐标系综合解答题专项训练1.已知,对于平面直角坐标系中的点P(a,b),若点P'(a﹣kb,b﹣ka)(其中k为常数,且k≠0,则称点P′为点P的“k系好点”.例如:P(1,2)的“2系好点”为P'(1﹣2×2,2﹣2×1),即P'(﹣3,0).(1)求点P(﹣2,1)的“﹣2系好点”P′的坐标;(2)若点P在x轴的正半轴上,点P的“k系好点”为点P′,PP'=2OP,求k的值;(3)已知点A(x,y)在第二象限,且满足xy=﹣9,点A为点B(m,n)的“1系好点”,求m﹣n的值.2.如图,△ABC在平面直角坐标系中,已知点A(0,4),B(0,﹣2),若点C在第一象限,且BC=AC=5,求点C的坐标.3.如图是某片区平面示意图,超市的坐标是(﹣2,4),市场的坐标是(1,3).(1)画出相应的平面直角坐标系;(2)分别写出体育场、火车站和文化宫的坐标;(3)若在(﹣3,﹣2)处建汽车站,在(2,﹣1)处建花坛,请在平面示意图中标出汽车站和花坛的位置.4.已知点A(2a,3a+1)是平面直角坐标系中的点.(1)若点A在第二象限的角平分线上,求a的值;(2)若点A在第三象限,且到两坐标轴的距离和为9,请确定点A的坐标.5.一个四边形的形状和尺寸如图所示.建立适当的直角坐标系,在坐标系中作出这个四边形,并标出各顶点的坐标.6.已知平面直角坐标系中有一点A(m﹣1,2m+3).(1)点A在二、四象限的角平分线上,求点A的坐标;(2)点A到y轴的距离为2时,求点A的坐标.7.在平面直角坐标系中,点A1从原点O出发,沿x轴正方向按折线不断向前运动,其移动路线如图所示.这时点A1,A2,A3,A4的坐标分别为A1(0,0),A2(0,1),A3(1,1),A4(1,0),…按照这个规律解决下列问题:(1)写出点A5,A6,A7,A8的坐标;(2)点A100和点A2022的位置分别在,.(填x轴上方、x轴下方或x轴上)8.如图,某小区绿化区的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中.已知小正方形的边长为1,A1的坐标为(2,2),A2的坐标为(5,2).(1)A3的坐标为,A n的坐标为用含n的代数式表示;(2)若护栏长为2020,则需要小正方形个,大正方形个.9.如图,在平面直角坐标系中,点A1的坐标为(1,0)、点A2的坐标为(2,0)、点A3的坐标为(3,0)、…,过点A1、A2、A3、…分别作x轴垂线,交直线y=x于点B1、B2、B3、…,△OA1B1覆盖的整点(横、纵坐标均为整数的点)的个数记为P1,面积的值记为S1;△OA2B2覆盖的整点的个数记为P2,面积的值记为S2;△OA3B3覆盖的整点的个数记为P3,面积的值记为S3;…(1)由题意可知:P1=3、S1=12;P2=6、S2=2;P3=10、S3=92;则P4=、S4=;(2)P7﹣S7=;(3)P n﹣S n的值是否会等于2022?若能,请求出n的值,若不能,请说明理由.【注:连续x个正整数和的计算公式:1+2+3+…+x﹣1+x=x(x+1)2】10.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图2,已知E(2,0),若F(﹣1,﹣2),则d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)=.11.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式P1P2=√(x2−x1)2+(y2−y1)2,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.12.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离P1P2=√(x1−x2)2+(y1−y2)2,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.13.认真阅读下列材料:在平面直角坐标系xOy中,对于点P(x,y),我们把点p(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…A n.(1)若点A的坐标为(3,1),则点A3的坐标为,点A2021的坐标为;(2)若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件是什么?14.在坐标平面内,以x轴上的1个单位长为底边按一定规律向上画矩形条现已知其中几个矩形条的位置如图,其相应信息如表:矩形条底位置…﹣3~﹣2﹣2~﹣1﹣1~00~11~22~33~4…矩形条高…1…… 3.5…… 1.5…若所有矩形条的左上顶点都在我们已学的某类函数图象上.(1)根据所给信息,直接写出这个函数图象上的三个点的坐标.(2)求这个函数解析式;(3)若在坐标平面内画出所有这样依次排列的矩形条,求这些矩形条中面积最小矩形条的面积.15.对于平面内的图形G1和图形G2,记平面内一点P到图形G1上各点的最短距离为d1,点P到图形G2上各点的最短距离为d2,若d1=d2,就称点P是图形G1和图形G2的一个“等距点”.在平面直角坐标系xOy中,已知点A(6,0),B(0,2√3).(1)在C(4,0),D(2,0),E(1,3)三点中,点A和点B的等距点是;(2)已知直线y=2.①若点A和直线y=2的等距点在x轴上,则该等距点的坐标为;②若直线y=b上存在点A和直线y=2的等距点,求实数b的取值范围;(3)记直线AB为直线l1,直线l2:y=−√33x,以原点O为圆心作半径为r的⊙O.若⊙O 上有m个直线l1和直线l2的等距点,以及n个直线l1和y轴的等距点(m≠0,n≠0),当m≠n时,求r的取值范围.16.如图(1),是边长为1的正方形OBB1C,以对角线OB1为一边作第2个正方形OB1B2C1,再以对角线OB2为一边作第3个正方形OB2B3C2,…依次下去,则:(1)第2个正方形的边长=,第10个正方形的边长=,第n个正方形的边长为.(2)如图(2)所示,若以O为坐标原点,OC所在直线为x轴,OB所在直线为y轴,则点B3的坐标是,点B5的坐标是,点B2014的坐标是.17.已知△ABC中,点A(﹣1,2),B(﹣3,﹣2),C(3,﹣3)①在直角坐标系中,画出△ABC;②求△ABC的面积.18.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为,A n的坐标(用n的代数式表示)为.(2)2020米长的护栏,需要两种正方形各多少个?19.每个小方格都是边长为1的正方形,在平面直角坐标系中.(1)写出图中从原点O出发,按箭头所指方向先后经过的A、B、C、D、E这几个点的坐标;(2)按图中所示规律,找到下一个点F的位置并写出它的坐标.20.如图,在直角坐标系的坐标轴上按如下规律取点:A1在x轴正半轴上,A2在y轴正半轴上,A3在x轴负半轴上,A4在y轴负半轴上,A5在x轴正半轴上,…,且OA1+1=OA2,OA2+1=OA3,OA3+1=OA4…,设A1,A2,A3,A4…,有坐标分别为(a1,0),(0,a2),(a3,0),(0,a4)…,s n=a1+a2+a3+…+a n.(1)当a1=1时,求a5的值;(2)若s7=1,求a1的值;(3)当a1=1时,直接写出用含k(k为正整数)的式子表示x轴负半轴上所取点坐标.。
四年级列综合算式专项训练题
四年级列综合算式专项训练题1. 12 加上24 的和,再除以6,商是多少?-先算12 加上24 的和:12 + 24 = 36。
-再除以6:36÷6 = 6。
-综合算式:(12 + 24)÷6 = 36÷6 = 6。
2. 36 减去18 的差,乘以4,积是多少?-先算36 减去18 的差:36 - 18 = 18。
-再乘以4:18×4 = 72。
-综合算式:(36 - 18)×4 = 18×4 = 72。
3. 45 除以5 的商,加上15,和是多少?-先算45 除以5 的商:45÷5 = 9。
-再加上15:9 + 15 = 24。
-综合算式:45÷5 + 15 = 9 + 15 = 24。
4. 28 乘以3 的积,减去42,差是多少?-先算28 乘以3 的积:28×3 = 84。
-再减去42:84 - 42 = 42。
-综合算式:28×3 - 42 = 84 - 42 = 42。
5. 56 除以8 的商,再乘以7,结果是多少?-先算56 除以8 的商:56÷8 = 7。
-再乘以7:7×7 = 49。
-综合算式:56÷8×7 = 7×7 = 49。
6. 32 加上48 的和,除以8,商是多少?-先算32 加上48 的和:32 + 48 = 80。
-再除以8:80÷8 = 10。
-综合算式:(32 + 48)÷8 = 80÷8 = 10。
7. 63 减去45 的差,除以6,商是多少?-先算63 减去45 的差:63 - 45 = 18。
-再除以6:18÷6 = 3。
-综合算式:(63 - 45)÷6 = 18÷6 = 3。
8. 42 除以6 的商,乘以5,积是多少?-先算42 除以6 的商:42÷6 = 7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机网络复习题---综合题专项训练
1.某校园网网络拓扑如下图所示:
请解答以下问题:
(1)若将192.168.1.192/26划分为3个子网。
其中第一个子网容纳25台主机,另外两个子网分别容纳10台主机。
请按照子网序号顺序进行网络地址分配,写出规划方案(给出子网网络地址和子网掩码,192=11000000,224=11100000,240=11110000)(6分)。
(2)若该网络使用上述地址,边界路由器应该具备什么功能(1分)?为保证外网能够访问到该网络内的服务器,那么应该在边界路由器上对服务器地址进行什么样的处理(1分)?
(3)为达到对数据包进入该网络时进行过滤检测以确定此包是否包含有威胁网络安全特征的目的,同时检测到恶意数据包时,系统不仅发出警报还要采取相应阻断攻击的措施,那么应在该网络中添加何种设备(1分),该设备部署在位置1、位置2和位置3的哪里最为合适(1分)?
2、现有四个基站进行CDMA通信。
已知其中三个基站的码片序列为:A (00011011),B(00101110),C(01011100),D未知。
现在A和D发送1,B 发送0,C未发送数据,根据接收端收到的码片序列:S(-1 +1 -3 +1 -1 -3 +1 +1),请推导出D基站的码片序列。
3、某一网络地址块192.168.75.0中有5台主机A、B、C、D和E,它们的IP地址及子网掩码如下表所示。
主机 IP地址子网掩码
A 192.168.75.18 255.255.255.240
B 192.168.75.146 255.255.255.240
C 192.168.75.158 255.255.255.240
D 192.168.75.161 255.255.255.240
E 192.168.75.173 255.255.255.240
[问题1](2分)
5台主机A、B、C、D、E分属几个网段?哪些主机位于同一网段?
[问题2](2分)
主机C的网络地址为多少?
[问题3](2分)
若要加入第六台主机F,使它能与主机D属于同一网段,其IP地址范围是多少?
[问题4](2分)
若在网络中另加入一台主机,其IP地址设为192.168.75.164,它的广播地址是多少?哪些主机能够收到?
[问题5](2分)
若在该网络地址块中采用VLAN技术划分子网,何种设备能实现VLAN之间的数据转发?
4、公用机房有三个计算机室共有180台计算机,网络地址号为192.168.10.0,按60台计算机一个计算机室划分子网,请计算出各计算机室的子网掩码和IP 地址段。
5、TCP 的拥塞窗口cwnd 大小与传输轮次n 的关系如下所示: cwn
d n
1 1
2 2 4
3 8
4 16
5 32
6 33
7 34
8 35
9 36 10 37 11 38 12 39 13 cwn d n
40 14 41 15 42 16 21 17 22 18 23 19 24 20 25 21 26 22 1 23 2 24 4 25 8
26
(1)试画出如图5-25所示的拥塞窗口与传输轮次的关系曲线。
(请用画图软
件,再转换成JPG 格式上传)
(2)指明TCP 工作在慢开始阶段的时间间隔。
(3)指明TCP 工作在拥塞避免阶段的时间间隔。
(4)在第16轮次和第22轮次之后发送方是通过收到三个重复的确认还是通过
超市检测到丢失了报文段?
(5)在第1轮次,第18轮次和第24轮次发送时,门限ssthresh 分别被设置为多
大?
(6)在第几轮次发送出第70个报文段?
(7)假定在第26轮次之后收到了三个重复的确认,因而检测出了报文段的丢
失,那么拥塞窗口cwnd 和门限ssthresh 应设置为多大?
6、主机A 向主机B 连续发送了两个TCP 报文段,其序号分别为70和100.试问:
(1). 第一个报文段携带了多少字节的数据?
(2). 主机B 收到第一个报文段后发回的确认号应当是多少?
(3). 如果B 收到第二个报文段后发回的确认号是180,试问A 发送的第二个报文段的数据有多少字节?
(4). 如果A 发送的第一个报文段丢失了,但第二个到达B ,B 在第二个报文段到达后向A 发送了确认。
试问这个确认号应为多少?
7、一UDP用户数据报的首部十六进制表示是:06 12 00 45 00 1C E2 17。
试求源端口号、目的端口号、用户数据报的总长度、数据部分长度。
这个用户数据报是从客户发送给服务器还是从服务器发送给客户?使用UDP的这个服务器程序是什么?
8、有五个站分别连接在三个局域网上,并且用两个透明网桥连接起来,如图所示(请参见教材)。
每一个网桥的两个端口号都标明在图上。
在一开始,两个网桥中的转发表都是空的。
以后有以下各站向其他的站发送了数据帧,即H1发送给H5,H3发送给H2,H4发送给H3,H2发送给H1。
试将有关数据填写在下表(请参见教材)。
中(H1-A,H2-B,H3-C,H4-D,H5-E)(书上题目)
9、共有4个站进行码分多址CDMA通信。
4个站的码片序列为:
A:(-1 –1 –1 +1 +1 –1 +1 +1)B:(-1 –1 +1 -1 +1 +1 +1 -1)
C:(-1 +1 –1 +1 +1 +1 -1 -1)D:(-1 +1 –1 –1 -1 –1 +1 -1)
现收到这样的码片序列:(-1 +1 –3 +1 -1 –3 +1 +1)。
问哪个站发送数据了?发送数据的站发送的1还是0?
10、用香农公式计算一下:假定信道带宽为3100Hz,最大信息传输速率为35kb/s,那么若想使最大信息传输速率增加60%。
问信噪比S/N应增大到多少倍数?如果在刚才计算出的基础上将信噪比S/N再增大到10倍,请问最大信息传输速率能否再增加20%?。