2016年北京市中考数学试卷试卷
北京中考数学试题分类汇编

目录北京中考数学试题分类汇编 ............................................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................北京中考数学试题分类汇编(答案) ............................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................2011-2016年北京中考数学试题分类汇编本套试卷汇编了11-16年北京市中考数学试题真题,将真题按照知识点内容重新进行编排,通过试卷可看出北京中考数学学科各知识点所占整套试卷的百分比,知识点所对应的出题类型。
2016年北京中考科目及分数

2016年北京中考科目及分数一、北京中考科目及分数分配根据北京市教委的规定,2016年北京中考的考试科目包括语文、数学、英语、政治、历史和地理。
各科目的分数分配如下:1. 语文:150分2. 数学:120分3. 英语:120分4. 政治:60分5. 历史:60分6. 地理:60分总分为570分。
二、各科目考试要点1. 语文语文考试包含了阅读理解、写作和综合能力等内容。
考生需要掌握好课文与古诗文的理解能力,同时也要能够运用所学的知识进行写作。
2. 数学数学考试主要考察了基础的数学运算能力、代数与方程、几何、统计与概率等内容。
考生需要扎实的基础知识和逻辑思维能力。
3. 英语英语考试内容主要包括听力、阅读和写作。
考生需要具备良好的英语听力和阅读能力,同时也要能够用英语进行简单的表达和交流。
4. 政治、历史、地理这三门文综科目主要考察了考生对于政治、历史和地理知识的掌握程度和理解能力。
三、备考建议1. 语文在备考语文科目时,考生首先要熟练掌握课文内容,可以通过大量的阅读来扩大词汇量,提高理解能力。
同时也要多进行写作训练,提高自己的表达能力和逻辑思维能力。
2. 数学数学科目需要考生具备扎实的数学基础知识,因此建议考生多做练习题,逐渐提高自己的数学解题能力。
对于代数与方程、几何等内容,需要考生掌握解题的方法和技巧。
3. 英语英语科目需要考生提高听力和阅读能力,可以通过大量的听力和阅读训练来提高自己的语言能力。
在写作方面,可以通过模仿和练习积累一些常用的表达方式和句型。
4. 政治、历史、地理文综科目需要考生系统掌握相关的知识点,建议考生在备考过程中要加强对于政治、历史和地理知识的学习和理解。
四、考试注意事项1. 考生需要做好考前的心理和身体调节,保持良好的状态,保证考试时的专注力和应对能力。
2. 在考试过程中,要注意做好时间管理,合理分配时间,确保各科目能够充分作答。
3. 考生在填涂答题卡的时候要认真填写,防止错误。
初中数学 北京市中考模拟数学考试题考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图所示,点到直线的距离是()A.线段的长度 B.线段的长度C.线段的长度 D.线段的长度试题2:若代数式有意义,则实数的取值范围是()A. B. C. D.试题3:右图是某个几何题的展开图,该几何体是()评卷人得分A.三棱柱 B.圆锥 C.四棱柱 D.圆柱试题4:实数在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.试题5:下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C. D.试题6:若正多边形的一个内角是150°,则该正多边形的边数是()A. 6 B. 12 C. 16 D.18试题7:如果,那么代数式的值是()A. -3 B. -1 C. 1 D.3试题8:下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多试题9:小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15跑过的路程大于小林前15跑过的路程D.小林在跑最后100的过程中,与小苏相遇2次试题10:下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.① B.② C. ①② D.①③试题11:写出一个比3大且比4小的无理数:______________.试题12:某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为元,足球的单价为元,依题意,可列方程组为____________.试题13:如图,在中,分别为的中点.若,则.试题14:如图,为的直径,为上的点,.若,则.试题15:如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由得到的过程:.试题16:下图是“作已知直角三角形的外接圆”的尺规作图过程已知:,求作的外接圆.作法:如图.(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点;(2)作直线,交于点;(3)以为圆心,为半径作.即为所求作的圆.请回答:该尺规作图的依据是.试题17:计算:.试题18:解不等式组:试题19:如图,在中,,平分交于点.求证:.试题20:数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:,(____________+____________).易知,,_____________=______________,______________=_____________.可得.试题21:关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求的取值范围.试题22:如图,在四边形中,为一条对角线,,为的中点,连接.(1)求证:四边形为菱形;(2)连接,若平分,求的长.试题23:如图,在平面直角坐标系中,函数的图象与直线交于点.(1)求的值;(2)已知点,过点作平行于轴的直线,交直线于点,过点作平行于轴的直线,交函数的图象于点.①当时,判断线段与的数量关系,并说明理由;②若,结合函数的图象,直接写出的取值范围.试题24:如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点.(1)求证:;(2)若,求的半径.试题25:某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门甲0 0 1 11 7 1乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.3 77.5 75乙78 80.5 81得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)试题26:如图,是所对弦上一动点,过点作交于点,连接,过点作于点.已知,设两点间的距离为,两点间的距离为.(当点与点或点重合时,的值为0)小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与的几组值,如下表:0 1 2 3 4 5 60 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当为等腰三角形时,的长度约为____________.试题27:在平面直角坐标系中,抛物线与轴交于点(点在点的左侧),与轴交于点. (1)求直线的表达式;(2)垂直于轴的直线与抛物线交于点,与直线交于点,若,结合函数的图象,求的取值范围.试题28:在等腰直角中,,是线段上一动点(与点不重合),连接,延长至点,使得,过点作于点,交于点.(1)若,求的大小(用含的式子表示).(2)用等式表示线段与之间的数量关系,并证明.试题29:在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得两点间的距离小于或等于1,则称为图形的关联点.(1)当的半径为2时,①在点中,的关联点是_______________.②点在直线上,若为的关联点,求点的横坐标的取值范围.(2)的圆心在轴上,半径为2,直线与轴、轴交于点.若线段上的所有点都是的关联点,直接写出圆心的横坐标的取值范围.试题1答案:B试题2答案:D试题3答案:A试题4答案:C试题5答案:A试题6答案:B试题7答案:C试题8答案:B试题9答案:D试题10答案:B试题11答案:(答案不唯一)试题12答案:试题13答案:3试题14答案:25°试题15答案:试题16答案:试题17答案:=3 试题18答案:试题19答案:试题20答案:试题21答案:试题22答案:试题23答案:试题24答案:试题25答案:试题26答案:试题27答案:试题28答案:试题29答案:。
2016年北京市中考数学试卷解析版

2016年北京市中考数学试卷解析版一、选择题(本题共30分,每小题3分)1.(3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125°D.135°【解答】解:由图形所示,∠AOB的度数为55°,故选:B.2.(3分)神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C.2.8×104D.0.28×105【解答】解:28000=2.8×104.故选:C.3.(3分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2B.a<﹣3C.a>﹣b D.a<﹣b【解答】解:A、如图所示:﹣3<a<﹣2,故此选项错误;B、如图所示:﹣3<a<﹣2,故此选项错误;C、如图所示:1<b<2,则﹣2<﹣b<﹣1,故a<﹣b,故此选项错误;D、由选项C可得,此选项正确.故选:D.4.(3分)内角和为540°的多边形是()A.B.C .D .【解答】解:设多边形的边数是n ,则 (n ﹣2)•180°=540°, 解得n =5. 故选:C .5.(3分)如图是某个几何体的三视图,该几何体是( )A .圆锥B .三棱锥C .圆柱D .三棱柱【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱. 故选:D .6.(3分)如果a +b =2,那么代数(a −b 2a )•a a−b的值是( )A .2B .﹣2C .12D .−12【解答】解:∵a +b =2, ∴原式=(a+b)(a−b)a •aa−b=a +b =2 故选:A .7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.8.(3分)在1﹣7月份,某种水果的每斤进价与售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份【解答】解:由图象中的信息可知,3月份的利润=7.5﹣5=2.5元,4月份的利润=6﹣3=3元,5月份的利润=4.5﹣2=2.5元,6月份的利润=3﹣1.2=1.8元,故出售该种水果每斤利润最大的月份是4月份,故选:B.9.(3分)如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O4【解答】解:如图所示,在平面直角坐标系中,画出点A(﹣4,2),点B(2,﹣4),点A,B关于直线y=x对称,则原点在线段AB的垂直平分线上(在线段AB的右侧),如图所示,连接AB,作AB的垂直平分线,则线段AB上方的点O1为坐标原点.故选:A.10.(3分)为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断合理的是()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150﹣180之间; ④该市居民家庭年用水量的平均数不超过180.A .①③B .①④C .②③D .②④【解答】解:①由条形统计图可得:年用水量不超过180m 3的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),45×100%=80%,故年用水量不超过180m 3的该市居民家庭按第一档水价交费,正确;②∵年用水量超过240m 3的该市居民家庭有(0.15+0.15+0.05)=0.35(万), ∴0.355×100%=7%≠5%,故年用水量超过240m 3的该市居民家庭按第三档水价交费,故此选项错误;③∵5万个数数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120﹣150之间,故此选项错误; ④由①得,该市居民家庭年用水量的平均数不超过180,正确, 故选:B .二、填空题(本题共18分,每小题3分) 11.(3分)如果分式2x−1有意义,那么x 的取值范围是 x ≠1 .【解答】解:由题意,得 x ﹣1≠0, 解得x ≠1, 故答案为:x ≠1.12.(3分)如图中的四边形均为矩形,根据图形,写出一个正确的等式 am +bm +cm =m (a +b +c ) .【解答】解:由题意可得:am +bm +cm =m (a +b +c ). 故答案为:am +bm +cm =m (a +b +c ).13.(3分)林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据: 移植的棵数n 1000 1500 2500 4000 8000 15000 20000 30000成活的棵数m 865 1356 2220 3500 7056 13170 17580 26430成活的频率mn0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为 0.881 .【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.881. 故答案为:0.881.14.(3分)如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为 3 m .【解答】解:如图,∵CD ∥AB ∥MN , ∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴CD AB =DE BE,FN FB=MN AB,即1.8AB=1.81.8+BD,1.5AB= 1.51.5+2.7−BD,解得:AB =3m .答:路灯的高为3m .15.(3分)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为505.【解答】解:1~100的总和为:(1+100)×1002=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505, 故答案为:505.16.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程: 已知:直线l 和l 外一点P .(如图1) 求作:直线l 的垂线,使它经过点P . 作法:如图2(1)在直线l 上任取两点A ,B ;(2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ; (3)作直线PQ .所以直线PQ 就是所求的垂线.请回答:该作图的依据是到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵P A=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分),解答时应写出文字说明、演算步骤或证明过程17.(5分)计算:(3﹣π)0+4sin45°−√8+|1−√3|.【解答】解:(3﹣π)0+4sin45°−√8+|1−√3|=1+4×√22−2√2+√3−1=1+2√2−2√2+√3−1 =√318.(5分)解不等式组:{2x+5>3(x−1) 4x>x+72.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>x+72,得:x>1,∴不等式组的解集为:1<x<8.19.(5分)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.20.(5分)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【解答】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>−5 4.(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.21.(5分)如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x 相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D 上方时,写出n的取值范围.【解答】解:(1)∵点B 在直线l 2上, ∴4=2m ,∴m =2,点B (2,4) 设直线l 1的表达式为y =kx +b ,由题意{2k +b =4−6k +b =0,解得{k =12b =3, ∴直线l 1的表达式为y =12x +3. (2)由图象可知n <2.22.(5分)调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2﹣5之间,这300户家庭的平均人数约为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表 (单位:m 3)家庭人数 2 3 4 5 用气量14192126表2 抽样调查小区15户家庭5月份用气量统计表 (单位:m 3) 家庭人数 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4用气量10 11 15 13 14 15 15 17 17 18 18 18 18 20 22表3 抽样调查小区15户家庭5月份用气量统计表 (单位:m 3) 家庭人数2 23 3 3 3 3 3 34 4 4 45 5用气量101213141717181920202226312831根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.【解答】解:小天调查的人数太少,小东抽样的调查数据中,家庭人数的平均值为:(2×3+3×11+4)÷15≈2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为:(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反应出该小区家庭5月份用气量情况.23.(5分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【解答】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=12AD,在RT△ABC中,∵M是AC中点,∴BM=12AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=12AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=12AC=1,∴BN=√224.(5分)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.1%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2794.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约3471.7亿元,你的预估理由用近3年的平均增长率估计2016年的增长率.【解答】解:(1)2011﹣2015年北京市文化创意产业实现增加值如图所示,(2)设2013到2015的平均增长率为x,则2406.7(1+x)2=3072.3,解得x≈13%,用近3年的平均增长率估计2016年的增长率,∴2016年的增长率为3072.3×(1+13%)≈3471.7亿元.故答案分别为3471.7,用近3年的平均增长率估计2016年的增长率.̂于点D,过25.(5分)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交AC点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.【解答】(1)证明:∵ED与⊙O相切于D,∴OD⊥DE,∵F为弦AC中点,∴OD⊥AC,∴AC∥DE.(2)解:作DM⊥OA于M,连接CD,CO,AD.首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.(方法二:证明△ADE的面积等于四边形ACDE的面积的一半)∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DO=a,∴AO∥CD,又AE=CD,∴四边形ACDE是平行四边形,易知DM=√32a,∴平行四边形ACDE面积=√32a2.26.(5分)已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为2;②该函数的一条性质:该函数有最大值.【解答】解:(1)如图,(2)①x=4对应的函数值y约为2.0;②该函数有最大值.故答案为2,该函数有最大值.27.(7分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【解答】解:(1)∵y=mx2﹣2mx+m﹣1=m(x﹣1)2﹣1,∴抛物线顶点坐标(1,﹣1).(2)①∵m=1,∴抛物线为y=x2﹣2x,令y=0,得x=0或2,不妨设A(0,0),B(2,0),∴线段AB 上整点的个数为3个.②如图所示,抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点,∴点A 在(﹣1,0)与(﹣2,0)之间(包括(﹣1,0)), 当抛物线经过(﹣1,0)时,m =14, 当抛物线经过点(﹣2,0)时,m =19, ∴m 的取值范围为19<m ≤14.28.(7分)在等边△ABC 中,(1)如图1,P ,Q 是BC 边上的两点,AP =AQ ,∠BAP =20°,求∠AQB 的度数; (2)点P ,Q 是BC 边上的两个动点(不与点B ,C 重合),点P 在点Q 的左侧,且AP =AQ ,点Q 关于直线AC 的对称点为M ,连接AM ,PM . ①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P ,Q 运动的过程中,始终有P A =PM ,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:要证明P A =PM ,只需证△APM 是等边三角形;想法2:在BA 上取一点N ,使得BN =BP ,要证明P A =PM ,只需证△ANP ≌△PCM ; 想法3:将线段BP 绕点B 顺时针旋转60°,得到线段BK ,要证P A =PM ,只需证P A =CK ,PM =CK …请你参考上面的想法,帮助小茹证明P A =PM (一种方法即可).【解答】解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠AQB=∠APQ=∠BAP+∠B=80°;(2)如图2,∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,(将线段BP绕点B顺时针旋转60°,得到线段BK,要证P A=PM,只需证P A=CK,PM=CK…请你参考上面的想法,帮助小茹证明P A=PM)∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠P AC=∠MAC+∠CAP=60°,∴∠P AM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.证明△ABP≌△ACM≌△BCK29.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为√2,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N 的“相关矩形”为正方形,求m的取值范围.【解答】解:(1)①∵A(1,0),B(3,1)由定义可知:点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2;②由定义可知:AC是点A,C的“相关矩形”的对角线,又∵点A,C的“相关矩形”为正方形∴直线AC与x轴的夹角为45°,设直线AC的解析为:y=x+m或y=﹣x+n把(1,0)分别y=x+m,∴m=﹣1,∴直线AC的解析为:y=x﹣1,把(1,0)代入y=﹣x+n,∴n=1,∴y=﹣x+1,综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1;(2)设直线MN的解析式为y=kx+b,∵点M,N的“相关矩形”为正方形,∴由定义可知:直线MN与x轴的夹角为45°,∴k=±1,∵点N在⊙O上,∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形,当k=1时,作⊙O的切线AD和BC,且与直线MN平行,其中A、C为⊙O的切点,直线AD与y轴交于点D,直线BC与y轴交于点B,连接OA,OC,把M(m,3)代入y=x+b,∴b=3﹣m,∴直线MN的解析式为:y=x+3﹣m∵∠ADO=45°,∠OAD=90°,∴OD=√2OA=2,∴D(0,2)同理可得:B(0,﹣2),∴令x=0代入y=x+3﹣m,∴y=3﹣m,∴﹣2≤3﹣m≤2,∴1≤m≤5,当k=﹣1时,把M(m,3)代入y=﹣x+b,∴b=3+m,∴直线MN的解析式为:y=﹣x+3+m,同理可得:﹣2≤3+m≤2,∴﹣5≤m≤﹣1;综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是:1≤m≤5或﹣5≤m≤﹣1。
2016年北京中考数学真题卷含答案解析

2016年北京市高级中等学校招生考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本题共30分,每小题3分)第1~10题均有四个选项,符合题意的选项只有一个.··1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( )A.45°B.55°C.125°D.135°2.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000 千米.将28 000用科学记数法表示应为( )A.2.8×103B.28×103C.2.8×104D.0.28×1053.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>-2B.a<-3C.a>-bD.a<-b4.内角和为540°的多边形是( )5.下图是某个几何体的三视图,该几何体是( )A.圆锥B.三棱锥C.圆柱D.三棱柱6.如果a+b=2,那么代数式(a-b2a )·aa-b的值是( )A.2B.-2C.12D.-127.甲骨文是我国的一种古代文字,是汉字的早期形式.下列甲骨文中,不是··轴对称图形的是( )8.在1~7月份, 某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A.3月份B.4月份C.5月份D.6月份9.如图,直线m⊥n.在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )A.O1B.O2C.O3D.O410.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图,如图所示.下面有四个推断:①年用水量不超过180 m3的该市居民家庭按第一档水价交费②年用水量超过240 m3的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150~180之间④该市居民家庭年用水量的平均数不超过180其中合理的是( )A.①③B.①④C.②③D.②④第Ⅱ卷(非选择题,共90分)二、填空题(本题共18分,每小题3分)有意义,那么x的取值范围是.11.如果分式2x-112.下图中的四边形均为矩形.根据图形,写出一个正确的等式: .13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n10001500250040008000150002000030000成活的棵数m 8651356222035007056131701758026430成活的频率mn 0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为.14.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m.已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为m.15.百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为.16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.请回答:该作图的依据是.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 解答应写出文字说明、演算步骤或证明过程.17.计算:(3-π)0+4sin 45°-√8+|1-√3|.18.解不等式组:{2x+5>3(x-1), 4x>x+72.19.如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.20.关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21.如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.22.调查作业:了解你所住小区家庭5月份用气量情况.小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数约为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表(单位:m3)家庭人数 2 3 4 5用气量14 19 21 26表2 抽样调查小区15户家庭5月份用气量统计表(单位:m3)家庭人数 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4用气量1111513141515171718181818222表3 抽样调查小区15户家庭5月份用气量统计表(单位:m3) 家庭人数 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5用气量112131417171819222226312831根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)若∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.24.阅读下列材料:北京市正围绕“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1 938.6亿元,占地区生产总值的12.1%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2 189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化创意产业实现增加值2 406.7亿元,比上年增长9.1%.文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2 794.3亿元,占地区生产总值的13.1%,创历史新高.2015年,北京市文化创意产业发展总体平稳,实现产业增加值3 072.3亿元,占地区生产总值的13.4%.(以上数据来源于北京市统计局) 根据以上材料解答下列问题:(1)用折线图将2011—2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由是.25.如图,AB为☉O的直径,F为弦AC的中点,连接OF并延长交AC⏜于点D,过点D作☉O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.26.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x 的几组对应值.x … 1 2 3 5 7 9 …y … 1.98 3.95 2.63 1.58 1.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质: .27.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.28.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC 的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验,提出猜想:在点P,Q运动的过程中,始终有PA=PM.小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证PA=PM,只需证△APM是等边三角形.想法2:在BA上取一点N,使得BN=BP,要证PA=PM,只需证△ANP≌△PCM.想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK. ……请你参考上面的想法,帮助小茹证明PA=PM.(一种方法即可)29.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q的“相关矩形”的示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上.若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)☉O的半径为√2,点M的坐标为(m,3).若在☉O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.答案全解全析:一、选择题1.B 由题图可知,∠AOB=55°.2.C 28 000=2.8×104.故选C.3.D 由数轴可知,-3<a<-2,1<b<2,所以选项A,B错误;因为1<b<2,所以-2<-b<-1,所以a<-b,所以选项C错误,D正确.故选D.评析本题考查了数轴与不等式,需要通过数轴确定a,b的取值范围,再由不等式的基本性质推出数量关系,属容易题.4.C 由多边形内角和公式得(n-2)×180°=540°,解得n=5,所以该多边形为五边形,故选C.5.D 由主视图是矩形,知选项A,B不符合题意;由俯视图是三角形,知选项C不符合题意.故选D.6.A 原式=a2-b2a ·aa-b=(a+b)(a-b)a·aa-b=a+b,∵a+b=2,∴原式=2.7.D 选项A、B、C都是轴对称图形,故选D.8.B 利润=售价-进价.在题图中,每一个月的两个点间的距离越大,说明利润越大.距离最大的是4月份的两个点,故4月份利润最大.故选B.9.A 因为点A的坐标为(-4,2),所以原点在点A右侧4个单位,且在点A下方2个单位处;因为点B 的坐标为(2,-4),所以原点在点B左侧2个单位,且在点B上方4个单位处,如图,只有点O1符合.故选A.评析本题考查平面直角坐标系,属中档题.10.B 由统计图可知:年用水量不超过180 m3的该市居民家庭共有4万户,占总体的80%,按第一档水价交费,故①正确;年用水量超过240 m3的该市居民家庭共有0.35万户,占总体的7%,超过5%,故②错误;该市居民家庭年用水量的中位数为120 m3左右,故③错误;由统计图可知,该市居民家庭年用=134.7 m3,134.7<180,故④正确.故选B.水量的平均数为0.25×45+0.75×75+…+0.05×3155评析本题考查了学生对统计图的理解.属中档题.二、填空题11.答案x≠1解析由分式有意义的条件,可得x-1≠0,所以x≠1.12.答案答案不唯一.如:m(a+b+c)=ma+mb+mc解析如图,S矩形ABEF=m(a+b+c),S矩形ABCH=ma,S矩形HCDG=mb,S矩形GDEF=mc,∵S矩形ABEF=S矩形+S矩形HCDG+S矩形GDEF,∴m(a+b+c)=ma+mb+mc.ABCH13.答案0.880(答案不唯一)解析由题意可知,移植成活的频率在0.880左右波动.用频率来估计概率,则成活的概率为0.880.14.答案 3解析如图,由题意可知,∠B=∠C=45°,AD⊥BC,∴BC=2AD=BF+FH+HC=1.8+2.7+1.5=6,∴AD=3.即路灯的高为3 m.15.答案 505解析 1~100这100个数的和是5 050,因为百子回归图的每行、每列、每条对角线的10个数的和都相等,所以这个和为5 050÷10=505.16.答案 三边分别相等的两个三角形全等;全等三角形的对应角相等;等腰三角形的顶角平分线与底边上的高重合;两点确定一条直线解析 连接PA 、QA 、PB 、QB.由题意可知PA=QA,PB=QB,又AB=AB, ∴△PAB ≌△QAB(三边分别相等的两个三角形全等), ∴∠PAB=∠QAB(全等三角形的对应角相等). 由两点确定一条直线作直线PQ. ∵PA=QA,∴AB ⊥PQ(等腰三角形的顶角平分线与底边上的高重合). 三、解答题17.解析 原式=1+4×√22-2√2+√3-1=√3. 18.解析 原不等式组为{2x +5>3(x -1),①4x >x+72.②解不等式①,得x<8. 解不等式②,得x>1.∴原不等式组的解集为1<x<8.19.证明 ∵四边形ABCD 为平行四边形,∴AB ∥CD.∴∠BAE=∠E.∵AE 平分∠BAD,∴∠BAE=∠DAE. ∴∠E=∠DAE,∴DA=DE.20.解析 (1)依题意,得Δ=(2m+1)2-4(m 2-1)=4m+5>0, 解得m>-54.(2)答案不唯一.如:m=1. 此时方程为x 2+3x=0. 解得x 1=-3,x 2=0.21.解析 (1)∵点B(m,4)在直线l 2:y=2x 上, ∴m=2.设直线l 1的表达式为y=kx+b(k ≠0). ∵直线l 1经过点A(-6,0),B(2,4), ∴{-6k +b =0,2k +b =4,解得{k =12,b =3. ∴直线l 1的表达式为y=12x+3. (2)n<2.22.解析 小芸的抽样调查的数据能较好地反映出该小区家庭5月份用气量情况. 小天的抽样调查的不足之处:抽样调查所抽取的家庭数量过少.小东的抽样调查的不足之处:抽样调查所抽取的15户家庭的平均人数明显小于3.4. 23.解析 (1)证明:在△ABC 中,∠ABC=90°,M 为AC 的中点, ∴BM=12AC. ∵N 为CD 的中点,∴MN=1AD.2∵AC=AD,∴BM=MN.(2)∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠CAD=30°.由BM=AM,可得∠BMC=2∠BAC=60°.由MN∥AD,可得∠CMN=∠CAD=30°.∴∠BMN=∠BMC+∠CMN=90°.∵AC=AD=2,∴BM=MN=1.在Rt△BMN中,BN=√BM2+MN2=√2.24.解析(1)(2)预估理由需包含折线图中提供的信息,且支撑预估的数据.评析本题考查折线统计图,以及借助统计图预估数据,属中档题.25.解析(1)证明:连接OC,如图.∵OA=OC,F为AC的中点,∴OD⊥AC.∵DE是☉O的切线,∴OD⊥DE.∴AC∥DE.(2)求解思路如下:①在Rt△ODE中,由OA=AE=OD=a,可得△ODE,△OFA为含30°角的直角三角形;②由∠ACD=1∠AOD=30°,可知CD∥OE;2③由AC∥DE,可知四边形ACDE是平行四边形;④由△ODE,△OFA为含有30°角的直角三角形,可求DE,DF的长,进而可求四边形ACDE的面积.26.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①x=4对应的函数值y约为1.98.②当x>2时,y随x的增大而减小.27.解析(1)y=mx2-2mx+m-1=m(x-1)2-1.∴抛物线的顶点坐标为(1,-1).(2)①当m=1时,抛物线的表达式为y=x 2-2x. 令y=0,解得x 1=0,x 2=2. ∴线段AB 上整点的个数为3. ②当抛物线经过点(-1,0)时,m=14. 当抛物线经过点(-2,0)时,m=19.结合函数的图象可知,m 的取值范围为19<m ≤14.28.解析 (1)∵△ABC 为等边三角形,∴∠B=60°.∴∠APC=∠BAP+∠B=80°.∵AP=AQ,∴∠AQB=∠APC=80°. (2)①补全的图形如图所示.②法1:证明:过点A 作AH ⊥BC 于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠PAB=∠QAC.∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM.∴∠PAB=∠MAC,AM=AP.∴∠PAM=∠BAC=60°.∴△APM为等边三角形.∴PA=PM.法2:证明:在BA上取一点N,使BN=BP,连接PN,CM,如图.由△ABC为等边三角形,可得△BNP为等边三角形.∴AN=PC,∠ANP=120°.由AP=AQ,可得∠APB=∠AQC.又∵∠B=∠ACB=60°,∴△ABP≌△ACQ.∴BP=CQ.∵点Q,M关于直线AC对称,∴∠ACM=∠ACQ=60°,CM=CQ.∴NP=BP=CQ=CM.∵∠PCM=∠ACM+∠ACQ=120°,∴△ANP≌△PCM.∴PA=PM.法3:证明:将线段BP绕点B顺时针旋转60°,得到BK,连接KP,CK,MC,如图.∴△BPK为等边三角形.∴KB=BP=PK,∠KPB=∠KBP=60°.∴∠KPC=120°.由△ABC为等边三角形,可得△ABP≌△CBK.∴AP=CK.由AP=AQ,可得∠APB=∠AQC.∵AB=AC,∠ABC=∠ACB=60°,∴△ABP≌△ACQ.∴BP=CQ.∵点Q,M关于直线AC对称,∴∠BCM=2∠ACQ=120°,CQ=CM=PK.∴MC∥PK.∴四边形PKCM为平行四边形.∴CK=PM,∴PA=PM.29.解析(1)①如图,矩形AEBF为点A(1,0),B(3,1)的“相关矩形”.可得AE=2,BE=1.∴点A,B的“相关矩形”的面积为2.②由点A(1,0),点C在直线x=3上,点A,C的“相关矩形”AECF为正方形,可得AE=2.当点C在x轴上方时,CE=2,可得C(3,2).∴直线AC的表达式为y=x-1.当点C在x轴下方时,CE=2,可得C(3,-2).∴直线AC的表达式为y=-x+1.(2)由点M,N的“相关矩形”为正方形,可设直线MN为y=x+b或y=-x+b.(i)当直线MN为y=x+b时,可得m=3-b.由图可知,当直线MN平移至与☉O相切,且切点在第四象限时,b取得最小值,此时直线MN记为M1N1,其中N1为切点,T1为直线M1N1与y轴的交点.∵△ON1T1为等腰直角三角形,ON1=√2,∴OT1=2,∴b的最小值为-2.∴m的最大值为5.当直线MN平移至与☉O相切,且切点在第二象限时,b取得最大值,此时直线MN记为M2N2,其中N2为切点,T2为直线M2N2与y轴的交点.同理可得,b的最大值为2,m的最小值为1.∴m的取值范围为1≤m≤5.(ii)当直线MN为y=-x+b时,同理可得,m的取值范围为-5≤m≤-1.综上所述,m的取值范围为-5≤m≤-1或1≤m≤5.。
2016年数学中考试题及答案

2016年数学中考试题及答案【篇一:2016年全国中考数学模拟卷及答案】=txt>数学试卷一、选择题下面各题均有四个选项,其中只有一个是符合题意的。
..1.截止到2016年6月1日,北京市已建成39个地下调蓄设施,蓄水能力达到2 40 000立方平米。
将1240 000用科学记数法表示应为2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是a.a b.bc.cd.d3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为 a. b. c. d.4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为6.如图,公路ac,bc互相垂直,公路ab的中点m与点c被湖隔开,若测得am的长为1.2km,则m,c两点间的距离为a.0.5km b.0.6km c.0.9km d.1.2km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是 a.21,21 b.21,21.5 c.21,22 d.22,228.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。
若这个坐标系分别以正东、正北方向为x轴、y轴的正方向。
表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是a.景仁宫(4,2)b.养心殿(-2,3) c.保和殿(1,0) d.武英殿(-3.5,-4)9.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:a.购买a类会员年卡b.购买b类会员年卡 c.购买c类会员年卡d.不购买会员年卡10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的ab,bc,ca,oa,ob,oc组成。
为记录寻宝者的进行路线,在bc的中点m处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为a.a→o→bb.b→a→cc.b→o→c d.c→b→o 二、填空题11.分解因式:5x2-10x2=5x=_________.12.右图是由射线ab,bc,cd,de,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。
2016年中考数学真题试题及答案(word版)

保密★启用前2016年中考真题数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2(1)⨯-的结果是()A、12-B、2-C、1 D、22、若∠α的余角是30°,则cosα的值是()A、12BCD3、下列运算正确的是()A、21a a-=B、22a a a+=C、2a a a⋅=D、22()a a-=-4、下列图形是轴对称图形,又是中心对称图形的有()A、4个B、3个C、2个D、1个5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()A、40°B、50°C、60°D、80°6、已知二次函数2y ax=的图象开口向上,则直线1y ax=-经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是()8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A、28℃,29℃B、28℃,29.5℃C、28℃,30℃D、29℃,29℃9、已知拋物线2123y x=-+,当15x≤≤时,y的最大值是()A、2B、23C、53D、7310、如图,已知OBOA,均为⊙O上一点,若︒=∠80AOB,则=∠ACB()A.80°B.70°C.60°D.40°11、如图,是反比例函数1kyx=和2kyx=(12k k<)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若2AOBS∆=,则21k k-的值是()A、1B、2C、4D、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A、1011升B、19升C、110升D、111升二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13、2011-的相反数是__________14、近似数0.618有__________个有效数字.15、分解因式:39a a-= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则'C DCD的值为__________ABCD16题图17题图18题图(第10题18、如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②'12O OE AOCS S∆∆=;③2AC AD=;④四边形O'DEO是菱形.其中正确的结论是__________.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19、计算:101()(5)32π-----+20、已知:12x x、是一元二次方程2410x x-+=的两个实数根.求:2121211()()x xx x+÷+的值.21、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为10米,小强的身高AB为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到11.411.73 )22、如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA3π,求⊙O的半径r.23、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A、白B、白C表示),若从中任意摸出一个棋子,是白色棋子的概率为34.(1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.24、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=100%⨯利润进价)25、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,EB的长.26、已知抛物线223 (0)y ax ax a a=--<与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.。
2016年北京市中考数学试卷含答案

2016年北京市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.如图,用量角器度量∠AOB ,可以读出∠AOB 的度数为( )(第1题图)A .45°B .55°C .125°D .135°2.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里,将28 000用科学记数法表示应为( ) A .2.8×103 B .28×103C .2.8×104D .0.28×1053.实数a ,b 在数轴上的对应点的位置如图,则正确的结论是( )(第3题图)A .a >-2B .a <-3C .a >-bD .a <-b4.内角和为540°的多边形是( )A B C D5.如图是某个几何体的三视图,该几何体是( )(第5题图)A .圆锥B .三棱锥C .圆柱D .三棱柱6.如果a +b =2,那么代数式(a -a b 2)•ba a 的值是( )A .2B .-2C .21 D .-217.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文不是轴对称的是()A B C D8.在1~7月份,某种水果的每斤进价与售价的信息如图,则出售该种水果每斤利润最大的月份是()(第8题图)A.3月份B.4月份C.5月份D.6月份9.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()(第9题图)A.O1B.O2C.O3D.O410.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图,下面四个推断合理的是()①年用水量不超过180 m3的该市居民家庭按第一档水价交费;②年用水量超过240 m 3的该市居民家庭按第三档水价交费; ③该市居民家庭年用水量的中位数在150~180之间; ④该市居民家庭年用水量的平均数不超过180.(第10题图)A .①③B .①④C .②③D .②④二、填空题(本题共6小题,每小题3分,共18分) 11.如果分式12x 有意义,那么x 的取值范围是 . 12.如图中的四边形均为矩形,根据图形,写出一个正确的等式: .(第12题图)13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据: 移植的棵数n 1 000 1 500 2 500 4 000 8 000 15 000 20 000 30 000 成活的棵数m 865 1 356 2 220 3 500 7 056 13 170 17 580 26 430 成活的频率nm0.8650.904 0.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为 .14.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,若小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为 m .(第14题图)15.百子回归图(如图)是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为.(第15题图)16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2.(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.(第16题图)三、解答题(本题共13小题,共72分) 17.(5分)计算:(3-π)0+4sin 45°-8+|1-3|.18.(5分)解不等式组:⎪⎩⎪⎨⎧+>->+.2741352x x x x ),(19.(5分)如图,四边形ABCD 是平行四边形,AE 平分∠BAD ,交DC 的延长线于点E .求证:DA =DE .(第19题图)20.(5分)关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.21.(5分)如图,在平面直角坐标系xOy 中,过点A (-6,0)的直线l 1与直线l 2:y =2x 相交于点B (m ,4). (1)求直线l 1的表达式;(2)过动点P (n ,0)且垂于x 轴的直线与l 1,l 2的交点分别为C ,D ,当点C 位于点D 上方时,写出n 的取值范围.(第21题图)22.(5分)调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数均为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.表1 抽样调查小区4户家庭5月份用气量(单位:m 3)统计表:表2 抽样调查小区15户家庭5月份用气量 (单位:m 3)统计表: 家庭 人数 222333333333334用气量101115131415151717181818182022表3 抽样调查小区15户家庭5月份用气量 (单位:m 3)统计表: 家庭人数 223333333444455用气量101213141717181920202226312831根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23.(5分)如图,在四边形ABCD 中,∠ABC =90°,AC =AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN . (1)求证:BM =MN .(2)∠BAD =60°,AC 平分∠BAD ,AC =2,求BN 的长.(第23题图)24.(5分)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1 938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2 189.2亿元,占地区生产总家庭人数2345用气量14192126值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2 406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2 749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3 072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011~2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据.(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值亿元,你的预估理由为.25.(5分)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE.(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.(第25题图)26.(5分)已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x… 1 2 3 5 7 9 …y… 1.98 3.95 2.63 1.58 1.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图像与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图像.(2)根据画出的函数图像,写出:①x=4对应的函数值y约为;②该函数的一条性质:.(第26题图)27.(7分)在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标.(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图像,求m的取值范围.(第27题图)28.(7分)如图,在等边三角形ABC中.(第28题图)(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数.(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全.②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有P A=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明P A=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明P A=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证P A=PM,只需证P A=CK,PM=CK….请你参考上面的想法,帮助小茹证明P A=PM(一种方法即可).29.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0).①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式.(2)⊙O的半径为2,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N 的“相关矩形”为正方形,求m的取值范围.(第29题图)参考答案一、1.B 【分析】由题图可知,∠AOB的度数为55°.故选B.2.C 【分析】28 000=2.8×104.故选C.3.D 【分析】由题图可知,-3<a<-2,1<b<2,所以-2<-b<-1,所以a<-b,故D正确.故选D.4.C 【分析】设多边形的边数是n,则(n-2)•180°=540°,解得n=5.故选C.5.D 【分析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D .6.A 【分析】∵a +b =2,∴原式=a b a b a ))((-+•ba a-=a +b =2.故选A .7.D 【分析】A .是轴对称图形,故此选项不符合题意;B .是轴对称图形,故此选项不符合题意;C .是轴对称图形,故此选项不符合题意;D .不是轴对称图形,故此选项符合题意.故选D .8.B 【分析】由图像中的信息可知,3月份的利润为7.5-5=2.5(元),4月份的利润为6-3= 3(元),5月份的利润为4.5-2=2.5(元),6月份的利润为3-1.2=1.8(元),故出售该种水果每斤利润最大的月份是4月份.故选B .9.A 【分析】设过点A ,B 的直线表达式为y =kx +b .∵点A 的坐标为(-4,2),点B 的坐标为(2,-4),∴⎩⎨⎧+=-+-=,,b k b k 2442解得⎩⎨⎧-=-=.21b k ,∴直线AB 为y =-x -2,∴直线AB 经过第二、三、四象限,如答图,由A ,B 的坐标可知,沿CD 方向为x 轴正方向,沿CE 方向为y 轴正方向,故将点A 先沿着CD 方向平移4个单位长度,再沿着EC 方向平移2个单位长度,即可到达原点位置,则原点为点O 1.故选A .(第9题答图)10.B 【分析】①由条形统计图可知,年用水量不超过180 m 3的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万户),54×100%=80%,故年用水量不超过180 m 3的该市居民家庭按第一档水价交费,正确;②∵年用水量超过240m 3的该市居民家庭有(0.15+0.15+0.05)=0.35(万户),∴535.0×100%=7%≠5%,故年用水量超过240 m 3的该市居民家庭按第三档水价交费,错误;③∵5万个数据的中间是第25 000个和第25 001个数据的平均数,∴该市居民家庭年用水量的中位数在120~150之间,错误;④由①知,该市居民家庭年用水量的平均数不超过180,正确.故选B .二、11.x ≠1 【分析】由题意,得x -1≠0,解得x ≠1.12.am +bm +cm =m (a +b +c )13. 0.881 【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,所以这种幼树移植成活率的概率约为0.881.14. 3 【分析】如答图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴BE DE AB CD =,AB MN FB FN =,即BD AB +=8.18.18.1,BDAB -+=7.25.15.15.1,解得AB =3(m ).所以路灯的高为3 m .(第14题答图)15.505 【分析】1~100的总和为21001001⨯+)(=5 050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为5 050÷10=505.16.到线段两个端点的距离相等的点在线段的垂直平分线上(点A ,B 都在线段PQ 的垂直平分线上) 【分析】如答图,∵P A =AQ ,PB =QB ,∴点A ,点B 在线段PQ 的垂直平分线上,∴直线AB 垂直平分线段PQ ,∴PQ ⊥AB .(第16题答图)三、17.解:(3-π)0+4sin 45°-8+|1-3|=1+4×22-22+3-1 =1+22-22+3-1=3.18.解:解不等式2x +5>3(x -1),得x <8.解不等式4x >27+x ,得x >1. ∴不等式组的解集为1<x <8.19.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠E =∠BAE .∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠E =∠DAE ,∴DA =DE .20.解:(1)∵关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根, ∴∆=(2m +1)2-4×1×(m 2-1)=4m +5>0,解得m >-45. (2)当m =1时,原方程为x 2+3x =0,即x (x +3)=0,解得x 1=0,x 2=-3.21.解:(1)∵点B 在直线l 2上,∴4=2m ,解得m =2,∴点B 的坐标为(2,4).设直线l 1的表达式为y =kx +b .由题意,得⎩⎨⎧=+-=+,,0642b k b k 解得⎪⎩⎪⎨⎧==.321b k , ∴直线l 1的表达式为y =21x +3. (2)由图像可知,n <2.22.解:小天调查的人数太少.在小东抽样的调查数据中,家庭人数的平均值为(2×3+3×11+4)÷15≈2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好.因此,小芸的抽样调查的数据能较好地反映该小区家庭5月份用气量情况.23.(1)证明:在△CAD 中,∵M ,N 分别是AC ,CD 的中点,∴MN ∥AD ,MN =21AD . 在Rt △ABC 中,∵M 是AC 的中点,∴BM =21AC . ∵AC =AD ,∴MN =BM .(2)解:∵∠BAD =60°,AC 平分∠BAD ,∴∠BAC =∠DAC =30°.由(1)可知,BM =21AC =AM =MC , ∴∠BMC =∠BAM +∠ABM =2∠BAM =60°.∵MN ∥AD ,∴∠NMC =∠DAC =30°,∴∠BMN =∠BMC +∠NMC =90°,∴BN 2=BM 2+MN 2.由(1)可知,MN =BM =21AC =1,∴BN =2. 24.解:(1)2011~2015年北京市文化创意产业实现增加值如答图.(第24题答图)(2)3 471.7;用近3年的平均增长率估计2016年的增长率.设2013年到2015年的年平均增长率为x ,则2 406.7(1+x )2=3 072.3,解得x ≈13%.用近3年的平均增长率估计2016年的增长率, 所以2016年的创意产业实现增加值为3 072.3×(1+13%)≈3 471.7(亿元).25.(1)证明:∵ED 与⊙O 相切于点D ,∴OD ⊥DE .∵F 为弦AC 的中点,∴OD ⊥AC ,∴AC ∥DE .(2)解:如答图,作DM ⊥OA 于点M ,连接CD ,CO ,AD .(方法一)证明四边形ACDE 是平行四边形,根据S 平行四边形ACDE =AE •DM ,只要求出DM 即可.(方法二:证明△ADE 的面积等于四边形ACDE 的面积的一半)∵AC ∥DE ,AE =AO ,∴OF =DF .∵AF ⊥DO ,∴AD =AO ,∴AD =AO =OD ,∴△ADO 是等边三角形.同理可知,△CDO 也是等边三角形.∴∠CDO =∠DOA =60°,AE =CD =AD =AO =DO =a ,∴AO ∥CD .又∵AE =CD ,∴四边形ACDE 是平行四边形.易知,DM =23a , ∴平行四边形ACDE 的面积为23a 2.(第25题答图)26.解:(1)如答图.(第26题答图)(2)①2;②该函数有最大值.27.解:(1)∵y =mx 2-2mx +m -1=m (x -1)2-1,∴抛物线的顶点坐标为(1,-1).(2)①∵m =1,∴抛物线为y =x 2-2x .令y =0,得x =0或x =2.不妨设A (0,0),B (2,0),∴线段AB 上整点的个数为3. ②如答图,抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有6个整点,∴点A 在(-1,0)与(-2,0)之间[包括(-1,0)],当抛物线经过点(-1,0)时,m =41, 当抛物线经过点(-2,0)时,m =91, ∴m 的取值范围为91<m ≤41.(第27题答图) 28.解:(1)∵AP =AQ ,∴∠APQ =∠AQP ,∴∠APB =∠AQC .∵△ABC 是等边三角形,∴∠B =∠C =60°.又∵∠BAP =20°,∴∠CAQ =∠BAP =20°,∴∠AQB =∠APQ =∠BAP +∠B =80°.(2)如答图.∵AP =AQ ,∴∠APQ =∠AQP ,∴∠APB =∠AQC .∵△ABC 是等边三角形,∴∠B =∠C =60°,∴∠BAP =∠CAQ .(将线段BP 绕点B 顺时针旋转60°,得到线段BK ,要证P A =PM ,只需证P A =CK ,PM =CK …, 请你参考上面的想法,帮助小茹证明P A =PM )∵点Q 关于直线AC 的对称点为M ,∴AQ =AM ,∠QAC =∠MAC ,∴∠MAC =∠BAP ,∴∠BAP +∠P AC =∠MAC +∠CAP =60°,∴∠P AM =60°.∵AP =AQ ,∴AP =AM ,∴△APM 是等边三角形,∴AP =PM .∴△ABP ≌△ACM ≌△BCK .(第28题答图)29.解:(1)①∵A(1,0),B(3,1),且由定义可知,点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2.②由定义可知,AC是点A,C的“相关矩形”的对角线.又∵点A,C的“相关矩形”为正方形,∴直线AC与x轴的夹角为45°.设直线AC的表达式为y=x+m或y=-x+n.把(1,0)代入y=x+m,得m=-1,∴直线AC的表达式为y=x-1.把(1,0)代入y=-x+n,得n=1,∴直线AC的表达式为y=-x+1.综上所述,若点A,C的“相关矩形”为正方形,则直线AC的表达式为y=x-1或y=-x+1.(2)设直线MN的表达式为y=kx+b.∵点M,N的“相关矩形”为正方形,∴由定义可知,直线MN与x轴的夹角为45°,∴k=±1.∵点N在⊙O上,∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形.如答图,作⊙O的切线AD和BC,且与直线MN平行,其中A,C为⊙O的切点,直线AD 与y轴交于点D,直线BC与y轴交于点B,连接OA,OC.当k=1时,把M(m,3)代入y=x+b,得b=3-m,∴直线MN的表达式为y=x+3-m.∵∠ADO=45°,∠OAD=90°,∴OD=2OA=2,∴D(0,2).同理可知,B(0,-2).∴将x=0代入y=x+3-m,得y=3-m.∴-2≤3-m≤2,∴1≤m≤5.当k=-1时,把M(m,3)代入y=-x+b,得b=3+m,∴直线MN的表达式为y=-x+3+m.同理可知,-2≤3+m≤2,∴-5≤m≤-1.综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是1≤m≤5或-5≤m≤-1.(第29题答图)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有意义,那么x的取值范围是 x≠1 . 【考点】分式有意义的条件. 【分析】根据分母不为零分式有意义,可得答案. 【解答】解:由题意,得 x﹣1≠0, 解得x≠1, 故答案为:x≠1. 【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是 解题关键. 12.(3分)(2016•北京)如图中的四边形均为矩形,根据图形,写出 一个正确的等式 am+bm+cm=m(a+b+c) .
【解答】解:①由条形统计图可得:年用水量不超过180m3的该市居民
家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),
×100%=80%,故年用水量不超过180m3的该市居民家庭按第一档水价交
费,正确;
②∵年用水量超过240m3的该市居民家庭有(0.15+0.15+0.05)
=0.35(万), ∴
【考点】规律型:数字的变化类. 【分析】根据已知得:百子回归图是由1,2,3…,100无重复排列而 成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以
每行10个数之和=总和÷10. 【解答】解:1~100的总和为:
=5050, 一共有10行,且每行10个数之和均相等,所以每行10个数之和为: 5050÷10=505, 故答案为:505. 【点评】本题是数字变化类的规律题,是常考题型;一般思路为:按所 描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每 一次计算都符合的规律,就是最后的答案;此题非常简单,跟百子碑简 介没关系,只考虑行、列就可以,同时,也可以利用列来计算. 16.(3分)(2016•北京)下面是“经过已知直线外一点作这条直线的 垂线”的尺规作图过程: 已知:直线l和l外一点P.(如图1) 求作:直线l的垂线,使它经过点P. 作法:如图2 (1)在直线l上任取两点A,B; (2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q; (3)作直线PQ. 所以直线PQ就是所求的垂线. 请回答:该作图的依据是 到线段两个端点的距离相等的点在线段的垂 直平分线上(A、B都在线段PQ的垂直平分线上) .
=(0.865+0.904+0.888+0.875+0.882+0.878+0.879+0.881)÷8=0.880, ∴这种幼树移植成活率的概率约为0.880. 故答案为:0.880 【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定 值即概率.用到的知识点为:频率=所求情况数与总情况数之比. 14.(3分)(2016•北京)如图,小军、小珠之间的距离为2.7m,他们 在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别 为1.8m,1.5m,则路灯的高为 3 m.
×100%=7%≠5%,故年用水量超过240m3的该市居民家庭按第三档水价
交费,故此选项错误; ③∵5万个数数据的中间是第25000和25001的平均数, ∴该市居民家庭年用水量的中位数在120﹣150之间,故此选项错误; ④由①得,该市居民家庭年用水量的平均数不超过180,正确, 故选:B. 【点评】此题主要考查了频数分布直方图以及中位数的定义,正确利用 条形统计图获取正确信息是解题关键. 二、填空题(本题共18分,每小题3分) 11.(3分)(2016•北京)如果分式
【解答】解:28000=1.1×104.
故选:C. 【点评】此题考查科学记数n法的表示方法,表示时关键要正确确定a的 值以及n的值. 3.(3分)(2016•北京)实数a,b在数轴上的对应点的位置如图所 示,则正确的结论是( )
A.a>﹣2B.a<﹣3C.a>﹣bD.a<﹣b
【考点】实数与数轴. 【分析】利用数轴上a,b所在的位置,进而得出a以及﹣b的取值范围, 进而比较得出答案. 【解答】解:A、如图所示:﹣3<a<﹣2,故此选项错误; B、如图所示:﹣3<a<﹣2,故此选项错误; C、如图所示:1<b<2,则﹣2<﹣b<﹣1,故a<﹣b,故此选项错 误; D、由选项C可得,此选项正确. 故选:D. 【点评】此题主要考查了实数与数轴,正确得出a以及﹣b的取值范围是 解题关键. 4.(3分)(2016•北京)内角和为540°的多边形是( ) A.
)•
的值是( ) A.2B.﹣2C.
D.﹣
【考点】分式的化简求值. 【专题】计算题;分式. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分 得到最简结果,把已知等式代入计算即可求出值. 【解答】解:∵a+b=2, ∴原式=
•
=a+b=2 故选:A. 【点评】此题考查了分式的化简求值,将原式进行正确的化简是解本题 的关键. 7.(3分)(2016•北京)甲骨文是我国的一种古代文字,是汉字的早 期形式,下列甲骨文中,不是轴对称的是( ) A.
m3),绘制了统计图.如图所示,下面四个推断( ) ①年用水量不超过180m3的该市居民家庭按第一档水价交费; ②年用水量超过240m3的该市居民家庭按第三档水价交费;
③该市居民家庭年用水量的中位数在150﹣180之间; ④该市居民家庭年用水量的平均数不超过180.
A.①③B.①④C.②③D.②④ 【考点】频数(率)分布直方图;加权平均数;中位数. 【分析】利用条形统计图结合中位数的定义分别分析得出答案.
A.O1B.O2C.O3D.O4
【考点】坐标与图形性质;一次函数图象与系数的关系. 【分析】先根据点A、B的坐标求得直线AB的解析式,再判断直线AB在 坐标平面内的位置,最后得出原点的位置. 【解答】解:设过A、B的直线解析式为y=kx+b ∵点ห้องสมุดไป่ตู้的坐标为(﹣4,2),点B的坐标为(2,﹣4)
∴
解得
【考点】因式分解-提公因式法. 【分析】直接利用矩形面积求法结合提取公因式法分解因式即可. 【解答】解:由题意可得:am+bm+cm=m(a+b+c). 故答案为:am+bm+cm=m(a+b+c). 【点评】此题主要考查了提取公因式法分解因式,正确利用矩形面积求 出是解题关键. 13.(3分)(2016•北京)林业部门要考察某种幼树在一定条件下的移 植成活率,下表是这种幼树在移植过程中的一组数据:
∴直线AB为y=﹣x﹣2 ∴直线AB经过第二、三、四象限 如图,连接AB,则原点在AB的右上方
∴坐标原点为O1
故选(A) 【点评】本题主要考查了坐标与图形性质,解决问题的关键是掌握待定 系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定 了直线的方向,b决定了直线与y轴的交点位置. 10.(3分)(2016•北京)为了节约水资源,某市准备按照居民家庭年 用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档 的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间 的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:
A.圆锥B.三棱锥C.圆柱D.三棱柱 【考点】由三视图判断几何体. 【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确 定具体形状. 【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是 三角形可判断出这个几何体应该是三棱柱. 故选D 【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对 空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正 面、左面和上面看,所得到的图形. 6.(3分)(2016•北京)如果a+b=2,那么代数(a﹣
B.
C.
D.
【考点】轴对称图形. 【分析】根据轴对称图形的概念求解. 【解答】解:A、是轴对称图形,故本选项错误; B、是轴对称图形,故本选项错误; C、是轴对称图形,故本选项错误; D、不是轴对称图形,故本选项正确. 故选D. 【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称 轴,图形两部分折叠后可重合. 8.(3分)(2016•北京)在1﹣7月份,某种水果的每斤进价与出售价 的信息如图所示,则出售该种水果每斤利润最大的月份是( )
移
植
的 棵
1000
数
n
1500
2500
4000
8000
15000 20000 30000
成
活
的 棵
865
数
m
1356 2220 3500 7056 13170 17580 26430
成 活 的 频 0.865 率
0.904
0.888
0.875
0.882
0.878
0.879
0.881
估计该种幼树在此条件下移植成活的概率为 0.880 . 【考点】利用频率估计概率. 【分析】对于不同批次的幼树移植成活率往往误差会比较大,为了减少 误差,我们经常采用多批次计算求平均数的方法. 【解答】解:
B.
C.
D.
【考点】多边形内角与外角. 【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求 解. 【解答】解:设多边形的边数是n,则 (n﹣2)•180°=540°, 解得n=5. 故选:C. 【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关 键.
5.(3分)(2016•北京)如图是某个几何体的三视图,该几何体是 ( )
A.3月份B.4月份C.5月份D.6月份 【考点】象形统计图. 【分析】根据图象中的信息即可得到结论. 【解答】解:由图象中的信息可知,3月份的利润=7.5﹣4.5=3元, 4月份的利润=6﹣2.4=3.6元, 5月份的利润=4.5﹣1.5=3元, 5月份的利润=2.5﹣1=1.5元, 故出售该种水果每斤利润最大的月份是4月份, 故选B. 【点评】本题考查了象形统计图,有理数大小的比较,正确的把握图象 中的信息,理解利润=售价﹣进价是解题的关键. 9.(3分)(2016•北京)如图,直线m⊥n,在某平面直角坐标系中,x 轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4), 则坐标原点为( )