随机过程Markov链作业 中科大

随机过程Markov链作业 中科大
随机过程Markov链作业 中科大

应用随机过程学习总结

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

随机过程作业

第三章 随机过程 A 简答题: 3-1 写出一维随机变量函数的均值、二维随机变量函数的联合概率密度(雅克比行列式)的定义式。 3-2 写出广义平稳(即宽平稳)随机过程的判断条件,写出各态历经随机过程的判断条件。 3-3 平稳随机过程的自相关函数有哪些性质功率谱密度有哪些性质自相关函数与功率谱密度之间有什么关系 3-4 高斯过程主要有哪些性质 3-5 随机过程通过线性系统时,输出与输入功率谱密度之间的关系如何 3-6 写出窄带随机过程的两种表达式。 3-7 窄带高斯过程的同相分量和正交分量的统计特性如何 3-8 窄带高斯过程的包络、正弦波加窄带高斯噪声的合成包络分别服从什么分布 3-9 写出高斯白噪声的功率谱密度和自相关函数的表达式,并分别解释“高斯”及“白”的含义。 3-10 写出带限高斯白噪声功率的计算式。 B 计算题: 一、补充习题 3-1 设()()cos(2)c y t x t f t πθ=?+,其中()x t 与θ统计独立,()x t 为0均值的平稳随机过程,自相关函数与功率谱密度分别为:(),()x x R P τω。 ①若θ在(0,2π)均匀分布,求y()t 的均值,自相关函数和功率谱密度。 ②若θ为常数,求y()t 的均值,自相关函数和功率谱密度。 3-2 已知()n t 是均值为0的白噪声,其双边功率谱密度为:0 ()2 N P ω= 双,通过下图()a 所示的相干解调器。图中窄带滤波器(中心频率为c ω)和低通滤波器的传递函数1()H ω及2()H ω示于图()b ,图()c 。

试求:①图中()i n t (窄带噪声)、()p n t 及0()n t 的噪声功率谱。 ②给出0()n t 的噪声自相关函数及其噪声功率值。 3-3 设()i n t 为窄带高斯平稳随机过程,其均值为0,方差为2 n σ,信号[cos ()]c i A t n t ω+经过下图所示电路后输出为()y t ,()()()y t u t v t =+,其中()u t 是与cos c A t ω对应的函数,()v t 是与()i n t 对应的输出。假设()c n t 及()s n t 的带宽等于低通滤波器的通频带。 求()u t 和()v t 的平均功率之比。

随机过程作业和答案第三章

第三章 马尔科夫过程 1、将一颗筛子扔多次。记X n 为第n 次扔正面出现的点数,问{X(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。又记Y n 为前n 次扔出正面出现点数的总和,问{Y(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。 解:1)由已知可得,每次扔筛子正面出现的点数与以前的状态无关。 故X(n)是马尔科夫链。 E={1,2,3,4,5,6} ,其一步转移概率为: P ij = P ij =P{X(n+1)=j ∣X(n)=i }=1/6 (i=1,2,…,6,j=1,2,…,6) ∴转移矩阵为 2)由已知可得,每前n 次扔正面出现点数的总和是相互独立的。即每次n 次扔正面出现点数的总和与以前状态无关,故Y(n)为马尔科夫链。 其一步转移概率为 其中 2、一个质点在直线上做随机游动,一步向右的概率为p , (0

随机过程习题答案A

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1)是齐次马氏链。经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

第十二章 平稳随机过程

第十二章 平稳随机过程 §1 基本概念 定义1:已给s.p t X t X {=,}T t ∈,若1≥?n ,即T 中任意的,,,21n t t t Λ与 h t h t h t n +++,,,21Λ,n 维r.v ),,(21n t t t X X X Λ与),,(21h t h t h t n X X X +++Λ有相同 的n 维d.f 。即 ) ,,,;,,(),,() ,,(),,,;,,,(2121212121212121n n n h t h t h t n t t t n n x x x h t h t h t F x X x X x X P x X x X x X P x x x t t t F n n ΛΛΛΛΛΛ+++=≤≤≤=≤≤≤=+++ 则称s.p t X 是一个严(强,狭义)平稳过程。 当t X ?n 维d.l 时,则有 ),,;,,,(),,;,,,(21212121n n n n x x x h t h t h t f x x x t t t f ΛΛΛΛ+++= 若取n =1,则有),(),(1111x h t f x t f +=,特别,当T ∈0,可取,1t h -=则有),0(),(111x f x t f =。此时平稳过程t X 的一维d.l 与1t (时间)无关。于是 X X m dx x xf t X E μ=== ?+∞ ∞ -),0()(1 即t X 的均值是一个与时间无关的常数。 其方差 ?∞ ∞ -=-=-=.),0()(][2 22 X X X t t dx x f m x m X E X D σ也与时间t 无关的 常数。 而且T X 的二维d.l 也只依赖于.21t t -=τ即当2t h -=时,有 ).,;(),;0,(),;,(2121212121x x f x x t t f x x t t f τ∧ =-= 所以t X 与τ+t X 之间自相关为 ??∞∞-∞ ∞ -+== =+).(),;(),(21212 1ττττX t t X R dx dx x x f x x X X E t t R 它只依赖于.τ类似地τ+t t X X ,之间协方差为

最新第1章 随机过程的基本概念习题答案

第一章 随机过程的基本概念 1.设随机过程 +∞<<-∞=t t X t X ,cos )(0ω,其中0ω是正常数,而X 是标准正态变量。试求X (t )的一维概率分布 解:∵ 当0cos 0=t ω 即 πω)2 1 (0+ =k t 即 πω)21(10+=k t 时 {}10)(==t x p 若 0cos 0≠t ω 即 πω)2 1 (1 0+≠ k t 时 {}{}x t X P x x X P t x F ≤=≤=0cos )(),(ω 当 0cos 0>t ω时 ξπ ωωξd e t x X P t x F t x ? - = ??? ? ??≤=02 cos 0 2 021cos ),( 此时 ()t e x t x F t x f t x 0cos 2cos 1 21,),(022ωπ ω? =??=- 若 0cos 0

?? ?= ,2 ,cos )(出现反面出现正面t t t X π 假定“出现正面”和“出现反面”的概率各为21。试确定)(t X 的一维分布函数)2 1 ,(x F 和)1,(x F ,以及二维分布函数)1,2 1;,(21x x F 解:(1)先求)21,(x F 显然???=?? ???-=??? ??出现反面出现正面 出现反面出现正面10,212,2cos 21π X 随机变量?? ? ??21X 的可能取值只有0,1两种可能,于是 21 021= ??????=?? ? ??X P 2 1121=??????=??? ??X P 所以 ?????≥<≤<=??? ?? 11102 1 0021,x x x x F 再求F (x ,1) 显然? ??-=???=出现反面出现正面出现反面出现正面 2 1 2 cos (1)πX {}{}2 1 2)1(-1 (1)====X p X p 所以 ???? ???≥<≤<=2 121- 2 1-1 0,1)(x x x x F (2) 计算)1,2 1 ;,(21x x F ???-=???=出现反面出现正面出现反面出现正面 2 1)1(, 1 0)2 1 ( X X 于是

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时,= = 1.2 设离散型随机变量X服从几何分布: 试求的特征函数,并以此求其期望与方差。解:

所以: 2.1 袋中红球,每隔单位时间从袋中有一个白球,两个 任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 2.2 设随机过程 ,其中 是常数,与是 相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概 率密度为 试证明为宽平稳过程。 解:(1)

与无关 (2) , 所以 (3) 只与时间间隔有关,所以 为宽平稳过程。 2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 2.5, 试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立

为多少? 3.1一队学生顺次等候体检。设每人体检所需的时间服从均值为2分 钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。以小时为单位。 则((1))30E N =。 40 30 (30)((1)40)!k k P N e k -=≤=∑。 3.2在某公共汽车起点站有两路公共汽车。乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当1N =2N ,1λ=2λ时,计算上述概率。 解: 法一:(1)乘坐1、2路汽车所到来的人数分别为参数为1λ、2λ的poisson 过程,令它们为1()N t 、2()N t 。1 N T 表示1()N t =1N 的发生时 刻,2 N T 表示2()N t =2N 的发生时刻。 1 11 1111111()exp()(1)! N N N T f t t t N λλ-= -- 2 22 1222222()exp()(1)! N N N T f t t t N λλ-= --

随机过程作业题及参考答案(第一章)

! 第一章 随机过程基本概念 P39 1. 设随机过程()0cos X t X t ω=,t -∞<<+∞,其中0ω是正常数,而X 是标准正态变量。试求()X t 的一维概率分布。 解: 1 当0cos 0t ω=,02 t k π ωπ=+ ,即0112t k πω??= + ??? (k z ∈)时, ()0X t ≡,则(){}01P X t ==. 2 当0cos 0t ω≠,02 t k π ωπ≠+ ,即0112t k πω?? ≠ + ??? (k z ∈)时, ()~01X N ,,()0E X ∴=,()1D X =. ¥ ()[]()00cos cos 0E X t E X t E X t ωω===????. ()[]()22 000cos cos cos D X t D X t D X t t ωωω===????. ()()20~0cos X t N t ω∴,. 则( )2202cos x t f x t ω- = ;. 2. 利用投掷一枚硬币的试验,定义随机过程为 ()cos 2t X t t π?=??,出现正面,出现反面 假定“出现正面”和“出现反面”的概率各为 12。试确定()X t 的一维分布函数12F x ?? ???;和()1F x ;,以及二维分布函数12112 F x x ? ? ?? ? ,;, 。

】 解: 00 11101222 11

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

随机过程作业

第三章随机过程作业 1.设A、B是独立同分布的随机变量,求随机过程的 均值函数、自相关函数和协方差函数。 2.设是独立增量过程,且,方差函数为。记随机过程 ,、为常数,。 (1)证明是独立增量随机过程; (2)求的方差函数和协方差函数。 3.设随机过程,其中是相互独立的随机变量且均值为0、 方差为1,求的协方差函数。 4.设U是随机变量,随机过程. (1) 是严平稳过程吗为什么 (2) 如果,证明:的自相关函数是常数。 5.设随机过程,其中U与V独立同分布 。 (1) 是平稳过程吗为什么 (2) 是严平稳过程吗为什么 6.设随机变量的分布密度为, 令, 试求的一维概率分布密度及。

7.若从t = 0开始每隔1/2分钟查阅某手机所接收的短信息 , 令 试求:的一维分布函数 8.设随机过程, 其中是相互独立的随 机变量 , 且, 试求的均值与协方差函数 . 9.设其中为常数 , 随机变量 , 令 , 试求 :和 。 10.设有随机过程,并设x是一实数,定义另一个随机过程 试证的均值和自相关函数分别为随机过程的一维和二维分布函数。11.设有随机过程,,其中为均匀分布 于间的随机变量,即试证: (1)自相关函数 (2)协相关函数 12.质点在直线上作随机游动,即在时质点可以在轴上往右或往左作 一个单位距离的随机游动。若往右移动一个单位距离的概率为,往左移动一个单位距离的概率为,即

,且各次游动是相互统计独立的。经过n 次游动,质点所处的位置为。 (1)的均值; (2)求的相关函数和自协方差函数和。 13.设,其中服从上的均匀分布。试证 : 是宽平稳序列。 14.设其中服从上的均匀分布. 试 证 :既不是宽平稳也不是严平稳过程 . 15.设随机过程和都不是平稳的,且 其中和是均值为零的相互独立的平稳过程,它们有相同的相关函数,求证 是平稳过程。 16.设是均值为零的平稳随机过程。试 证 : 仍是一平稳随机过程 , 其中为复常数,为整数。 17.若平稳过程满足条件,则称是周 期为的平稳过程。试证是周期为的平稳过程的充分必要条件是其自相关函数必为周期等于的周期函数。

随机过程复习题(含答案)

随机过程复习题 一、填空题: 1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有 ______}|{|lim =<-∞ >-εa X P n n ,则称}{n X 依概率收敛于a 。 2.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t , ,则 15 92}6)5(,4)3(,2)1({-??= ===e X X X P , 618}4)3(|6)5({-===e X X P 15 32 62 32 92! 23!2)23(!23}2)3()5({}2)1()3({}2)0()1({} 2)3()5(,2)1()3(,2)0()1({} 6)5(,4)3(,2)1({----??=???==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P 66 218! 26}2)3()5({}4)3(|6)5({--===-===e e X X P X X P 3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(4 1 2141, ?????? ?? ????????? ?=434 103 13131043 411)(P ,则167)2(12=P ,161}2,2,1{210====X X X P

???????? ?????? ????=48 31481348 436133616367 164167165)1()2(2P P 16 7 )2(12=P 16 1 314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{} 2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P 4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R , )]()([)(π?δπ?δπω-++=X S 6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。 7.已知平稳过程)(t X 的谱密度为2 3)(2 42 ++=ωωωωS ,则)(t X 的均方值= 2 121- 222 2221 1221)2(22211122)(+??-+??=+-+= ωωωωωS ττ τ-- -=e e R X 2 12 1)(2

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

随机过程作业

南昌航空大学硕士研究生2009 / 2010学年第一学期考试卷 1. 求随机相位正弦波()cos()X t a t ωθ=+,(,)t ∈-∞+∞,的均值函数,方差函数和自相关函数。其中θ是在(-л,л)内均匀分布的随机变量 2.()X t 是泊松过程,求出泊松过程的均值函数(),X m t 方差函数()X D t ,相关函数(,)X R s t 协方差函数(,)X B s t . 3.设顾客到达商场的速率为2人/分钟,求: (i)在10分钟内顾客达到数的均值; (ii) 在10分钟内顾客达到数的方差; (iii)在10分钟内至少一个顾客达到的概率; (iv)在10分钟内到达顾客不超过3人的概率。(12分)

4.利用重复抛掷硬币的实验定义一个随机过程cos ,(){ 2,, t X t t π=出现正面,出现正面, (,)t ∈-∞+∞ 求:(i)()X t 的一维分布函数1(,),(,1);2F x F x (ii)()X t 的二维分布函数121(,,1);2F x x (iii)()X t 的均值函数(),(1),X X m t m 方差函数(),(1)X X D t D .(16分) 5.设移民到某地区的居民户数是一泊松过程,平均每周有2户定居,如果每户的人口数是随机变量,一户4口人的概率是1/6,一户3口人的概率是1/3,一户2口人的概率是1/3,一户1口人的概率是1/6,并且

每户的人口数是相互独立的,求2周内移民到该地区的人口数的期望和方 6.设{,1}n X n ≥为有限齐次马尔可夫链,其初始分布和概率转移矩阵为 01 {},1,2,3,4.4 i p P X i i ==== 11114444111144441111444411114444?? ? ? ? ? ? ? ? ? ??? , 求(i)201{4|1,14}P X X X ==<<,(ii) 21{4|14}P X X =<<(12分) 7.设明天是否有雨仅与今天的天气有关,而与过去的天气无关。又设今天下雨明天也下雨的概率为0.7,今天无雨明天有雨的概率为0.4,规定有雨的天气状态为0,无雨的天气状态为1.求周一下雨周四也下雨的概率。 8.设{1,2,3,4}I =,其一步转移概率矩阵为:

随机过程2016作业及答案3

1.Players A and B take turns in answering trivia questions, starting with player A answering the ?rst question. Each time A answers a question, she has probability p 1 of getting it right. Each time B plays, he has probability p 2 of getting it right. (a)If A answers m questions, what is the PMF of the number of questions she gets right? The r.v.is Bin(m,p 1),so the PMF is m k p k 1(1 p 1)m k for k 2{0,1,...,m }.(b)If A answers m times and B answers n times,what is the PMF of the total number of questions they get right (you can leave your answer as a sum)?Describe exactly when/whether this is a Binomial distribution. Let T be the total number of questions they get right.To get a total of k questions right,it must be that A got 0and B got k ,or A got 1and B got k 1,etc.These are disjoint events so the PMF is P (T =k )=k X j =0?m j ◆p j 1(1 p 1)m j ?n k j ◆p k j 2(1 p 2)n (k j )for k 2{0,1,...,m +n },with the usual convention that n k is 0for k >n . This is the Bin(m +n,p )distribution if p 1=p 2=p ,as shown in class (using the story for the Binomial,or using Vandermonde’s identity).For p 1=p 2,it’s not a Binomial distribution,since the trials have di ?erent probabilities of success;having some trials with one probability of success and other trials with another probability of success isn’t equivalent to having trials with some “e ?ective”probability of success.(c)Suppose that the ?rst player to answer correctly wins the game (with no prede-termined maximum number of questions that can be asked).Find the probability that A wins the game. Let r =P (A wins).Conditioning on the results of the ?rst question for each player,we have r =p 1+(1 p 1)p 2·0+(1 p 1)(1 p 2)r, which gives r =p 11 (1 p 1)(1 p 2)=p 1p 1+p 2 p 1p 2 .1 SI 241 Probability & Stochastic Processes, Fall 2016 Homework 3 Solutions 随机过程2016 作业及答案

随机过程习题答案

随机过程习题解答(一)第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a )分别写出随机变量和的分布密度 (b )试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a )试求和的相关系数; (b )与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。解:(a )利用的独立性,由计算有: (b )当的时候,和线性相关,即 3、 设是一个实的均值为零,二阶矩存在的随机过程,其相关函数 为 ,且是一个周期为T 的函数,即, 试求方差函数 。 解:由定义,有: 4、考察两个谐波随机信号和,其中: 式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a )求的均值、方差和相关函数; (b )若与独立,求与Y的互相关函数。 解:(a ) (b ) 第二讲作业: P33/2.解:

其中为整数, 为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数 ,因此有一维分布: P35/4. 解: (1) 其中 由题意可知, 的联合概率密度为: 利用变换: ,及雅克比行列式: 我们有 的联合分布密度为: 因此有: 且 V 和 相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于 独立、服从正态分布,因此 也服从正态分布,且 所以 。 (4) 由于: 所以 因此 当时, 当 时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有: P37/10. 解:(1) 当i =j 时 ;否则 令 ,则有 (2)

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

随机过程课程作业(附MATLAB源码)

绘制样本曲线的MATLAB命令: t=1:50:100000; xt1=0.5*cos(0.5.*t+pi/3); subplot(2,2,1) plot(t,xt); axis([1 100000 -1 1]); title('样本曲线一,sita=pi/3'); xt2=0.5*cos(0.5.*t+pi/2); subplot(2,2,2); plot(t,xt); axis([1 100000 -1 1]); title('样本曲线二,sita=pi/2'); xt3=0.5*cos(0.5.*t+3*pi/4); subplot(2,2,3); plot(t,xt); axis([1 100000 -1 1]); title('样本曲线三,sita=3*pi/4'); xt3=0.5*cos(0.5.*t+3*pi/2); subplot(2,2,4); plot(t,xt); axis([1 100000 -1 1]); title('样本曲线四,sita=3*pi/2'); 四条样本曲线图:

选取第一条样本曲线对时间求均值: MATLAB 命令为: avX=sum(xt1)/length(t) avX = 0.0018 泊松过程的模拟: a 采用增量迭加法产生泊松过程 根据泊松过程是一个平稳增量随机过程,那么可知 1100()()()()()()()()n n n N t N t N t N t N t N t N t N t -=-+-+???+-+ 其中1()()()n n N t N t P λτ--= 假设某泊松过程的参数λ=3,时间最大为30,τ=1那么MTALAB 参数的样本曲线命令为 lamda=2;Tmax=30;hao=1; for j=1:4 i=1;N(1)= 0; while(i

随机过程作业题及参考答案第一章

第一章 随机过程基本概念 P39 1. 设随机过程()0cos X t X t ω=,t -∞<<+∞,其中0ω是正常数,而X 是标准正态变量。试求()X t 的一维概率分布。 解: 1 当0cos 0t ω=,02t k π ωπ=+,即0112t k πω??=+ ??? (k z ∈)时, ()0X t ≡,则(){}01P X t ==. 2 当0cos 0t ω≠,02t k π ωπ≠+,即0112t k πω??≠+ ??? (k z ∈)时, ()~01X N ,,()0E X ∴=,()1D X =. ()[]()00cos cos 0E X t E X t E X t ωω===????. ()[]()22000cos cos cos D X t D X t D X t t ωωω===????. ()()20~0cos X t N t ω∴,. 则( )2202cos x t f x t ω-=;. 2. 利用投掷一枚硬币的试验,定义随机过程为 假定“出现正面”和“出现反面”的概率各为12。试确定()X t 的一维分布函数12F x ?? ??? ;和()1F x ;,以及二维分布函数12112 F x x ?? ???,;, 。 解:

随机矢量()112? ??? ? ????? ,X X 的可能取值为()01-,,()12,. 而()1101122????==-=?? ?????,P X X ,()1111222 ????===?? ?????,P X X . 3. 设随机过程(){} X t t -∞<<+∞,总共有三条样本曲线 ()11X t ω=,,()2sin X t t ω=,,()3cos X t t ω=, 且()()()12313 P P P ωωω=== 。试求数学期望()EX t 和相关函数()12X R t t ,。 解: ()()11111sin cos 1sin cos 3333 EX t t t t t =?+?+?=++. ()1211cos 3=+-??? ?t t . 4. 设随机过程()Xt X t e -=,(0t >),其中X 是具有分布密度()f x 的随机变量。试求()X t 的一维分布密度。 解: ()X t 的一维分布函数为: 111ln 1ln ????=-<-=--?? ????? P X x F x t t . X 具有分布密度()f x , ()∴X t 的一维分布密度为: ()()11111ln ln ??????'==--??-=-?? ? ? ?????????;;f x t F x t f x f x t x t tx t . P40 5. 在题4中,假定随机变量X 具有在区间()0T ,中的均匀分布。试求随机过程的数学期望()EX t 和自相关函数()12X R t t ,。

相关文档
最新文档