乘法分配律 的六种类型
四年级数学下册重点《乘法分配律》

乘法分配律知识总结1、乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,在把两个积相加(或相减),结果不变。
用字母表示数:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c2、式子的特点:式子的原算符号一般是×、+(-)、×的形式;在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)基本上是能凑成整十、整百、整千的数。
3、102×88、99×15这类题的特点:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成整十、整百、整千与一个数的和(或差),再应用乘法分配律可以使运算简便。
巧记乘法分配律和简算步骤我们都爱自己的爸爸妈妈,五月份、六月份的母亲节和父亲节就要来了,我们提前说一句:“我爱爸爸和妈妈”吧!根据语言分配现象:“我爱爸爸和妈妈=我爱爸爸,我也爱爱妈妈”其实我们数学中也存在着这种有趣的分配现象,就是——乘法分配律。
“c”——“我”“×”——“爱”"a”——“爸爸”“b”——“妈妈”c×(a+b)=c×a+c×b我爱爸爸和妈妈=我爱爸爸我爱妈妈c×a+c×b=c×(a+b)我爱爸爸我爱妈妈=我爱爸爸和妈妈我们姑且给“乘法分配律”定个名字——亲情法则简算步骤第一步:观察算式找规律(观察数和运算符号)第二步:根据规律巧变化(保证左右结果不变)第三步:认真书写会检验(检验算式和结果)妙招巧应用第一招顺着应用(125+6)×8=125×8+6×8=1000+48=1048第二招逆着应用9×37+9×63=9×(37+63)=9×100=900第三招变着应用32×102=32×(100+2)=32×100+32×2=3200+64=3264第四招拓展应用6×230+60×77=6×230+6×770=6×(230+770)=6×1000=6000你能把下面的算式变成乘法分配律的样子吗?56 ×99 + 56×?=56 ×99 + 56 × 1=56 ×( 99 + 1 )=56 ×100=560031×99=31×(100-1)=31×100-31×1=3100-31=3069乘法分配律练习题类型一:(注意:一定要括号外的数分别乘括号里的两个数,再把积相加减)(40-8)×25125×(8+80)36×(100+50)86×(1000-2)类型二:(注意:两个积中相同的因数只能写一次)36×34+36×6675×23+25×23325×113-325×1328×18-8×28类型三:(提示:把102看作100+2;81看作80+1,再用乘法分配律)78×10256×101125×8152×102。
乘法分配律的几种形式

乘法分配律的几种形式嘿,大家好,今天咱们聊聊乘法分配律这事儿,听上去挺严肃的,但其实它跟我们的日常生活也有不少关系呢。
想象一下,你去市场买水果,想买苹果和香蕉,结果老板说:“嘿,苹果一斤三块,香蕉一斤两块。
”这时候,你如果要买两斤苹果和三斤香蕉,你会怎么算呢?很简单,直接算吧:2斤苹果就是6块,3斤香蕉就是6块,总共就是12块。
可是,你也可以先把苹果和香蕉的总斤数算出来,再乘以单价,比如说你总共买了5斤水果,价钱就是(3+2)元×5斤,也就是5×5块,结果还是12块。
这就是乘法分配律的魔力所在,听起来挺简单,但其实它是数学中的一颗明珠。
再说说这乘法分配律的几种形式,大家可能知道的就是最常见的那种,比如说a(b+c)=ab+ac。
把a分配到括号里的b和c上,就像我们把糖分给小朋友,每人一颗,没谁少了,没谁多了。
想象一下,如果你有10块钱,想请你的朋友吃汉堡和炸鸡。
汉堡5块,炸鸡3块。
你可以先买汉堡,再买炸鸡,也可以把钱先凑一块,之后再分开给他们。
怎么分都能得到同样的结果,这就是乘法分配律的魅力,简直妙不可言。
乘法分配律还可以玩出花样来。
比如说,你要计算3(4+5)和3×4+3×5,这里可以让人眼前一亮的就是,无论你怎么算,最后的结果都是一样的。
就像你和朋友们一起聚餐,无论你先点什么,最后结账的时候,每个人都各自掏钱,结果总是对的,不多不少。
生活中处处都是这样的例子,乘法分配律就像一个贴心的小助手,帮你把事情搞得井井有条。
咱们再来看看实际应用。
你在办公室里,做一个项目,跟几个同事合作。
项目预算是1000块,你们分工合作,有的做设计,有的做市场推广。
这时候,如果你把预算分成两个部分,一部分给设计,一部分给市场推广,还是可以得到总预算。
像这样,乘法分配律无时无刻不在影响着我们的生活,真的是个贴心的小伙伴。
还有一点不得不提,乘法分配律在学习数学的时候,简直是个好帮手。
乘法分配律的八种类型

乘法分配律的八种类型乘法分配律,听起来有点儿复杂,但其实就像我们日常生活中的一些简单道理一样。
想象一下,你有一箱苹果和橙子。
你要给你的朋友分,这时候就用上了乘法分配律。
比如你有3个苹果和2个橙子,你想分给3个朋友,每个朋友都能得到一份。
你把苹果分成三份,橙子也分成三份,结果是每个人都能开心地拿到一份美味的水果。
这就是乘法分配律的第一种类型,简单明了吧?再说说乘法分配律的第二种类型。
假设你在超市买东西,看到一篮水果,里面有5个苹果和4个橙子。
你想给两个朋友分,那就把每种水果都平均分开。
于是你对每种水果都乘以2,结果是每个人得到的都是5乘以2和4乘以2,最终你能把水果分得妥妥的。
就像我们常说的,分好东西,大家都开心,对吧?还有一种类型呢,就是把乘法分配律和加法结合起来。
想象你有3盒饼干,每盒里有2个巧克力饼干和3个奶油饼干。
你想知道总共有多少饼干。
你可以先算每种饼干的数量,然后再把它们加起来。
这时候,乘法分配律就派上用场了。
简单算一下,3乘以2加3的结果,哇,饼干一大堆,简直让人流口水,嘿嘿。
再来聊聊乘法分配律的应用场景。
你在做饭,食谱上写着要用4个鸡蛋和2杯牛奶。
你想给你的朋友们做两倍的量,那你就直接把每样东西都乘以2。
这时候,乘法分配律又轻松解决了你的问题。
厨房里热火朝天,结果大家都赞不绝口,真是个大厨的好帮手。
说到这里,不得不提乘法分配律的有趣之处。
有时候我们会看到一些数学题,长得复杂得让人想哭。
但只要运用乘法分配律,哦,简直就是迎刃而解。
这就像在解谜游戏中找到了隐藏的钥匙,瞬间打开了通往胜利的大门,爽快得很。
乘法分配律也有点儿调皮的地方。
比如,有些人觉得这是死记硬背的公式,但其实它在生活中无处不在。
就像我们常常用的成语,“事半功倍”,只要你掌握了这个道理,做事情就能轻松很多。
数学也好,生活也罢,找对了方法,就能省力不少。
还有一种类型就是结合运算。
比如,你有3种饮料,每种饮料都有不同的容量。
想象你在派对上,每种饮料你都要准备两倍的量。
乘法分配律6种题型的算式

乘法分配律6种题型的算式
乘法分配律是数学中的一个重要性质,它可以用来改变算式的结构,使得计算更加简便。
根据乘法分配律的定义,我们可以列举出以下6种题型的算式:
1. 一般形式:
a × (
b + c) = (a × b) + (a × c)
2. 数字与常数的结合:
2 × (
3 + 4) = (2 × 3) + (2 × 4)
3. 字母与常数的结合:
a × (5 + 6) = (a × 5) + (a × 6)
4. 常数与常数的结合:
2 × (
3 + 4) = (2 × 3) + (2 × 4)
5. 字母与字母的结合:
a × (
b + c) = (a × b) + (a × c)
6. 多个项的结合:
(2 + 3) × (4 + 5) = (2 × 4) + (2 × 5) + (3 × 4) + (3 × 5)
需要注意的是,乘法分配律适用于任意实数或复数的乘法运算。
以上列举的题型只是一些常见的例子,实际上乘法分配律在各种数学问题和应用中都有广泛的应用。
小学数学公式大全——乘法分配律

小学数学公式大全——乘法分配律乘法分配律是小学数学中的重要概念,它是整数运算中常用的一个基本规律。
乘法分配律是指在进行乘法运算时,对于一个数加上或减去两个数再与另一个数相乘,结果是先把这个数与被加、减的两个数分别相乘,然后将两个结果相加或相减。
乘法分配律的数学表达式为:a×(b+c)=a×b+a×c和a×(b-c)=a×b-a×c。
乘法分配律可以用来简化乘法运算,使计算更加方便和快捷。
下面我们来看一些应用乘法分配律的例子:例1:计算3×(4+5)。
根据乘法分配律,我们可以先计算括号里的加法:4+5=9,然后再进行乘法运算:3×9=27、所以,3×(4+5)=27例2:计算2×(7-3)。
根据乘法分配律,我们可以先计算括号里的减法:7-3=4,然后再进行乘法运算:2×4=8、所以,2×(7-3)=8例3:计算5×(6+7)+3×(6-7)。
根据乘法分配律,我们可以先计算括号里的加法和减法:6+7=13,6-7=-1,然后再进行乘法运算:5×13=65,3×(-1)=-3、最后将两个结果相加:65+(-3)=62、所以,5×(6+7)+3×(6-7)=62乘法分配律还可以用于规律的发现和推广。
例4:计算15×13我们可以利用乘法分配律将13拆分成10+3,然后进行乘法运算:15×13=15×(10+3)=15×10+15×3=150+45=195例5:计算25×199我们可以利用乘法分配律将199拆分成200-1,然后进行乘法运算:25×199=25×(200-1)=25×200-25×1=5000-25=4975以上是乘法分配律的一些基本应用,通过乘法分配律可以简化计算,提高计算速度和准确性。
巧用乘法分配律的几种类型

巧用乘法分配律的几种类型乘法分配律是数学中常用的计算法则之一,可以帮助我们完成复杂的乘法运算。
它的一般形式是:a×(b+c)=a×b+a×c利用乘法分配律,我们可以将乘法运算转化为更简单的加法和乘法运算,从而简化计算过程。
接下来,我们将介绍几种巧用乘法分配律的类型,包括整数乘法、小数乘法、代数式乘法以及解方程等。
整数乘法乘法分配律在整数乘法中的应用非常广泛。
例如,如果我们要计算348×27,可以利用乘法分配律将它转化为两个较为简单的乘法运算:348×27=300×27+40×27+8×27=(300+40+8)×27=348×27这样一来,我们只需要计算三个较小的乘法运算,相比于先计算348×27的复杂度大大降低。
小数乘法乘法分配律同样适用于小数乘法。
例如,如果我们要计算0.4×7.8,可以按照乘法分配律的方式展开计算:0.4×7.8=0.4×(7+0.8)=0.4×7+0.4×0.8=2.8+0.32=3.12同样地,通过将小数进行分解展开计算,我们可以简化乘法运算的过程。
代数式乘法乘法分配律对于代数式乘法同样适用。
例如,考虑计算(x+2)(x+3),我们可以按照乘法分配律的形式展开计算:(x+2)(x+3)=x(x+3)+2(x+3)=x^2+3x+2x+6=x^2+5x+6通过将两个括号内的项进行分解展开并进行合并,我们得到了原始代数式的乘积。
解方程乘法分配律在解方程中也有很大的作用。
例如,考虑解方程3(x+4)=12,我们可以将方程左边的乘法运算展开,然后用乘法分配律简化计算:3(x+4)=123x+12=123x=12-123x=0x=0/3x=0通过巧妙地利用乘法分配律,我们将原先复杂的方程转化为了简单的一步运算,从而得到了解方程的结果。
乘法分配律五种类型

=78x(100+2)
=78x100+2x78
69×102
=69x(100+2)
=69x100+2x69
56×101
=56x(100+1)
=56x100+56x1
52×102
=52x(100+2)
类型四:(提示:把99看作100-1;,再用乘法分配律)
31×99
=31x(100-1)
=31x100-31x1
乘法分配律特别要注意两个数的和与一个数相乘可以先把它们与这个数分别相乘再相加中的两个字
乘法分配律练习题
班别:姓名:学号:
乘法分配律特别要注意“两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加”中的分别两个字。
类型一:(注意:一定要括号外的数分别乘括号里的两个数,再把积相加)
(a+b)×c =a×c+b×c
(a一b)×c =a×c一b×c
(40+8)×25
=40x25+8x25
=1000+200
=1200
125×(8+80)
=125x8+125x80
=1000+10000
=11000
36×(100+50)
=100x36+50x36
24×(2+10)
=24x2+24x10
=48+240
42×98
=42x(100-2)
29×99
85×98
类型五:(提示:把83看作83×1,再用乘法分配律)
a×c+b×c=(a+b)×c
83+83×99
乘法分配律的常见五种类型1

乘法分配律的常见五种类型注:乘法分配律必须是两级运算,即有加法(或减法)和乘法一、用括号里的数分别乘括号外的数。
练习:(125-4)×8例:(20+2)×55 (25-4)×4=20×55+2×55 =25×4+4×4=1100+110 =100+16=1210 =116二、提取一级运算(+、—号)左右两边的相同的数,写在括号外面(只写一遍),剩余两个数写在括号里面。
练习:37×124+37×76例:137×36+64×137 237×127-127×137=137×(36+64)=127×(237-137)=137×100 =127×100=13700 =12700三、拆数法:把101写成100+1;102写成100+2;401写成400+1等等(几百零几的写成几百加几),然后再用第一种类型(用括号里的数分别乘括号外的数)进行去括号计算。
例:101×289 302×22 102×124 练习:201×325=(100+1)×289 =(300+2)×22 =(100-2)×124=100×289+1×289 =300×22+2×22 =100×124-2×124=28900+289 =6600+66 =12400-248=29189 =6666 =12152四、凑整法:把99写成100-1;98写成100-2;199写成200-1等等,然后再用第一种类型(用括号里的数分别乘括号外的数)进行去括号计算。
例:99×123 47×198 练习:①399×25 ②55×199=(100-1)×123 =47×(200-2)=100×123-1×123 =47×200-47×2=12300-123 =9400-94=12177 =9306五、把一级运算(“+或-”号)左右两边的单独的一个数写成“这个数×1”,再用第二种类型(提取一级运算(+、—号)左右两边的相同的数,写在括号外面(只写一遍),剩余两个数写在括号里面)进行计算例:37+37×99 324×201-324 练习:36×14+36×97-36×11 =37×1 +37×99 =324×201-324×1=37×(1+99)=324×(201-1)=37×100 =324×200=3700 =64800。