初三数学寒假讲义 第1讲.三角形 教师版

合集下载

初三数学对直角三角形的再认识 知识精讲 人教实验版

初三数学对直角三角形的再认识 知识精讲 人教实验版

初三数学对直角三角形的再认识 知识精讲 人教实验版【本讲教育信息】一. 教学内容:对直角三角形的再认识二. 教学重难点:1. 锐角三角函数的概念。

2. 解直角三角形的理论依据。

(1)在ABC t R ∆中,∠C=90°b①两锐角互余——∠A+∠B=90°②三边关系——勾股定理:222c b a =+,变式2222bc a b a c -=+=③边、角关系——锐角三角函数:邻边对边,斜边邻边,斜边对边===tanA cosA A sin 。

(2)特殊的直角三角形:①含30°的直角三角形:在ABC t R ∆中,∠C=90°,∠A=30°,则AB 21BC ,60B =︒=∠,三边之比为2:3:1。

②含45°的直角三角形:在ABC t R ∆中,∠C=90°,∠A=45°,则∠B=45°,AC=BC,三边之比为2:1:1。

(3)直角三角形中有斜边中线: 在ABC t R ∆中,D 为AB 中点,则AB 21CD =,即AD=DB=CD ,ADC ∆、CDB ∆均为等腰三角形。

(4)直角三角形中有斜边高线:在ABC t R ∆中,∠C=90°,AB CD ⊥,则∠1=∠B ,∠2=∠A 。

ACD t R ∆∽CBD Rt ∆∽ABC Rt ∆。

由相似得对应边成比例,可得到: .AB BD BC ;AB AD AC ;DB ADCD 222⋅=⋅=⋅=由面积公式,得AB CD BC AC ⋅=⋅3. 特殊角的三角函数值:记忆方法:3【典型例题】例1. (1)在ABC Rt ∆中,∠C=90°,a=1,c=4,则A sin 的值是( )A.1515B.41C.31D.415 (2)如图,在ABC Rt ∆中,∠C=90°,AC=6,32sinB =,那么AB 的长是( )A. 4B. 9C. 53D. 52(3)在ABC ∆中,∠B=45°,∠A=105°,AC=6,则AB 的长是( ) A. 63 B. 23 C. 22 D. 26 解:(1)画出草图,运用定义求解。

九年级数学复习解直角三角形山东教育版知识精讲

九年级数学复习解直角三角形山东教育版知识精讲

九年级数学复习解直角三角形某某教育版【本讲教育信息】一、教学内容复习解直角三角形二、学习目标:1. 了解锐角三角函数的概念,能够正确应用锐角三角函数来表示直角三角形中两边的比。

2. 熟记30、45、60角的各个三角函数值,会计算含有特殊锐角的三角函数值的式子,会由一个特殊角的三角函数值计算角。

3. 理解并掌握直角三角形中边、角之间的关系,会用勾股定理,直角三角形的两个锐角互余,锐角三角函数解直角三角形。

4. 会用解直角三角形的有关知识解某些简单实际问题,进一步理解数形结合的思想。

三、重点、难点重点理解锐角三角函数,应用其解直角三角形;难点是解决一些生活实际问题。

(一)熟练掌握直角三角形的边角关系如图,ABC Rt ∆中,∠C=90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c(1)三边之间的关系:222c b a =+(勾股定理) (2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系:=A sin ba A tan ,cb A cos ,c a ==,所以,只要知道其中的2个元素(至少有一个是边),就可以求出其余三个未知元素。

解直角三角形的基本类型题解法如下表所示: 类型已知条件 解法两边两直角边a ,bA90B ,b aA tan ,b a c 22-︒==+= 一直角边a ,斜边cA90B ,c aA sin ,a c b 22-︒==-=一边、一锐角一直角边a ,锐角A斜边c ,锐角AA cos c b ,A sin c a ,A 90B ⋅=⋅=-︒=(二)弄清解直角三角形的涵义由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。

1. 隐含条件是直角,这是前提条件,也是已知条件。

2. 已知条件:必有两个,且必有一边才能解直角三角形。

因为边角的组合有边边、边角、角角,但角角不能确定三角形的大小,更无法求其边长,所以不能解三角形。

九年级数学下册第一章直角三角形的边角关系本章小结与复习教案(新版)北师大版

九年级数学下册第一章直角三角形的边角关系本章小结与复习教案(新版)北师大版

第一章直角三角形的边角关系一、本章知识要点:1、锐角三角函数的概念;2、解直角三角形。

二、本章教材分析:(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。

如何解决这一关键问题,教材采取了以下的教学步骤:1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。

显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。

2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30°变为45°后,其对边与斜边的比值也随之变化了,由到。

这样就突出了直角三角形中边与角之间的相互关系。

3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。

4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。

同时要强调三角函数的实质是比值。

防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A而是一个整体。

如果学生产生类似的错误,应引导学生重新复习三角函数定义。

5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。

九年级数学下册第一章直角三角形的边角关系北师大版

九年级数学下册第一章直角三角形的边角关系北师大版

九年级数学下册第一章直角三角形的边角关系北师大版九年级数学下册第一章直角三角形的边角关系北师大版【本讲教育信息】一. 教学内容:直角三角形的边角关系二. 教学目标:1. 理解锐角三角函数的概念,熟练掌握直角三角形的边角之间的关系。

2. 会计算含30°,45°,60°角的三角函数值的问题。

3. 能运用三角函数解决与直角三角形有关的实际问题。

三、重点及难点:重点:1. 会计算含30°,45°,60°角的三角函数值的问题。

2. 能运用三角函数解决与直角三角形有关的实际问题。

难点:能运用三角函数解决与直角三角形有关的实际问题。

四. 课堂教学[知识要点]1. 如图,在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA ,即的邻边的对边A A A tan ∠∠=∠A 的对边A ∠A 的邻边 C2. A tan 的值越大,梯子越陡。

3. 正切也经常用来描述山坡的坡度(坡面的铅直高度与水平宽度的比称为坡度(或坡比))4. ∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A sin ∠=5. ∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A cos ∠=6. sinA 的值越大,梯子越陡; cosA 的值越小,梯子越陡。

7. 锐角A 的正弦、余弦和正切都是∠A 的三角函数。

8.9. 测量底部可以到达的物体的高度。

所谓“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体的底部之间的距离。

如图,要测量物体MN 的高度,可按下列步骤进行:(1)在测点A 处安置测倾器,测得M 的仰角∠MCE=α。

(2)量出测点A 到物体底部N 的水平距离AN=l 。

(3)量出测倾器的高度AC=a (即顶线成水平位置时,它与地面的距离)。

则物体MN=ME+EN=l tan α+a10. 测量底部不可以到达的物体的高度。

北师版九年级下册数学第1章 解直角三角形 (2)

北师版九年级下册数学第1章 解直角三角形 (2)

14.(中考·连云港)如图,在△ABC 中,∠ABC=90°,BC=3,D 为 AC 延长线上一点,AC=3CD,过点 D 作 DH∥AB,交 BC 的延长线于点 H.
(1)求 BD·cos ∠HBD 的值;
解:∵DH∥AB,∴∠BHD=∠ABC=90°. 又∵∠BCA=∠HCD,∴△ABC∽△DHC.∴DACC=HBCC. ∵AC=3CD,BC=3,∴CH=1.∴BH=BC+CH=4. 在 Rt△BHD 中,cos ∠HBD=BBHD,∴BD·cos∠HBD=BH=4.
【点拨】∵在 Rt△ABC 中,∠C=90°,∴tan∠BAC=BACC.
又∵AC=30
cm,tan∠BAC=
3, 3
∴BC=AC·tan∠BAC=30×33=10 3(cm).故选 C.
【答案】C
9.(2019·湘西州)如图,在△ABC 中,∠C=90°,AC=12,AB
的垂直平分线 EF 交 AC 于点 D,连接 BD,若 cos∠BDC=57, 则 BC 的长是( D )
b
a
cos A=___c___,cos B=__c____,
a
b
tan A=__b____,tan B=___a___.
3.在 Rt△ABC 中,∠C=90°.若 c=6 2,a=6,则 b=___6___, ∠B=__4_5_°__,∠A=__4_5_°__.
4.(中考·兰州)如图,在△ABC 中,∠B=90°,BC=2AB,则
解:∵EF⊥BC,AD⊥BC,∴EF∥AD. 易得△BEF∽△BAD. ∴EAFD=BBDF=BBEA. 又∵BE=2AE,∴E6F=B9F=23. ∴EF=4 m,BF=6 m.∴DF=3 m. 在 Rt△DEF 中,DE= EF2+DF2= 42+32=5(m). 答:支架 DE 的长为 5 m.

上海中考数学初三相似三角形讲义

上海中考数学初三相似三角形讲义

陈老师家庭课堂辅导讲义A .1∶4B .1∶2C .2∶1D .1∶211、在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为 A .9.5 B .10.5 C .11 D .15.511题 图 12题图 13题图12、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32 B .76 C .256D .2 13、如图所示,已知点EF 、分别是ABC △中AC AB 、边的中点,BE CF 、相交于点G ,2FG =,则CF 的长为( )A .4B .4. 5C .5D .614、三角尺在灯泡O 的照射下在墙上形成影子(如图7所示).现测得20cm 50cm OA OA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是 .14题图 15题图15如图,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CFAD= .16.如图:在△ABC 中,∠C =90°,AC=12,BC=9.则它的重心G 到C 点的距离是 .17题 图AF E C BG B C A 16题 图17.如图,直线l 1∥l 2∥l 3,已知AG =0.6cm ,BG =1.2cm ,CD =1.5cm ,CH =_____cm18.如图,已知在平行四边形ABCD 中,点E 、F 分别在线段 BD 、AB 上,EF ∥AD ,DE ∶EB =2∶3,EF =9,那么BC 的长为 .19如图,已知AD ∥EF ∥BC ,且AE =2EB ,AD =8 cm ,AD =8 cm ,BC =14 cm , 则S梯形A 。

三角形讲义(总)

三角形讲义(总)

教学过程课前检测1、不改变数的大小,把下面各小数改写成两位小数。

0.3 24.2500100.5 752、将下列小数按从小到大的顺序排列。

0.50.5060.605 0.056 0.065 0.56()3、把3.33的小数点先向左移动1位,再向右移动2位,得到的数是()。

4、填入适当的小数或整数。

82厘米=()米 6.14元=6元()角()分9吨145千克 =()吨 5.02千克=()千克()克7平方分米=()平方米5.6平方分米=()平方分米()平方厘米5、把下面各数改写成以“万”作单位的数。

72500= 65200000吨=3200000人=6、把下面各数改写以“亿”作单位的数,再精确到个位。

426000000 24090000000知识纵横知识点一:三角形的特性①三角形的高:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段②三角形的底:这条对边叫做三角形的底三角形的性质:①物理特性:三角形具有稳定性(不易变形)②边的特性:三角形任意两边的和大于第三边知识点二:三角形的分类按照角大小来分:锐角三角形,直角三角形,钝角三角形。

按照边长短来分:等边三角形、等腰三角形、三条边都不相等的三角形1、三个角都是锐角的三角形叫做锐角三角形。

2、有一个角是直角的三角形叫做直角三角形。

(其他两个角必定是锐角)3、有一个角是钝角的三角形叫做钝角三角形。

(其他两个角比定是锐角)4、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

知识点三:三角形的内角和180三角形的内角和等于。

1、两条边相等的三角形叫做等腰三角形。

(等腰三角形的特点:两腰相等,两个底角相等)2、三条边都相等的三角形叫等边三角形(正三角形) (等边△的三边相等,每个角是60度)3、等边三角形是特殊的等腰三角形知识点四:图形的拼组1、用2个相同的直角三角形可以拼成一个长方形、一个平行四边形、一个大等腰三角形。

解直角三角形的说课稿

解直角三角形的说课稿

解直角三角形的说课稿一、教材分析本节课是鲁教版初中数学九年级上册第一章的复习课,本章由锐角三角函数的定义、特殊角三角函数值、解直角三角形及应用三部分内容构成,这部分内容是初中数学的重要内容之一。

一方面是在学生已经学习了直角三角形及有关性质,如直角三角形的两锐角互余,勾股定理及其逆定理及直角三角形的相关性质,如直角三角形斜边上的中线等于斜边的一半,30°的锐角所对的直角边等于斜边的一半等知识的前提下,对直角三角形的边与角之间的关系的进一步探讨与学习、应用,也是在学习了方程、整式的计算、直角三角形的性质、全等和相似等知识的基础上对直角三角形的研究进一步深入和拓展;另一方面,也是前面所学知识的应用,和学生以后进一步学习三角函数和解斜三角形的预备知识。

本章内容既是前面所学知识的应用,也是学生以后进一步学习三角函数和解斜三角形的预备知识,它的学习还蕴含着深刻的数学思想方法(转化化归),另外由于解直角三角形在实际生活中应用非常广泛,且在后面的圆的相关运算中也多有涉及,本章主要讲解锐角的三角函数,学生升入高一级的学府还要继续学习三角函数,因此本章的内容具有承上启下的作用,所以本章内容在教材中有着非常重要的地位与作用。

二、教学目标:由于本节课主要使学生理解直角三角形的边角关系,并能运用这些关系解直角三角形,同时解决与之相关的实际问题。

在教学中应以知识与技能为主线,渗透情感态度价值观,并把前两者充分体现在过程与方法中,因此,我确定以下教学目标。

知识与技能:1.熟记锐角三角函数的定义,能进行有关计算。

2.牢记特殊角的三角函数值,能进行有关计算。

3.会应用三角函数解直角三角形。

4.会应用解直角三角形的知识解决实际问题。

过程与方法:通过学习,提高将实际问题转化为数学问题来解决的能力,培养生活中应用数学的意识。

情感与价值:通过学习,认识到数与形相结合的意义和作用,体验到学好知识,能应用于社会实践,从而体会探索,发现科学的奥秘和意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1中考第一轮复习三角形中考大纲剖析本讲结构12一、等腰三角形二、直角三角形1.直角三角形的边角关系.①.直角三角形的两锐角互余. ②.三边满足勾股定理. ③.边角间满足锐角三角函数.2.特殊直角三角形知识导航3三.尺规构造等腰三角形和直角三角形四.全等三角形全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的判定:⑴SSS;⑵SAS;⑶ASA;⑷AAS;⑸HL.在证明图形的线或角关系时,通常需要将全等与图形变换(旋转、平移、轴对称等)相结合.五.相似三角形相似三角形的性质:⑴相似三角形的对应角相等,对应边成比例,其比值称为相似比.34⑵ 相似三角形对应高的比等于相似比,周长比等于相似比,面积比等于相似比的平方. 相似三角形的判定:⑴ 平行于三角形一边的直线,截其他两边所得的三角形与原三角形相似; ⑵ 两角对应相等,两三角形相似;⑶ 两边对应成比例且夹角相等,两三角形相似; ⑷ 三边对应成比例,两三角形相似. 相似三角形的基本模型:(1)EDC BA(3)ED CBA(4)D CBADCBA(6)EDCBA(2)EDCBA(5)EDCBA(10)(9)(8)A BDEABC DEEDBA【编写思路】由于三角形的知识点非常多,本讲只针对三角形中的重要考点来编写的,侧重于等腰三角形、直角三角形、全等三角形和相似三角形,由于相似三角形在中考中考察的分值较少,而且简单,所以本讲也只是针对相似中的重要模型进行复习,不对学生做太高要求.另外,我们在每一讲中,针对当前考试的热点和难点,设计一种“系列探究”, 使得每一讲有一个复习亮点,为我们第一轮复习锦上添花.本讲的探究是:由“直角三角形斜边中线”引发的“几何最值问题”.【例1】 (1)如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC △为等腰三角形,则点C 的个数是( ) A.6 B.7 C.8 D.9(2)在平面直角坐标系中,点A 的坐标为(4),0,点B 的坐标为(410),,点C 在y 轴上,且ABC △是直角三角形,则满足条件的C 点的坐标为 .(2010顺义一模)(3)已知:如图,在ABC △中,B ACB ∠=∠,点D 在AB 边上,点 E 在AC 边的延长线上,且BD CE =, 连接DE 交BC 于F .求证:DF EF =. (2012海淀期中)模块一 特殊三角形夯实基础ACFEDB5(4)如图所示,在△ABC 中,BC =6,E ,F 分别是AB ,AC 的中点,点P 在射线EF 上,BP 交CE 于D ,点Q 在CE 上且BQ 平分∠CBP ,设BP =y ,PE =x .当CQ =21CE 时,y 与x 之间的函数关系式是 .【解析】(1)C ,“两圆一垂”;(2)(0,0),(0,10),(0,2),(0,8).“两垂一圆”确定四个点之后,用勾股求得; (3)证明:过D 点作AC 的平行线交BC 于点G , 则∠B =∠ACB =∠BGD ;∴BD =DG =CE ; 易证△DFG ≌△EFC ;∴DF =EF .注:本题方法很多,还可以过D 作BC 平行线,或过E 作AB 的平行线,由“平行线截等腰三角形”得新等腰三角形.(4)y = –x +6; 提示:延长BQ 与射线EF 相交,由“平行线加角平分线”得到等腰三角形.【例2】 (1)如图,正方形ABCD 的边长为2, 将长为2的线段QF 的两端放在正方形相邻的两边上同时滑动.如果点Q 从点A 出发,沿 图中所示方向按A D C B A →→→→滑动到点A 为止,同时点 F 从点B 出发,沿图中所示方向按B A D C B →→→→滑动到 点B 为止,那么在这个过程中,线段QF 的中点M 所经过的路线围 成的图形的面积为( ) (2010宣武一模) A. 2 B. 4-π C.π D.1π-(2)如图,在△ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动, 在运动过程中,点B 到原点的最大距离是( )A . 222+B .52C .62D . 6(2010西城二模)以下探究主题为:几何最值问题 【探究1】如图,ABC △为等边三角形,边长AB =4,点A 、C 分别在x 轴、y轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是________.【探究2】如图,在ABC △中,∠C =90°,AC =4,BC =3,点A 、C 分别在x 轴、 y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动, 在运动过程中,点B 到原点的最小距离是__________.能力提升6【探究3】 如图,在Rt ABC △中,∠ACB =90°,∠B =30°,CB =33, 点D 是平面上一点且CD =2,点P 为线段AB 上一动点,当△ABC 绕点C 任意旋转时,在旋转过程中线段DP 长度的最大值为_______,最小值为_______.【解析】(1)C ,由“直角三角形斜边中线等于斜边的一半”可知BM 、CM 、CM 、AM 均等于FQ 的一半,于是M 的轨迹围成一个半径为1的圆;(2)A ,如右图1,取AC 中点D ,连结OD 、BD ,当OD 、B 三点共线时,OB 的值最大;探究1:AC 中点D ,连结OD 、BD ,当O 、D 、B 三点共线时,OB 的值最大;探究2:如右图2,取AC 中点D ,连结OD 、BD ,当O D 、B 三点共线时,OB 2;探究3:“△ABC 绕点C 旋转”等价于“CD 绕点C 旋转”,如下图1,连结CP ,当PD=PC+CD 时, PD 最大,当PD =︱PC-CD ︱时,PD 最小. 如图2,当P 与B 重合,PD 取最大值为2,如 图3,当CP ⊥AB 时,PD 2. 图1图2图3PD CBAPDCBAP ()ABCD【点评】动线段最值的求法一般可总结为两种方法(仅供参考):(1)将动线段作为一个三角形的一边,且另两边为定值,但是形状可变化,如下左图,“外共线”值最大,“内共线”值最小(已知AB 、BP 为定值,求动线段AP 的最大或最小值);(2)如下右图,垂线段最短,端点处最大(已知点P 是线段BC 上的动点,求线段AP 的最大或最小值).P 2(P 1)CB AP模块二 全等三角形PDC B A图1图27【例3】 △ABC 与△CDE 均为等边三角形,点C 为公共顶点,连结AD 、BE 相交于点P ,BE 交AC于点M ,AD 交CE 于点N ,(1)如图1,当点B 、C 、D 在同一直线上,请证明以下结论:① AD =BE ;② 连结PC ,则PC 平分∠BPD ; ③ 60APB ∠=︒;④ 连结MN ,则△MCN 为等边三角形; ⑤ PB=P A+PC ,PD=PE+PC(⑥ 连结AE ,点P 为△ACE 的费马点. 学生版上没有) (2)如图2,当△CDE 绕点C 旋转任意角度时,(1)中的5个结论仍成立吗?图1图2ABCDNPMENMPEDCBA【解析】(1)由ACD BCE △≌△可得①;过点C 分别作AD 、BE 边上的高,由“全等三角形面积相等”或者通过证明“全等三角形对应边上的高相等”可得两高相等,证得②;由“八”字模型倒角证得③;由BMC ACN △≌△或者CND CME △≌△得CN=CM ,证得④;由120APC EPC ∠=∠=︒,在四边形ABCP 和EDCP 中利用旋转可证得⑤;由⑤中的结论可知PA+PC+PE=BE ,120APC EPC APE ∠=∠=∠=︒,点P 到△ACE 的三个顶点的距离和最小,即可证得⑥. (2)结论①②③⑤⑥均成立.【例4】 在△ABC 中,AB =AC ,∠BAC =α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD .图1图2A BCDEDCBA(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);(2)如图2,∠BCE =150°,∠ABE =60°,判断△ABE 的形状并加以证明;能力提升夯实基础8图3图2图12n-1B 2C 2A CB 1C 1C 1B 1C B A(3)在(2)的条件下,连结DE ,若∠DEC =45°,求α的值. (2013北京中考)【解析】(1)1302α︒-;(2)ABE △为等边三角形,连接AD 、CD 、EB∵线段BC 绕点B 逆时针旋转60︒得到线段BD 则BC BD =,60DBC ∠=︒ 又∵60ABE ∠=︒∴160302ABD DBE EBC α∠=︒-∠=∠=︒-且BCD △为等边三角形.在ABD △与ACD △中AB ACAD AD BD CD=⎧⎪=⎨⎪=⎩∴ABD △≌ACD △(SSS ) ∴1122BAD CAD BAC α∠=∠=∠=∵150BCE ∠=︒ ∴11180(30)15022BEC αα∠=︒-︒--︒=在ABD △与EBC △中BEC BAD EBC ABD BC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABD △≌EBC △(AAS )∴AB BE = ∴ABE △为等边三角形 (3)∵60BCD ∠=︒,150BCE ∠=︒∴1506090DCE ∠=︒-︒=︒又∵45DEC ∠=︒ ∴DCE △为等腰直角三角形 ∴DC CE BC == ∵150BCE ∠=︒∴(180150)152EBC ︒-︒∠==︒ 而130152EBC α∠=︒-=︒ ∴30α=︒【点评】第(2)问考察的是一类由旋转形成的全等模型,如图,若BAC DAE ∠=∠ ①ABC △为等腰三角形(AB=AC ); ②ADE △为等腰三角形(AD=AE );③ABD ACE △≌△以上三个命题有二推一,通常两个三角形为等边三角形. 此题欲证ABE △为等边三角形,已知DBC △为等边三角形,则需证ABD △≌EBC △即可.【例5】 (1)已知在△ABC 中,BC=a .如图1,点B 1 、C 1分别是AB 、AC 的中点,则线段B 1C 1的长是_______;如图2,点B 1 、B 2 ,C 1 、C 2分别是AB 、AC 的三等分点,则线段B 1C 1 + B 2C 2的值是__________;如图3, 点12......、、、nB B B ,夯实基础模块三 相似三角形BABCDE912......、、、n C C C 分别是AB 、AC 的(n +1)等分点,则线段B 1C 1 + B 2C 2+……+ B n C n 的值是 ______.(2)如图,在矩形ABCD 中, AB =4,BC =6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角 三角板的另一直角边PN 与CD 相交于点Q .BP =x ,CQ=y ,那么y 与x 之间的函数图象大致是( )【解析】(1)1,2a a ,12na 提示:由“A”字相似模型来求B n C n 的长; (2)D 提示:“三垂”相似模型;【例6】 如图1,在等腰直角△ABC 中,∠BAC =90°,AB =AC =2,点E 是BC 边上一点,∠DEF =45°且角的两边分别与边AB ,射线CA 交于点P ,Q .(1)如图2,若点E 为BC 中点,将∠DEF 绕着点E 逆时针旋转,DE 与边AB 交于点P ,EF 与CA的延长线交于点Q .设BP 为x ,CQ 为y ,试求y 与x 的函数关系式,并写出自变量x 的取值范围; (2)如图3,点E 在边BC 上沿B 到C 的方向运动(不与B ,C 重合),且DE 始终经过点A ,EF 与边AC 交于Q 点.探究:在∠DEF 运动过程中,△AEQ 能否构成等腰三角形,若能,求出BE 的长;若不能,请说明理由.(2012东城期末)能力提升10【解析】(1)∵ ∠BAC =90°,AB =AC =2, ∴ ∠B =∠C,BC =又∵FEB FED DEB EQC C ∠=∠+∠=∠+∠,DEF C ∠=∠, ∴ ∠DEB =∠EQC . ∴ △BPE ∽△CEQ . ∴BP CEBE CQ=. 设BP 为x ,CQ 为y , ∴y =. ∴ 2y x =自变量x 的取值范围是0<x <1. (2)解:∵ ∠AEF =∠B =∠C ,且∠AQE >∠C ,∴ ∠AQE >∠AEF . ∴ AE ≠AQ .当AE =EQ 时,可证△ABE ≌ECQ . ∴ CE =AB =2 . ∴ BE =BC -EC=2. 当AQ =EQ 时,可知∠QAE =∠QEA =45°.∴ AE ⊥BC . ∴ 点E 是BC 的中点. ∴ BE. 综上,在∠DEF 运动过程中,△AEQ 能成等腰三角形,此时BE长为2.【思维拓展训练】提高班训练1. 如图,直角三角形纸片ABC 中,∠ACB =90°,AC=8,BC =6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E . (1)DE 的长为 ;(2)将折叠后的图形沿直线AE 剪开,原纸片被剪成三块, 其中最小一块的面积等于 . 【解析】4,4训练2. ⑴如图1,已知矩形ABCD 中,点E 是BC 上的一动点,过点E 作EF ⊥BD 于点F ,EG ⊥AC 于 点G ,CH ⊥BD 于点H ,试证明CH =EF +EG ;图3GEFL ABC DABCD EFGH图2图1H GFE DCBA⑵ 若点E 在BC 的延长线上,如图2,过点E 作EF ⊥BD 于点F ,EG ⊥AC 的延长线于点G ,CH ⊥BD 于点H , 则EF 、EG 、CH 三者之间具有怎样的数量关系,直接写出你的猜想;⑶ 如图3,BD 是正方形ABCD 的对角线,L 在BD 上,且BL =BC , 连接CL ,点E 是CL 上任一点, EF ⊥BD 于点F ,EG ⊥BC 于点G ,猜想EF 、EG 、BD 之间具有怎样的数量关系,直接写出你的猜想;⑷ 观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF 、EG 、CH 这样的线段,并满足⑴或⑵的结论,写出相关题设的条件和结论. (2010房山二模) 【解析】(1)设对角线交点为O ,连结OE ,用面积法证明;(2)CH=EF-EG ;(3)连结AC 交BD 于点O ,由(1)的结论可知CO=EF+EG ,于是12BD EF EG =+;(4)只要有等腰三角形就行,例如可以在等腰梯形中构造. 训练3. 如图1,四边形ABCD 是正方形,点G 是BC 上任意一点,DE AG ⊥于点E ,BF AG ⊥于点F .⑴ 求证:DE BF EF -=.⑵ 当点G 为BC 边中点时,试探究线段EF 与GF 之间的数量关系,并说明理由. ⑶ 若点G 为CB 延长线上一点,其余条件不变.请你在图2中画出图形,写出此时DE 、BF 、EF 之间的数量关系(不需要证明).图2图1ABCDG G FEDCB A【解析】(1)由AED BFA △≌△可得;(2)EF =2GF ,易证AFB BFG ABG △∽△∽△,于是2AB AF BFBG BF FG===,所以AF =2BF , BF =2FG ,所以EF =2FG ; (3)DE+BF=EF .模块一 特殊三角形 课后演练【演练1】 ⑴如图,等腰ABC △中,AB AC =,20A =︒∠,线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则CBE ∠等于( ) A .80° B . 70° C .60° D .50°⑵ 在等腰ABC △中,AB AC =,中线BD 将这个三角形的周长分别为15和 12两个部分,则这个等腰三角形的底边长为______________.⑶ 如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =,AE 与CD 交于点F ,AG CD ⊥于点G ,则AGAF = . 【解析】(1)C ; (2)7或11;(3【演练2】 如图,P 为边长为2的正三角形中任意一点,连接P A 、PB 、P C ,过P 点分别做三边的垂线,垂足分别为D 、E 、F ,则PD+PE+PF= ;阴影部分的面积为__________.实战演练图1EDCB AG FEDCBA模块二 全等三角形 课后演练【演练3】 在ABC △中,AB AC =,CG BA ⊥交BA 的延长线于点G .一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直 角顶点为F ,一条直角边与AC 边在一条直线上,另一条直角边 恰好经过点B .⑴ 在图1中请你通过观察、测量BF 与CG 的长度,猜想并写 出BF 与CG 满足的数量关系,然后证明你的猜想;⑵ 当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍 与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE BA ⊥于点E .此时请你通过观察、测量DE 、DF 与CG 的 长度,猜想并写出DE DF +与CG 之间满足的数量关系,然后 证明你的猜想;⑶当三角尺在⑵的基础上沿AC 方向继续平移到图3所示位置 (点F 在线段AC 上,且点F 与点C 不重合)时,⑵中的猜想是 否仍然成立?(不用说明理由) 【解析】⑴ BF CG =;在ABF ∆和ACG ∆中,∵90F G FAB GAC AB AC ∠=∠=︒∠=∠=,,, ∴(AAS)ABF ACG ∆∆≌, ∴BF CG =. ⑵ DE DF CG +=;过点D 作DH CG ⊥于点H (如图4). ∵DE BA ⊥于点E ,90G DH CG ∠=︒⊥,,∴四边形EDHG 为矩形,∴DE HG DH BG =,∥,∴GBC HDC ∠=∠, ∵AB AC =,∴FCD GBC HDC ∠=∠=∠,又∵90F DHC CD DC ∠=∠=︒=,, ∴(AAS)FDC HCD ∆∆≌,∴DF CH =.∴GH CH DE DF CG +=+=,即DE DF CG +=. ⑶ 仍然成立.(注:本题还可以利用面积或三角函数来证明,比如⑵中连结AD )【演练4】 图中是一副三角板,45︒的三角板Rt DEF △的直角顶点D 恰好在30︒的三角板Rt ABC △斜边AB 的中点处,304590A E EDF ACB ∠=︒∠=︒∠=∠=︒,,,DE 交AC 于点G ,GM AB ⊥ 于M .⑴ 如图1,当DF 经过点C 时,作CN AB ⊥于N ,求证:AM DN =.⑵ 如图2,当DF AC ∥时,DF 交BC 于H ,作HN AB ⊥于N ,⑴的结论仍然成立,请 你说明理由.图2图1EHABCFGMN NMGF ECBAE 3E 2E 1D 4D 3D 2D 1CBA 【解析】⑴ ∵3090A ACB ∠=︒∠=︒,,D 是AB 的中点,∴BC BD =,60B ∠=︒∴△BCD 是等边三角形.又∵CN DB ⊥,∴12DN DB =,∵90EDF ∠=︒,BCD ∆是等边三角形.∴30ADG ∠=︒,而30A ∠=︒,∴GA GD =.∵GM AB ⊥,∴12AM AD =又∵AD DB =,∴AM DN =.⑵ ∵DF AC ∥,∴30BDF A ∠=∠=︒,90AGD GDH ∠=∠=︒,∴60ADG ∠=︒.∵60B ∠=︒,AD DB =,∴ADG DBH ∆∆≌,∴AG DH =,又∵BDF A ∠=∠,GM AB ⊥,HN AB ⊥, ∴AMG DNH ∆∆≌.∴AM DN =.模块三 相似三角形 课后演练【演练5】 如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于1E ,连接1BE 交1CD 于2D ;过2D 作22D E AC ⊥ 于2E ,连接2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…, 如此继续,可以依次得到点45n D D D ,,…,,分别记11BD E △, 22BD E △,33BD E △,…,n n BD E △的面积为123S S S ,,,…n S . 则n S =_________ABC S △(用含n 的代数式表示).【解析】()211n +第十八种品格:坚持品格教育—坚持有些人,做事是怕别人说失败,为不失败而坚持。

相关文档
最新文档