初三数学暑假衔接班讲义(好)
暑假初二升初三数学衔接班精品教材(完整)【范本模板】

第一讲 一元二次方程的解法(一)【基础知识精讲】1.一元二次方程的定义:只含有一个未知数整式方程,并且都可以化为ax 2+bx+c=0 (a 、b 、c 为常数,a≠0)的形式,这样的方程叫做一元二次方程.注意: 满足是一元二次方程的条件有:(1)必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.(三个条件缺一不可)2.一元二次方程的一般形式:一元二次方程的一般式是ax 2+bx+c=0 (a 、b 、c 为常数,a≠0)。
其中ax 2是二次项, a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
3.一元二次方程的解法:⑴ 直接开平方法:如果方程 (x+m )2= n (n≥0),那么就可以用两边开平方来求出方程的解. (2) 配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax 2+bx+c=0 (a ≠0)的一般步骤是: ① 化二次项系数为1,即方程两边同除以二次项系数;② 移项,即使方程的左边为二次项和一次项,右边为常数项; ③ 配方,即方程两边都加上一次项系数的绝对值一半的平方; ④ 化原方程为(x+m)2=n 的形式;⑤ 如果n≥0就可以用两边开平方来求出方程的解;如果n <0,则原方程无解.注意:①方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去(x +4).②解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.【例题巧解点拨】(一)一元二次方程的定义:例1:1、方程①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是 。
A. ①和②;B.②和③ ;C. ③和④;D. ①和③2、要使方程(a-3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则__________。
初三数学暑期标准课讲义(教师版)

目录入门检测:1.一次函数21y x =-的图象与x 轴的交点坐标为 ,与y 轴的交点坐标为 .<2分钟>【答案】(1,02),(0,1-)2. 已知一次函数y=kx+b ,y 随着x 的增大而减小,且kb >0,则这个函数的大致图象是( )<2分钟>A .B .C .D .【答案】B3. 将正比例函数y=3x 的图象向下平移4个单位长度后,所得函数图象的解析式为( ). <2分钟>A .34y x =+B .34y x =-C .3(4)y x =+D . 3(4)y x =-【答案】B4. 如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,-2). (1)求直线AB 的解析式;(2)若点C 是第一象限内的直线上的一个点,且△BOC 的面积为2,求点C 的坐标. <5分钟>【答案】解:(1)设直线AB 的解析式为)0(≠+=k b kx y , ∵直线AB 经过点A (1,0),点B (0,-2),∴0,2,k b b +=⎧⎨=-⎩解得2,2.k b =⎧⎨=-⎩∴直线AB 的解析式为22-=x y .(2) ∵△BOC 的面积为2,过点C 作CD ⊥y 轴于点D ,∴CD=2.又∵点C 在第一象限内,∴点C 的横坐标是2. 代入22-=x y ,得到点C 的纵坐标是2. ∴点C 的坐标是(2,2).5. 已知等腰三角形周长为12,其底边长为y ,腰长为x. (1)写出y 关于x 的函数解析式及自变量x 的取值范围;(2)在给出的平面直角坐标系中,画出(1)中函数的图象. <5分钟>【答案】解:(1)依题意212y x +=,212y x ∴=-+.x ,y 是三角形的边,故有002x y x y >⎧⎪>⎨⎪>⎩,将212y x =-+代入,解不等式组得36x <<.(2)-2 -1 -7-6 -5-4-3 -3 -4 -5 -6 -7 12 3 4 5 6 7-1 -2 76 5 4 3 2 1 o yx-2-1-7-6-5-4-3-3-4-5-6-71234567-1-27654321oyx第一讲 二次函数的概念与解析式1.1二次函数的定义及图像 二次函数的定义一般地,形如2(,,0)y axbx c a b c a =++≠是常数,的函数,叫做二次函数,其中,x 是自变量,,,a b c 分别是二次项系数、一次项系数、常数项.【例1】已知函数y=(m+2)x 2m m+是关于x 的二次函数,则满足条件的m 值为______.【答案】m=1【练习1.1】若y=(m -3)232m m x -+是二次函数,求m 的值.【答案】m=0【例2】若y=(k -3)22k x -+x 2-x+1是二次函数,求常数k 的值.【答案】分情况讨论:当k -3=0,即k=3时,y=x 2-x+1是二次函数;当k 2-2=2且k -3+1≠0,即k=-2时,y=-4x 2-x+1是二次函数;当k 2-2=1时,即k=±3时,y=x 2+(3-4)x+1,或y=x 2-(3+4)x+1均是二次函数,还有k 2-2=0时综合上知k=3或-2或±3或±2【练习2.1】若y=(k -2)22k x -+4x 2-x+1是二次函数,求常数k 的值.【答案】21.2 二次函数的性质 与a 有关的性质一函数形式:2(0)y ax a =≠开口:0a >,开口向上;0a <,开口向下.a 相同⇔抛物线的形状大小相同.a越大开口越小,a越小开口越大.对称轴:y 轴(0x =)顶点:原点(0,0)【例3】二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)y =2x 2如图( ) ; (2)221x y =如图( ); (3)y =-x 2如图( ); (4)231x y -=如图( );(5)291x y =如图( );(6)291x y -=如图( ).【答案】(1)D ,(2)C ,(3)A ,(4)B ,(5)F ,(6)E .【练习3.1】若函数y =226a a ax --是二次函数且图象开口向上,则a =( ) A .-2 B .4 C .4或-2 D .4或3【答案】B⏹ 与a 有关的性质二【例4】已知a<-1,点(a -1,y 1),(a ,y 2),(a+1,y 3)都在函数y=x 2的图象上,则() A .y 1<y 2<y 3 B .y 1<y 3<y 2 C .y 3<y 2<y 1 D .y 2<y 1<y 3【答案】C【练习4.1】若二次函数223y x =-的图象上有两个点(3,)A m -、(2,)B n ,则m ___n (填“<”或“=”或“>”)【答案】>⏹ 与a 、b 有关的性质对称轴在y 轴左侧,,a b 同号;对称轴在y 轴右侧,,a b 异号.(左同右异) 对称轴在y 轴上,b=0.【例5】判断下列二次函数的对称轴的位置 (1)y =x 2+6x +10 (2)y =3x 2-2x (3)y =100-5x 2 (4)y =(x -2)(2x +1)(5)y =ax 2-6bx +10(a<0,b<0)【答案】左,右,0,右,右【练习5.1】已知二次函数2y ax bx c =++ (a ≠0)的图象如右图所示,则下列结论:①a 、b 同号;②当x =1和x =3时,函数值相等;③4a +b =0;④当y =-2时,x 的值只能取0.其中正确的个数是()A .l 个B .2个C .3个D .4个【答案】B与c 有关的性质抛物线与y 轴正半轴相交,0c >;负半轴相交,0c <.抛物线经过原点,c=0【例6】判断下列二次函数与y 轴的交点的位置 (1)y =2x 2+3x +10 (2)y =-3x 2-2x -3 (3)y =100x -5x 2(4)y =(x -3)(2x +1) (5)y =x 2-6x +a 2+2a+3【答案】正,负,原点,负,正.【练习6.2】已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①abc>0;②a+b+c>0;③a-b+c<0;其中正确的结论有( )A .0个B .1个C .2个D .3个【答案】C1.3二次函数的解析式的求法一般式【例7】已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式.【答案】解:设抛物线解析式为:由题意知:⎩⎨⎧=--=+15b c b c解得:⎩⎨⎧-=-=32b c∴抛物线解析式为232--=x x y【练习7.1】已知:如图,二次函数22y axbx =+-的图象经过A 、B 两点,求出这个二次函数解析式.【答案】解:(1)由图可知A (-1,-1),B (1,1) 依题意,得21,21a b a b --=-⎧⎨+-=⎩解得2,1.a b =⎧⎨=⎩∴ y =2x 2+x -2.顶点式【例8】以直线1x =为对称轴的抛物线过点A (3,0)和点B(0,3),求此抛物线的解析式.【答案】解:设抛物线的解析式为2(1)y a x b =-+, 抛物线过点A (3,0)和B(0,3). ∴40,3.a b a b +=⎧⎨+=⎩解得1,4.a b =-⎧⎨=⎩∴抛物线的解析式为223y x x =-++.【练习8.1】已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式.【答案】解:设这个二次函数的关系式为2)1(2--=x ay得:2)10(02--=a 解得:2=a∴这个二次函数的关系式是2)1(22--=x y , 即224.y x x =-双根式【例9】已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C(0,3). (1)求此抛物线的函数表达式; (2)如果点3,2D m ⎛⎫⎪⎝⎭是抛物线上的一点,求△ABD 的面积.【答案】解:(1) ∵抛物线与y 轴相交于点C(0,3),∴设抛物线的解析式为23y ax bx =++. ∵抛物线与x 轴相交于两点(1,0),(3,0)A B -, ∴30,9330.a b a b ++=⎧⎨-+=⎩解得:1,2.a b =-⎧⎨=-⎩ ∴抛物线的函数表达式为:232y x x =-+-. (2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m =-⨯+=--. ∴119942242ABD D S AB y ∆==⨯⨯=.【练习9.1】已知抛物线过点A (2,0),B (-1,0),与y 轴交于点C ,且OC =2.则这条抛物线的解析式是( )A.22y x x =--B.22y x x =-++C.22y x x =--或22y x x =-++D.22y x x =---或22y x x =++【答案】C1.4二次函数与图形变换 ⏹ 平移【例10】将函数234y x x =+-向左平移3个单位,向下平移2个单位后的解析式为.【答案】276y x x =++【练习10.1】将抛物线25y x =先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是( ) A .25(2)3y x =++B .25(2)3y x =-+C .25(2)3y x =--D .25(2)3y x =+-【答案】A【练习10.2】把抛物线y =-x 2+4x -3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是( ) A .y =-(x +3)2-2 B .y =-(x +1)2-1 C .y =-x 2+x -5D .前三个答案都不正确【答案】B⏹ 对称【例11】抛物线234y x x =+-关于x 轴对称的图像解析式为,关于y 轴对称的图像解析式为,关于原点对称的图像解析式为.【答案】234y x x =--+;234y x x =--;234y x x =-++【练习11.1】某抛物线先沿x 轴翻折,再沿y 轴翻折得到新的解析式为223y x x =+,则原抛物线解析式为.【答案】223y x x =-+ 旋转【例12】填空(1)将抛物线21y x =+绕原点O 旋转180°,则旋转后抛物线的解析式为. (2)将抛物线223y x x =++绕点(1,1)旋转180°,则旋转后的抛物线解析式为.【答案】(1)21y x =--(2)269y x x =-+-【练习12.1】将抛物线 224=+y x 绕原点O 旋转180°,则旋转后的抛物线的解析式为( )A . 22=-y xB . 224=-+y xC . 224=--y xD . 224=-y x【答案】C课后作业:1. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ) A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+【答案】C2.二次函数2y ax bx c =++的图象如图所示,则下列结论中错误..的是( ) A .函数有最小值 B .当-1 <x < 2时,0y > C .0a b c ++< D .当12x <,y 随x 的增大而减小【答案】B3.已知抛物线y =x 2-4x +5,求出它的对称轴和顶点坐标.【答案】解:y =x 2-4x +5 = x 2-4x +4+1 =(x -2)2+1.∴抛物线的对称轴为x =2.顶点坐标为(2,1).4. 抛物线22y x =平移后经过点(0,3)A ,(2,3)B ,求平移后的抛物线的表达式.【答案】解:设平移后抛物线的表达式为22y x bx c =++.∵平移后的抛物线经过点(0,3)A ,(2,3)B ,∴3,382.c b c =⎧⎨=++⎩解得4,3.b c =-⎧⎨=⎩所以平移后抛物线的表达式为2243y x x =-+.解二:∵平移后的抛物线经过点(0,3)A ,(2,3)B , ∴平移后的抛物线的对称轴为直线1x =. ∴设平移后抛物线的表达式为()221y x k=-+.∴()23221k=⨯-+.∴1k =.所以平移后抛物线的表达式为()2211y x =-+.5.已知:二次函数2y ax bx c =++(0)a ≠中的x y ,满足下表:(1)的值为 ; (2)若1()A p y ,,2(1)B p y +,两点都在该函数的图象上,且0p <,试比较1y 与2y的大小.【答案】解:(1)m = 0 . (2)0p <,11p p ∴<+<,又因为抛物开口向上,对称轴为1x =, ∴12y y >.6.已知直线y=mx+n 经过抛物线y=ax2+bx+c 的顶点P(1,7),与抛物线的另一个交点为M (0,6),求直线和抛物线的解析式【答案】解:(1)∵ 直线y mx n =+经过点P (1,7)、M (0,6),∴7,6.m n n +=⎧⎨=⎩解得 1,6.m n =⎧⎨=⎩∴ 直线的解析式为6y x =+. ∵ 抛物线2y ax bx c=++的顶点为P (1,7),∴ 2(1)7y a x =-+.∵ 抛物线经过点M (0,6), ∴2(01)76a -+=.解得1a =-.∴ 抛物线的解析式为226y x x =-++.7.抛物线2y x bx c =++(b ,c 均为常数)与x 轴交于(1,0),A B 两点,与y 轴交于点(0,3)C ..(1)求该抛物线对应的函数表达式;(2)若P 是抛物线上一点,且点P 到抛物线的对称轴的距离为3,请直接写出点P 的坐标.【答案】解:(1) ∵抛物线2y x bx c =++与y 轴交于点(0,3)C , ∴c=3 .∴23y x bx =++.又∵抛物线2y x bx c =++与x 轴交于点(1,0)A , ∴b=-4 .∴243y x x =-+. (2)点P 的坐标为(5,8)或(1,8)-.入门检测:1. 下列各式中,y 是x 的二次函数的个数为( )①y =2x 2+2x +5;②y =-5+8x -x 2;③y =(3x +2)(4x -3)-12x 2;④y =ax 2+bx +c ;⑤y =mx 2+x ;⑥y =bx 2+1(b 为常数,b ≠0).<1分钟>A .3B .4C .5D .6【答案】A2. 已知二次函数,2c bx ax y ++=且0,0>+-<c b a a ,则一定有()<2分钟> A .042>-ac b B .042=-ac b C .042<-ac b D .042≤-ac b【答案】A3.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象为( ) <2分钟>【答案】B4. 抛物线2y x bx c =++图象向右平移2个单位再向下平移3个单位,所得图象的解析式为223y x x =--,则b 、c 的值为()<2分钟> A .b =2,c =2 B.b =2,c =0 C .b =-2,c =-1 D.b =-3,c =2 【答案】B5.将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是().<2分钟> A .221216y x x =--+ B .221216y x x =-+- C .221219y x x =-+- D .221220y x x =-+-【答案】D6.抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表:x… 2-1-0 1 2 … y…4664…从上表可知,下列说法正确的个数是()<4分钟>①抛物线与x 轴的一个交点为(20)-,②抛物线与y 轴的交点为(06), ③抛物线的对称轴是:1x = ④在对称轴左侧y 随x 增大而增大 A .1 B .2 C .3 D .4 【答案】C7.若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为()<1分钟> A .0,5 B .0,1 C .—4,5 D .—4,1 【答案】D8.由二次函数y =-x 2+2x 可知()<2分钟>A .其图象的开口向上B .其图象的对称轴为x =1C .其最大值为-1D .其图象的顶点坐标为(-1,1) 【答案】B。
初三上学期数学全册教案(暑假补习班)

1
1
;
x 1 2
(1)x +1=0;
(2) x 2
(4) x3 x 2 x 1 0 ;
(5) 2 x(3 x 5) 6 x 4 ;
2
2
(3) x y 1 0 ;
2
(6)(x-2)(x-3)=5.
2
6.下列哪些数是方程 x 6 x 8 0 的根?答案:
________。
如果非零实数 a 、b 、 c 中满足c = o,则关于 x 的一元二次方程 ax 2 bx c 0 必有一根________。
六、课堂小结
1、判断一个方程是否是一元二次方程的关键是什么?
2、要确定一元二次的项及系数,首先要把方程化成一元二次方程的一般形式是什么?;
七、巩固复习
2
2
10、已知 3 2 2 是关于 x 的方程 x 6 x m 的一个根,则 m ________。
11、根据题意,列出方程:
2
(1)剪出一张面积是 240 cm 的长方形彩纸,使它的长比宽多 8 cm ,这张彩纸的长是多少?
(2)某厂经过两年时间将某种产品的产量从每年 14400 台提高到 16900 台,平均每年增长的百分率是多
一、选择题
1. 若 px 3x p p 0 是关于 x 的一元二次方程,则(
2
2
)
A.p≠1
B.p≠0 且 p≠1
C.p≠0
D.p≠0 且 p≠1
2
2.已知 x=﹣1 是关于 x 的方程 x ﹣x+m=0 的一个根,则 m 的值为(
)
A.﹣2
B.﹣1
C.0
暑假八年级升九年级数学衔接班第一讲一元二次方程的解法(教案)

然而,我也发现了一些问题。在讲解重点难点时,可能由于时间安排不够合理,导致部分学生对因式分解法和求根公式的掌握不够熟练。为此,我计划在接下来的课程中,针对这些重点难点进行更加深入的讲解和练习,确保学生们能够扎实掌握。
举例:在解决行程问题时,学生需要根据问题情境,正确列出速度、时间和路程之间的关系式。
在教学过程中,教师应针对以上重点和难点进行详细讲解和示范,通过典型例题和练习题,帮助学生巩固知识,突破难点,确保学生能够熟练掌握一元二次方程的解法及其应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一元二次方程的解法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的问题?”(如分配问题、面积问题等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元二次方程的解法。
举例:行程问题、面积问题等。
2.教学难点
(1)因式分解法的应用:学生需要熟练掌握各种因式分解方法,如提公因式法、平方差公式、完全平方公式等,并能灵活运用。
举例:求解方程x²+5x+6=0,需要运用平方差公式或完全平方公式进行因式分解。
(2)求根公式的理解和应用:学生需要理解求根公式的推导过程,并能够熟练运用求根公式解决一元二次方程问题。
2.分析与解决问题能力:培养学生将一元二次方程应用于解决实际问题的能力,提高学生分析问题和解决问题的素养。
沪教版 九年级数学 暑假同步讲义 第2讲 三角形边的平行线(一)(提高版)

三角形一边的平行线是九年级数学上学期第一章第二节的内容,本讲主要讲解三角形一边平行线性质定理及推论,重点是掌握该定理及其推论,分清该定理及其推论之间的区别和联系,难点是理解该定理和推论的推导过程中所蕴含的分类讨论思想和转化思想,并认识“A”字型和“X ”字形这两个基本图形,为后面学习相似三角形奠定基础.1、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.如图,已知ABC∆,直线l // BC,且与AB 、AC 所在直线交于点D和点E,那么AD AEDB EC=.三角形一边的平行线(一)内容分析知识结构模块一:三角形一边的平行线性质定理知识精讲lAB CD EAB CD E AB CDEll2 / 11ABCDEF AB CD EFO ABCE D ABC【例1】 如图,在ABC ∆中,10AB =,8AC =,点D 在直线AB 上,过点D 作DE // BC交直线AC 与点E .如果4BD =,求AE 的长.【例2】 如图,在ABC ∆中,AB AC >,AD BC ⊥于点D ,点F 是BC 中点,过点F 作BC 的垂线交AB 于点E ,:3:2BD DC =,则:BE EA =.【例3】 如图,已知AB // CD // EF ,14OA =,16AC =,8CE =,12BD =,求OB 、DF 的长.【例4】 如图,已知ABC ∆是边长为2的等边三角形,DE // BC ,:3:4ECD BCD S S ∆∆=,求EC 的长.例题解析ACBDENM ABCD E FGA BCD EF【例5】 如图,P 为平行四边形ABCD 对角线BD 上任意一点.求证:PQ PI PR PS =.【例6】 如图,在平行四边形ABCD 中,CD 的延长线上有一点E ,BE 交AC 于点F ,交AD 于点G . 求证:2BF FG EF =.【例7】 如图,点C 在线段AB 上,AMC ∆和CBN ∆都是等边三角形.求证:(1)MD AM DC CN=; (2)MD EB ME DC =.【例8】 如图,ABC ∆的面积是10,点D 、E 、F (与A 、B 、C 是不同的点)分别位于AB 、BC 、CA 各边上,而且2AD =,3DB =,如果ABE ∆的面积和四边形DBEF 的面积相等,求ABE ∆的面积.PQR SABCD I4 / 11ABC DP【例9】 如图,在ABC ∆中,6BC =,42AC =,45C ∠=︒,在BC 边上有一动点P ,过P 作PC // AB 与AC 相交于于点D ,联结AP ,设BP x =,APD ∆的面积为y . (1)求y 与x 之间的函数关系式,并指出自变量x 的取值范围; (2)P 点是否存在这样的位置,使APD ∆的面积是APB ∆的面积的23?若存在,求出BP 的长;若不存在,请说明理由.1、 三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.如图,点D 、E 分别在ABC ∆的边AB 、AC 上,DE // BC ,那么DE AD AEBC AB AC ==. 2、 三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍.模块二:三角形一边的平行线性质定理推论知识精讲例题解析ABCD EBAC ABC DE FADCBEFa Nb Qxc PM xNa Qcb P M cNx Qa b P M c NbQa x PM 【例10】 如图,一根直立于水平地面的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针反向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影子为AC (假定AC AB >),影子的最大值为m ,最小值为n ,有下列结论:○1m AC >; ○2m AC =;○3n AB =;○4影子的长度先增大后减小;其中正确的序号是______.【例11】 已知:MN // PQ ,a b ≠,c x ≠,则满足关系式bcx a=的图形是( )A .B .C .D .【例12】 如图,ABC ∆中,DE // BC ,3AE =,4DE =,2DF =,5CF =,求EC 的长.【例13】 如图,在平行四边形ABCD 中,点E 在边DC 上,若:1:2DE EC =,则:BF BE =.6 / 11ABCGH ABCDE FABC DEFGABCDE FG【例14】 如图,在ABC ∆中,6BC =,G 是ABC ∆的重心,过G 作边BC 的平行线交AC于点H ,求GH 的长.【例15】 如图,已知AB // CD // EF .AB m =,CD n =,求EF 的长(用m 、n 的代数式表示).【例16】 如图,E 为平行四边形ABCD 的对角线AC 上一点,13AE EC =,BE 的延长线交CD 的延长线于点G ,交AD 于点F ,求:BF FG 的值.【例17】 如图,1l //2l ,:2:5AF FB =,:4:1BC CD =,求:AE EC 的值.A DB CEFAB CD EGOA BCDE【例18】 如图,在梯形ABCD 中,AD // BC ,对角线AC 、BD 交于点O ,点E 在AB 上,且EO // BC ,已知3AD =,6BC =.求EO 的长.【例19】 如图,在梯形ABCD 中,AD // BC ,3AD =,5BC =,E 、F 是两腰上的点,且EF // AD ,:1:2AE EB =,求EF 的长.【例20】 如图,在ABC ∆中,D 是BC 边上的一点,:3:1BD DC =,G 为AD 的中点,联结BG 并延长AC 交于E ,求:EG GB 的值.【例21】 已知点D 是ABC ∆的BC 边上的一点,13CD BC =,E 是AD 的中点,BE 的延长线交AC 于F ,求:AF AC 的值.8 / 11A B CDEF AB CDEFA DB CEF GABCD 【例22】 如图,路灯A 的高度为7米,在距离路灯正下方B 点20米处有一墙壁CD ,CD BD ⊥,如果身高为1.6米的学生EF 站立在线段BD 上(EF BD ⊥,垂足为F ,EF CD <),他的影子的总长度为3米,求该学生到路灯正下方B 点的距离FB 的长.【例23】 如图,平行四边形ABCD 中,点E 、F 分别在AB 、AD 上,EF 交AC 于点G ,若:2:3AE EB =,:1:2AF AD =,求:AG AC 的值.【例24】 如图,在ABC ∆中,设D 、E 是AB 、AC 上的两点,且BD CE =,延长DE交BC 的延长线于点F ,:3:5AB AC =,12cm EF =,求DF 的长.【例25】 如图,已知ABC ∆中,点D 、E 分别在边AB 、AC 上,且:3:2AD DB =,:1:2AE EC =,直线ED 和CB 的延长线交于点F ,求:FB FC .ABC D EOABCDEF P【例26】 已知:在ABC ∆中,D 、E 是BC 上的两点,且AD // EG ,EG 交AC 于F ,交BA 的延长线于G ,若2EF EG AD +=. 求证:AD 是ABC ∆的中线.【习题1】如图,P 是ABC ∆的中线AD 上一点,PE // AB ,PF // AC .求证:BE CF =.【习题2】 如图,在ABC ∆中,DE // BC ,且:2:3AD AB =,求:EO EB 的值.【习题3】 在ABC ∆中,AB BC =,如果中线BM 与高AD 相交于点G ,求AGAD.随堂检测10 / 11A BCD EA BC DEFABD C EF G H【习题4】如图ABC ∆,点D 、E 分别在BC 、AC 上,BE 平分ABC ∠,DE // BA .如果24CE =,26AE =,45AB =,求DE 和CD 的长.【习题5】如图,梯形ABCD 中,DC // EF // GH // AB ,30AB cm =,10CD cm =,::2:3:4DE EG GA =,求EF 与GH 的长度.【作业1】 如图,AB // EF // CD ,2AB =,8CD =,:1:5AE EC =,求EF 的长度.【作业2】平行四边形ABCD ,E 是AB 的中点,在直线AD 上截取2AF FD =,EF交AC 于G ,求AGGC的值.课后作业ABCD EFADBCEGOAB CDBFDEAB C【作业3】 如图,AB // EF // DC ,已知20AB =,80CD =,求EF 的长.【作业4】如图,在ABC ∆中,D 是边BC 上一点,DF // AB ,DE // CA .(1)求证:AE CFEB FA =; (2)如果2CF =,5AC =,6AB =,求AE 、DE 的长.【作业5】如图,在平行四边形ABCD 中,E 是AD 上一点,CE 与BD 相交于点O ,CE 与BA 的延长线相交于点G ,已知2DE AE =,10CE =,求GE 和CO 的长.【作业6】 如图,DE // BC ,3ADE S ∆=,18CBD S ∆=,求ABC S ∆.。
2021年暑期初升高数学衔接专题讲义

第1讲 乘法公式【基础知识回顾】 知识点1 平方公式(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a ab b ±=±+.(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; 知识点2 立方公式(1)立方和公式 2233()()a b a ab b a b +-+=+;(2)立方差公式 2233()()a b a ab b a b -++=-; (3)两数和立方公式 33223()33a b a a b ab b +=+++;(4)两数差立方公式 33223()33a b a a b ab b -=-+-.【合作探究】探究一 平方公式的应用 【例1】计算:(1))416)(4(2m m m +-+ (2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++(5)22)312(+-x x归纳总结:【练习1】计算:2(21)x y ++探究二 立方公式的应用【例2】计算:(1)3(1)x + (2)3(23)x -归纳总结:【练习2】用立方和或立方差公式分解下列各多项式:(1) 38x +(2) 30.12527b -探究三 整体代换【例3】已知13x x +=,求:(1)221x x +;(2)331x x +.归纳总结:【练习3-1】已知2310x x +-=,求:(1)221x x +;(2)331x x -.【练习3-2】已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.【课后作业】1.不论a ,b 为何实数,22248a b a b +--+的值 ( )A .总是正数B .总是负数C .可以是零D .可以是正数也可以是负数2.已知22169x y +=, 7x y -=,那么xy 的值为( ) A .120 B .60 C .30 D .153.如果多项式29x mx -+是一个完全平方式,则m 的值是4.如果多项式k x x ++82是一个完全平方式,则k 的值是5.()()22_________a b a b +--=()222__________a b a b +=+-6.已知17x y +=,60xy =,则22x y += 7.填空,使之符合立方和或立方差公式或完全立方公式: (1)3(3)()27x x -=- (2)3(23)()827x x +=+ (3)26(2)()8x x +=+ (4)3(32)()278a a -=-(5)3(2)()x +=; (6)3(23)()x y -=(7)221111()()9432a b a b -=+ (8)2222(2)4(a b c a b c +-=+++ )8.若2210x x +-=,则221x x +=____________;331x x -=____________. 9.已知2310x x -+=,求3313x x ++的值.10.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-…..根据上述规律可得:1(1)(...1)n n x x x x --++++=_________________第2讲 因式分解【基础知识回顾】 知识点1 因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用. 知识点2 因式分解方法因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.知识点3 常用的乘法公式:(1)平方差公式: ; (2)完全平方和公式: ; (3)完全平方差公式: .(4)2()a b c ++=(5)33a b +=(立方和公式) (6)33a b -=(立方差公式)【合作探究】 探究一 公式法【例1】分解因式:(1) 34381a b b - (2) 76a ab -归纳总结:【练习1】把下列各式分解因式: (1) 34xy x +(2) 33n n x x y +-(3) 2232(2)y x x y -+探究二 提取公因式法与分组分解法【例2-1】把22x y ax ay -++分解因式.【例2-2】分解因式:(1)()()255a b a b -+-; (2)32933x x x +++.【例2-3】分解因式: (1)32933x x x +++;(2)222456x xy y x y +--+-.【例2-4】把2222428x xy y z ++-分解因式.【练习2】分解因式(1)27()5()2a b a b +-+-(2)22(67)25x x --探究三 十字相乘法【例3-1】把下列各式因式分解:(1) 276x x -+(2) 21336x x ++ (3) 226x xy y +-归纳总结:【例3-2】把下列各式因式分解:(1) 21252x x --(2) 22568x xy y +-归纳总结:【练习3-1】把下列各式因式分解: (1) 2524x x +-(2) 2215x x -- (3) 222()8()12x x x x +-++探究四 拆、添项法【例4】分解因式3234x x -+归纳总结:【课后作业】1.把下列各式分解因式: (1)327a +(2) 38m -(3)3278x -+(4)3311864p q --(5)3318125x y -(6) 3331121627x y c+2.把下列各式分解因式: (1) 34xy x +(2)33n n x x y +-(3) 2323()a m n a b +-(4) 2232(2)y x x y -+3.把下列各式分解因式: (1) 232x x -+ (2) 23736x x ++(3)21126x x +-(4) 2627x x --(5) 2245m mn n --(6) 2()11()28a b a b -+-+4.把下列各式分解因式: (1) 5431016ax ax ax -+ (2) 2126n n n a a b a b +++- (3)22(2)9x x --(4)42718x x --(5)2673x x --(6) 2282615x xy y +-5.把下列各式分解因式: (1) 233ax ay xy y -+- (2) 328421x x x +-- (3)251526x x xy y -+-(4) 224202536a ab b -+- (5) 22414xy x y +-- (6) 432224a b a b a b ab +--(7)66321x y x --+(8) 2(1)()x x y xy x +-+第3讲 根式与根式的运算【基础知识回顾】知识点1 二次根式的概念0)a ≥的代数式叫做二次根式. 知识点2 二次根式性质(1)2(0)a a =≥(2) ||a =(3)0,0)a b =≥≥(4)0,0)a b =>≥a ==,0,,0.a a a a ≥⎧⎨-<⎩ 【合作探究】探究一 根式的简化【例1-1】将下列式子化为最简二次根式:(1(20)x <.(3) +归纳总结:【练习1-1】 化简下列各式:(10)a ≥;(2)1)x +≥【例1-2】(1(x =-x 的取值范围是 ;(2=成立的条件是( ) A.2x ≠ B.0x > C.2x > D.02x <<归纳总结:【练习1-2】(1)= ;(2)若b =,求a b +的值.探究三有理化因式和分母有理化【例3-1】.【例3-2】化简:20162017⋅.【例3-3】化简:(1;(21)x<<.【例3-4】已知x y==22353x xy y-+的值.归纳总结:【练习3】(1=;(2)若x==.【课后作业】1a =-成立的条件是( )A .0a >B .0a <C .0a ≤D .a 是任意实数2.若3x <|6|x -的值是( )A .-3B .3C .-9D .93.化简(下列a 的取值范围均使根式有意义):(1)(2)a(3)(4)+-4.化简:(1) 102m(2)0)x y >>5.设x y ==,求代数式22x xy y x y +++的值.6.设x =,求4221x x x ++-的值.7.化简或计算:(1) 3+÷(2)+(3)-第4讲 分式运算【基础知识回顾】知识点1 分式的意义与性质形如A B 的式子,若B 中含有字母,且0B ≠,则称AB 为分式.当M ≠0时,分式AB 具有下列性质:A A MB B M ⨯=⨯; A A M B B M ÷=÷.知识点2 繁分式像abc d +,2m n p m n p +++这样,分子或分母中又含有分式的分式叫做繁分式.【合作探究】探究一 解分的化简与求值 【例1-1】代数式1111++x 有意义,则x 需要满足的条件是_________.【例1-2】若54(2)2x A Bx x x x +=+++,求常数,A B 的值.归纳总结:【练习1】化简:2112111x x x x x +--++-探究二 列项相消【例2】(1)试证:111(1)1n n n n=-++(其中n是正整数);(2)计算:111 1223910+++⨯⨯⨯;(3)证明:对任意大于1的正整数n,有1111 2334(1)2n n+++<⨯⨯+.归纳总结:【练习2】(1)证明:1111()(21)(21)22121n n n n=--+-+(其中n是正整数);(2)证明:对任意大于1的正整数n,有1111 1335(21)(21)2n n+++<⨯⨯-+.探究三分式的应用【例3】设cea=,且e>1,2c2-5ac+2a2=0,求e的值.归纳总结:【练习3】设cea=,且e>1,3c2-10ac+3a2=0,求e的值.探究四多项式除以多项式【例4】计算)3()3(2 4xxx-÷-归纳总结:【练习4】计算(1))32()2713103(223-+÷-++xxxxx(2))1()22(232-÷-+xxx【课后作业】1.对任意的正整数n,1(2)n n=+(112n n-+);2.若223x yx y-=+,则xy=()(A)1(B)54(C)45(D)653.正数,x y满足222x y xy-=,求x yx y-+的值.4.计算1111... 12233499100 ++++⨯⨯⨯⨯.5.已知1453,211221923234+--=-+--=xxxBxxxxA,求:22BA÷6.填空:(1)12a=,13b=,则2223352a aba ab b-=+-;(2)若2220x xy y+-=,则22223x xy yx y++=+;7.计算:1111 132435911 ++++⨯⨯⨯⨯.8.试证:对任意的正整数n,有111123234(1)(2)n n n+++⨯⨯⨯⨯++<14.第5讲绝对值和绝对值不等式的解法【基础知识回顾】知识点1 绝对值的代数意义正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩知识点2 绝对值的几何意义一个数的绝对值,是数轴上表示它的点到原点的距离. 知识点3 两个数的差的绝对值的几何意义b a -表示在数轴上,数a 和数b 之间的距离.【合作探究】探究一 绝对值的性质【例1-1】到数轴原点的距离是2的点表示的数是( ) A .±2 B .2 C .-2 D .4【例1-2】已知|x |=5,|y |=2,且xy >0,则x -y 的值等于( )A .7或-7B .7或3C .3或-3D .-7或-3【例1-3】已知:abc ≠0,且M =a b c a b c ++,当a ,b ,c 取不同值时,M 有 ____种不同可能.归纳总结:【练习1】已知a b c,,是非零整数,且0a b c ++=,求a b c abca b c abc+++的值探究二 绝对值的应用【例2】若42a b -=-+,则_______a b +=.归纳总结:【练习2-1】练习1:()2120a b ++-=, a =________;b =__________【练习2-2】若7322102m n p ++-+-=,则23_______p n m +=+.探究三零点分段法去绝对值【例3】化简代数式24 x x++-归纳总结:【练习3】化简代数式122 y x x=-+-探究四绝对值函数【例4-1】画出1y x=-的图像【例4-2】画出122y x x=-+-的图象【例4-3】画出函数223y x x=-++的图像【例4-4】画出函数232y x x=-+的图像归纳总结:探究五解绝对值不等式【例5-1】解不等式1 x<.归纳总结:【练习5-1】解不等式:(1)3x<;(2)3x>(3)2x≤【例5-2】解不等式21 x-<.归纳总结:【练习5-2】解不等式:(1)103x-<;(2)252x->;(3)325x-≤;【例5-3】解不等式组240 5132xx⎧--≤⎪⎨-+>⎪⎩.【练习5-3】解不等式1215x≤-<.【例5-4】解不等式:4321 x x->+归纳总结:【练习5-4】解不等式:431x x -≤+.【例5-5】解不等式:215x x ++-<【练习5-5】解不等式:13x x -+->4.1.35-=________;3π-=________;3.1415π-=_____;2.2215x y -+-=,4x =,则y =__________.3.若a a +=,那么a 一定是( )A .正数B .负数C .非正数D .非负数 4.若x x>,那么x 是________数.5.如图,化简22a b b c a c +------=_____________6.已知2(2)210x y -+-=,则2x y +=_______.7.化简12x x +++,并画出12y x x =+++的图象8.化简523x x ++-. 9.画出23y x =+的图像10.画出223y x x =-++的图像1.已知6a <-,化简6( )A. 6a -B. 6a --C. 6a +D. 6a -2.不等式23x +<的解是 ,不等式1211<-x 的解是______________.3.不等式830x -≤的解是______________.4.根据数轴表示,,a b c 三数的点的位置,化简a b a c b c +++--=___ .5.解不等式329x ≤-<6.解不等式124x x ++-<7.解下列关于x 的不等式:1235x ≤-<8.解不等式3412x x->+9.解不等式:122x x x -+-<+第6讲 一元二次方程根与系数的关系【基础知识回顾】知识点1 一元二次方程的根的判断式ab c一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= (1) 当240b ac ->时,右端是正数,方程有两个不相等的实数根:2b x a -±=(2) 当240b ac -=时,右端是零.因此,方程有两个相等的实数根:1,22bx a =-(3) 当240b ac -<时,右端是负数.因此,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac ∆=- 知识点2 一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:22b b x x a a -+--==所以:1222b b bx x a a a -+--+=+=-,12244ac cx x a a⋅====韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 1212,b c x x x x a a +=-=【合作探究】探究一 ∆与根个数之间的关系【例1】不解方程,判断下列方程的实数根的个数:(1) 22310x x -+=(2)24912y y +=(3)25(3)60x x +-=归纳总结:【练习1-1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围: (1) 方程有两个不相等的实数根; (2) 方程有两个相等的实数根 (3)方程有实数根; (4) 方程无实数根.【练习1-2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.探究二 一元二次方程的根与系数的关系【例2-1】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +; (3)12(5)(5)x x --;(4)12||x x -.归纳总结:【练习2】若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值; (2)求221211x x +的值;(3)x 13+x 23.【例2-2】已知两个数的和为4,积为-12,求这两个数.【例2-2】关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.探究三 一元二次方程的根的范围【例3-1】若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.【例3-2】一元二次方程有两个实根,一个比3大,一个比3小,求的取值范围。
【初三数学暑假讲义】第10讲_一元二次方程的应用(教师版)A4

高斯九年级(初三)暑假班(教师版)最新讲义高斯教育九年级(初三)暑假辅导讲义学员姓名:刘小米年级:辅导科目:小学思维学科教师:五块石1 上课时间2019-06-25 14:00-16:00授课主题第10讲_一元二次方程的应用一元二次方程的应用一.列一元二次方程解应用题的一般步骤1.找出题中的等量关系;2.设未知数;3.根据找出的等量关系列出方程;4.解一元二次方程;5.将方程的解代入原方程检验,回到实际问题中检验;6.作答结论.注意:列方程解应用题的关键是将实际问题中内在、本质的联系抽象为数学问题,进而建立方程模型,解决问题.一.考点:一元二次方程的应用.知识图谱错题回顾知识精讲三点剖析二.重难点:列一元二次方程解应用题.三.易错点:建立一元二次方程解决实际问题时一定要注意检验是否符合实际意义.题模一:面积问题例1.1.1某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x 米,则可列方程为( )A .x (x ﹣11)=180B .2x+2(x ﹣11)=180C .x (x+11)=180D .2x+2(x+11)=180【答案】C【解析】设宽为x 米,则长为(x+11)米,根据题意得:x (x+11)=180.例1.1.2如图是一无盖长方体铁盒的平面展开图,若铁盒的容积为3m 3,则根据图中的条件,可列出方程:_____________-.【答案】x (x+1)=3【解析】长方体的高是1,宽x ,长是x+1,根据题意得x (x+1)=3.例1.1.3如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25m ),现在已备足可以砌50m 长的墙的材料,恰好用完,试求AB 的长,使矩形花园的面积为300m 2.【答案】15米【解析】该题考查的是列方程解应用题. 设m AB x =,则()502m BC x =-.…………1分根据题意可得,()502300x x -=,………… 3分解得:110x =,215x =,…………4分题模精讲当110x=,5010103025BC=--=>,故110x=(不合题意舍去),…………5分答:AB的长为15米.………… 6分题模二:经济问题例1.2.1某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10%B.20%C.30%D.40%【答案】B【解析】设平均每次降价的百分率为x,由题意得150×(1﹣x)2=96,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:平均每次降价的百分率是20%.故选:B.例1.2.2某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.【答案】(1)每件衬衫应降价20元(2)每件衬衫降价15元时,商场服装部每天盈利最多【解析】(1)设每件衬衫应降价x元,由题意得:(50﹣x)(40+2x)=2400,解得:x1=10,x2=20,因为尽量减少库存,x1=10舍去.答:每件衬衫应降价20元.(2)设每天盈利为W元,则W=(50﹣x)(40+2x)=﹣2(x﹣15)2+2450,当x=15时,W最大为2450.答:每件衬衫降价15元时,商场服装部每天盈利最多.题模三:其他问题例1.3.1有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45【答案】A【解析】∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,例 1.3.2假如一人患红眼病,经过两轮传染共有144人染上了红眼病,按这样的传播速度,若有两人患了红眼病,经过第一轮传染后患红眼病的人数共有__________人【答案】24【解析】设假如一人患红眼病,第一轮传染给x 人,由题意得1(1)144x x x +++=,解得x=11,故若有两人患病,经过第一轮传染后患病的人数共有2+11+11=24人.随练1.1有一块长方形铁皮,长100cm ,宽50cm ,在它的四周各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm 2,设铁皮各角应切去的正方形边长为xcm ,则下面所列方程正确的是( )A .4x 2=3600B .100×50﹣4x 2=3600C .(100﹣x )(50﹣x )=3600D .(100﹣2x )(50﹣2x )=3600【答案】D【解析】设切去的小正方形的边长为x .根据题意得(100﹣2x )(50﹣2x )=3600.随练1.2如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列出方程为 .【答案】300【解析】设道路的宽应为x 米,由题意有(22﹣x )(17﹣x )=300,随练1.3如图,要建一个面积为40平方米的矩形花园ABCD ,为了节约材料,花园的一边AD 靠着原有的一面墙,墙长为8米(8AD <),另三边用栅栏围成,已知栅栏总长为24米,求花园一边AB 的长.【答案】10米【解析】该题考查的是一元二次方程的应用.设AB 的长度为x 米,则BC 的长度为()242x -米. 随堂练习DC B A 8米根据题意:()24240x x -=.解得:2x =或者10x =,当2x =时,BC 的长度为20,大于8米,不合题意.∴AB 边长为10米.答:AB 的长为10米.随练1.4某县政府2011年投资0.5亿元用于保障性房建设,计划到2013年投资保障性房建设的资金为0.98亿元.如果从2011年到2013年投资此项目资金的年增长率相同,那么年增长率是( )A .30%B .40%C .50%D .60%【答案】B【解析】设这两年中投入资金的平均年增长率是x ,由题意得:0.5(1+x )2=0.98,解得:x 1=40% x 2=-2.4(不合题意舍去).答:这两年中投入资金的平均年增长率约是40%.故选:B .随练1.5山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【答案】(1)4元或6元(2)九折【解析】(1)设每千克核桃应降价x 元. …1分根据题意,得 (60-x -40)(100+2x ×20)=2240. …4分 化简,得 x 2-10x+24=0 解得x 1=4,x 2=6.…6分答:每千克核桃应降价4元或6元. …7分(2)由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60-6=54(元),5460×100%=90%. …9分 答:该店应按原售价的九折出售. …10分随练 1.6参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同.设共有x 家公司参加商品交易会,则x 满足的关系式为( ) A .x (x+1)=45B .x (x ﹣1)=45C .x (x+1)=45D .x (x ﹣1)=45【答案】B【解析】设有x家公司参加,依题意,得x(x﹣1)=45,故选B.随练1.7有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)7个人(2)448人【解析】本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.(1)设每轮传染中平均每人传染了x人,根据经过两轮传染后共有64人患了流感,可求出x,(2)进而求出第三轮过后,又被感染的人数.(1)设每轮传染中平均每人传染了x人,1+x+x(x+1)=64x=7或x=-9(舍去).答:每轮传染中平均一个人传染了7个人;(2)64×7=448(人).答:第三轮将又有448人被传染.自我总结课后作业作业1如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?【答案】20AB =,20BC = 【解析】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.设AB 的长度为x ,则BC 的长度为(100-4x )米;然后根据矩形的面积公式列出方程.根据题意得 (100-4x )x=400,解得 x 1=20,x 2=5.则100-4x=20或100-4x=80.∵80>25,∵x 2=5舍去.即AB=20,BC=20.答:羊圈的边长AB ,BC 分别是20米、20米.作业2小萍要在一幅长90厘米,宽40厘米的风景画的四周外围,镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整个挂图面积的54%,设金色纸边的宽为x 厘米,根据题意所列方程为( )A .()()904054%9040x x ++⨯=⨯B .()()90240254%9040x x ++⨯=⨯C .()()9040254%9040x x ++⨯=⨯D .()()9024054%9040x x ++⨯=⨯【答案】B【解析】由题意可得,()()90240254%9040x x ++⨯=⨯,故答案为B 选项.作业3为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m ,宽20m 的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为____米.(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)【答案】1 【解析】本题考查了一元二次方程的应用,解题的关键是找到正确的等量关系并列出方程. 设小道进出口的宽度为x 米,然后利用其种植花草的面积为532平方米列出方程求解即可. 设小道进出口的宽度为x 米,依题意得(30-2x )(20-x )=532.整理,得x2-35x+34=0.解得,x1=1,x2=34.∵34>20(不合题意,舍去),∵x=1.答:小道进出口的宽度应为1米.作业4一件产品原来每件的成本是100元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了19元,则平均每次降低成本的()A.8.5%B.9%C.9.5%D.10%【答案】D【解析】设平均每次降低成本x,根据题意得100﹣100(1﹣x)2=19,即(1﹣x)2=0.81,解得x1=0.1,x2=1.9(舍去),所以平均每次降低成本10%.作业5某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?【答案】9【解析】由题意得出:200×(10-6)+(10-x-6)(200+50x)+(4-6)[(600-200)-(200+50x)]=1250,即800+(4-x)(200+50x)-2(200-50x)=1250,整理得:x2-2x+1=0,解得:x1=x2=1,∵10-1=9.答:第二周的销售价格为9元.作业6近年来某市加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,该市投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600B.2500(1+x)2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=3600【答案】B【解析】设该市投入教育经费的年平均增长率为x,根据题意,可列方程:2500(1+x)2=3600,故选:B.作业7某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请你用学过的知识分析,每轮感染中平均每台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【答案】每轮感染中平均每台电脑会感染8台电脑;3轮感染后,被感染的电脑会超过700台【解析】设每轮感染中平均每一台电脑会感染x 台电脑,则()1181x x x +++=,解得18x =,210x =-(舍去);()()33118729700x +=+=>,故3轮感染后,被感染的电脑会超过700台。
2020年新初三暑期衔接数学课程精品(培优班)

(2)设MN与AB之间的距离为 米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.
第二讲轴对称核心考点解析及中考核心题型精讲
题型一:角平分线及其中垂线的应用
⑴求线段AD所在直线的函数表达式.
⑵动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?
例3 ()如图,点P是双曲线 上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y= (0<k2<|k1|)于E、F两点.
新初三衔接
数 学
(培优班)
初二升初三暑期衔接课程(培优班)
课程名称
给力初三早行动 帮你学好初三数学
面向学生的层次
中、上等水平学生理念和
设计思 路
使即将升入初三的学生既夯实知识基础、又及早触及初三重点难点,抢先一步,占领初三制高点,赢在初三起跑线。本课程共分一十三讲、26-34课时,具体设置如下:
(1)图1中,四边形PEOF的面积S1=(用含k1、k2的式子表示);(3分)
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;(4分)
②记 ,S2是否有最小值?若有,求出其最小值;若没有,请说明理由.
三 转化思想的运用----等量代换
例1(10重庆潼南县)如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连结AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录本次培训具体计划如下,以供参考:第一讲如何做几何证明题第二讲平行四边形(一)第三讲平行四边形(二)第四讲梯形第五讲中位线及其应用第六讲一元二次方程的解法第七讲一元二次方程的判别式第八讲一元二次方程的根与系数的关系第九讲一元二次方程的应用第十讲专题复习一:因式分解、二次根式、分式第十一讲专题复习二:代数式的恒等变形第十二讲专题复习三:相似三角形第十三讲结业考试(未装订在内,另发)第十四讲试卷讲评第一讲:如何做几何证明题【知识梳理】1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2、掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
【例题精讲】【专题一】证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
【例1】已知:如图所示,∆A B C 中,∠=︒===C AC BC AD DB AE CF 90,,,。
求证:DE =DF【巩固】如图所示,已知∆A B C 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE 。
求证:EC =EDF EDC BA【例2】已知:如图所示,AB =CD ,AD =BC ,AE =CF 。
求证:∠E =∠F【专题二】证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。
证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。
证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。
【例3】如图所示,设BP 、CQ 是∆A B C 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线。
求证:KH ∥BC【例4】已知:如图所示,AB =AC ,∠,,A A E B F B D D C =︒==90。
求证:FD ⊥EDA CE DFBABDEF ABQP HCK【专题三】证明线段和的问题(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。
(截长法) 【例5】如图,四边形ABCD 中,AD ∥BC ,点E 是AB 上一个动点,若∠B =60°,AB =BC , 且∠DEC =60°; 求证:BC =AD +AE【巩固】已知:如图,在∆A B C 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。
求证:AC =AE +CD(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。
(补短法)【例6】 已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=︒E A F 45。
求证:EF =BE +DFE DCBAAOEBD CFD A【专题四】证明几何不等式:【例7】已知:如图所示,在∆A B C 中,AD 平分∠BAC ,AB AC >。
求证:B DD C>【拓展】∆A B C 中,∠=︒⊥B A C A D B C 90,于D ,求证:()A D A B A C B C <++14第二讲:平行四边形(一)【知识梳理】 1、平行四边形:平行四边形的定义决定了它有以下几个基本性质: (1)平行四边形对角相等; (2)平行四边形对边相等; (3)平行四边形对角线互相平分。
除了定义以外,平行四边形还有以下几种判定方法: (1)两组对角分别相等的四边形是平行四边形;ACB D BCDA(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形。
2、特殊平行四边形:一、矩形(1)有一角是直角的平行四边形是矩形(2)矩形的四个角都是直角;(3)矩形的对角线相等。
(4)矩形判定定理1:有三个角是直角的四边形是矩形(5)矩形判定定理2:对角线相等的平行四边形是矩形二、菱形(1)把一组邻边相等的平行四边形叫做菱形.(2)定理1:菱形的四条边都相等(3)菱形的对角线互相垂直,并且每条对角线平分一组对角.(4)菱形的面积等于菱形的对角线相乘除以2(5)菱形判定定理1:四边都相等的四边形是菱形(6)菱形判定定理2:对角线互相垂直的平行四边形是菱形。
三、正方形(1)有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形(2)性质:①四个角都是直角,四条边相等②对角线相等,并且互相垂直平分,每条对角线平分一组对角(3)判定:①一组邻边相等的矩形是正方形②有一个角是直角的菱形是正方形【例题精讲】【例1】填空题:的是()1、下列说法中错误..A.四个角相等的四边形是矩形B.四条边相等的四边形是正方形C .对角线相等的菱形是正方形D .对角线互相垂直的矩形是正方形2、如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( ) A .矩形 B .菱形 C .正方形 D .菱形、矩形或正方形3、下面结论中,正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .对角线互相垂直的四边形是菱形D .对角线互相垂直且相等的四边形是正方形4、如图,在ABC △中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ∥,DF BA ∥.下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=o,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有 .(只填写序号)【例2】如图,在平行四边形ABCD 中,点E ,F 分别是AD ,BC 的中点. 求证:四边形BFDE 是平行四边形.【巩固】已知,如图9,E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE . 四边形ABCD 是平行四边形吗?请说明理由.【例3】如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E .AEDCFBF ED CBAA FCDBE求证:四边形AECD 是菱形.【例4】如图,在等边△ABC 中,点D 是BC 边的中点,以AD 为边作等边△ADE . (1)求∠CAE 的度数;(2)取AB 边的中点F ,连结CF 、CE ,试证明四边形AFCE 是矩形.【巩固】如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD . (1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.【例5】如图所示,在△ABC 中,分别以AB 、AC 、BC 为边在BC 的同侧作等边△ABD 、等边△ACE 、等边△BCF . (1)求证:四边形DAEF 是平行四边形;ADFEABC DEDCBAOE(2)探究下列问题:(只填满足的条件,不需证明)①当△ABC 满足_________________________条件时,四边形DAEF 是矩形; ②当△ABC 满足_________________________条件时,四边形DAEF 是菱形;③当△ABC 满足_________________________条件时,以D 、A 、E 、F 为顶点的四边形不存在.第三讲:平行四边形(提高)【知识梳理】由平行四边形的结构知,平行四边形可以分解为一些全等的三角形,并且包含着平行线的有关性质,因此,平行四边形是全等三角形知识和平行线性质的有机结合,平行四边形包括矩形、菱形、正方形。
另一方面,平行四边形有许多很好的性质,使得构造平行四边形成为解几何题的有力工具。
【例题精讲】【例1】四边形四条边的长分别为q p n m 、、、,且满足pq mn q p n m 222222+=+++,则这个四边形是( )A .平行四边形B .对角线互相垂直的四边形C .平行四边形或对角线互相垂直的四边形D .对角线相等的四边形【例2】如图①,四边形ABCD 是正方形, 点G 是BC 上任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F . (1) 求证:DE -BF = EF .(2) 当点G 为BC 边中点时, 试探究线段EF 与GF 之间的数量关系, 并说明理由.(3) 若点G 为CB 延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE 、BF 、EF 之间的数量关系(不需要证明).【巩固】如图1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值; (2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由; (3)在图2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【例3】如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF⊥AC于F,求PE+PF的值。
【例4】如图,在△ABC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD交于G,求证:GF∥AC。
【例5】如图所示,Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F。
求证:AE=CF。
【巩固】如图,在平行四边形ABCD中,∠B,∠D的平分线分别交对边于点E、F,交四边形的对角线AC于点G、H。