光的干涉(第1讲)详解
《光的干涉》 讲义

《光的干涉》讲义在我们的日常生活中,光无处不在。
从照亮我们房间的灯光,到大自然中美丽的彩虹,光以其多样的形式展现着它的魅力。
而在光学的世界里,有一个重要的现象——光的干涉,它不仅为我们揭示了光的本质,还在许多领域有着广泛的应用。
一、光的本质要理解光的干涉,首先我们得了解一下光到底是什么。
在很长一段时间里,关于光的本质存在着两种不同的观点,即粒子说和波动说。
粒子说认为光是由一个个微小的粒子组成的,这些粒子像子弹一样直线传播。
而波动说则主张光是以波的形式传播的。
经过一系列的实验和研究,现代物理学证明,光具有波粒二象性,也就是说,在某些情况下,光表现出粒子的特性;而在另一些情况下,又表现出波动的特性。
对于光的干涉现象,我们更多地是从光的波动性来进行理解和解释。
二、光的干涉现象当两列或多列光波在空间相遇时,它们会相互叠加,从而在某些区域光的强度增强,而在另一些区域光的强度减弱,这种现象就被称为光的干涉。
最常见的光的干涉现象就是杨氏双缝干涉实验。
在这个实验中,一束光通过两个相距很近的狭缝,在后面的屏幕上会出现明暗相间的条纹。
亮条纹的地方,是两列光波到达时相互加强的结果;暗条纹的地方,则是两列光波到达时相互削弱的结果。
还有一种常见的干涉现象是薄膜干涉。
比如,我们在阳光下看到肥皂泡或者水面上的油膜呈现出五彩斑斓的颜色,这就是薄膜干涉的结果。
薄膜的上下表面反射的光波相互叠加,由于薄膜的厚度不均匀,不同位置的光程差不同,导致了不同颜色的光在某些位置相互加强,某些位置相互削弱,从而呈现出各种颜色。
三、光的干涉条件并不是任意两列光波相遇都会发生干涉现象,而是需要满足一定的条件。
首先,两列光波的频率必须相同。
这是因为只有频率相同的光波,在相遇时才能保持稳定的相位差,从而产生干涉现象。
其次,两列光波的振动方向要相同或者至少有相同的分量。
如果两列光波的振动方向完全垂直,那么它们就无法相互叠加,也就不会发生干涉。
最后,两列光波的相位差要保持恒定。
《光的干涉》 讲义

《光的干涉》讲义在我们生活的这个奇妙世界里,光无处不在。
从照亮我们前行道路的路灯,到让我们欣赏到美丽色彩的彩虹,光以其独特的方式展现着它的魅力。
而在光学的众多现象中,光的干涉是一个非常重要且有趣的现象。
那么,什么是光的干涉呢?简单来说,光的干涉是指两束或多束光在相遇时相互叠加,导致某些区域的光强度增强,而某些区域的光强度减弱的现象。
这种现象就好像两列水波相遇时会发生的情况一样。
要理解光的干涉,首先我们得了解一下光的本质。
在很长一段时间里,人们对于光的本质存在着不同的看法。
一种观点认为光是一种粒子,而另一种观点则认为光是一种波。
经过大量的实验和研究,现在我们知道光具有波粒二象性,在某些情况下表现出粒子的特性,而在另一些情况下则表现出波的特性。
而光的干涉现象,正是光的波动性的有力证明。
光的干涉现象可以通过一些经典的实验来观察。
其中最著名的实验之一就是杨氏双缝干涉实验。
在这个实验中,一束光通过一个有两条狭缝的挡板,然后在后面的屏幕上形成了一系列明暗相间的条纹。
这些条纹的出现,正是因为从两条狭缝出来的光发生了干涉。
我们来具体分析一下这个实验。
假设从两条狭缝出来的光的波长相同、频率相同、相位相同,那么当它们在屏幕上相遇时,如果两束光的波峰与波峰相遇,或者波谷与波谷相遇,就会发生相长干涉,使得光的强度增强,从而在屏幕上形成亮条纹;而如果一束光的波峰与另一束光的波谷相遇,就会发生相消干涉,使得光的强度减弱,从而在屏幕上形成暗条纹。
光的干涉在实际生活中有着广泛的应用。
比如说,在光学精密测量中,利用干涉原理可以精确地测量长度、厚度等物理量。
例如,迈克尔逊干涉仪就是一种基于光的干涉原理的精密测量仪器,它可以用来测量微小的长度变化。
在薄膜干涉方面,我们也能经常观察到光的干涉现象。
比如,当我们对着肥皂泡或者油膜表面观察时,常常能看到五彩斑斓的颜色。
这是因为薄膜的上下表面反射的光发生了干涉,不同波长的光在不同的厚度处发生相长干涉或相消干涉,从而使得我们看到了不同的颜色。
大学物理光的干涉

干涉在光谱分析中的应用
干涉滤光片
利用光的干涉原理,设计出具有特定光谱透过率 的滤光片,用于光谱分析和图像增强。
傅里叶变换光谱仪
通过干涉原理,将复杂的光谱分解为简单的干涉 图样,便于分析物质的成分和结构。
原子干涉仪
利用原子在空间中的干涉现象,测量原子波长和 原子能级,用于原子结构和量子力学的研究。
干涉在全息摄影中的应用
大学物理光的干涉
目录
CONTENTS
• 光的干涉基本理论 • 干涉现象的实验验证 • 光的干涉的应用 • 光的干涉的深入研究
01 光的干涉基本理论
CHAPTER
光的波动性
01
光的波动性描述了光在空间中传播的方式,类似于水波在液体 中的传播。
02
光的波动性表现为光在传播过程中产生的振动和波动,这些振
动和波动具有特定的频率和波长。
光的波动性是理解光的干涉、衍射等光学现象的基础。
03
波的干涉
波的干涉是指两个或多个波在空间中相遇时,它们相互叠加产生新的波动现象。
当两个波的相位相同,即它们的振动方向一致时,它们会产生相长干涉,导致波峰 叠加和波谷叠加。
当两个波的相位相反,即它们的振动方向相反时,它们会产生相消干涉,导致波峰 抵消和波谷抵消。
量子通信、量子计算等领域。
03
量子纠缠的实验验证
科学家们通过实验验证了光子纠缠现象的存在,如著02
03
光的相干性
光的偏振
干涉现象的产生是由于两束光的 波前相干,即它们的相位差恒定。
光波的电场和磁场在垂直于传播 方向上的振动方向称为光的偏振 态。
光子纠缠现象
01
光子纠缠
当两个或多个光子相互作用后,它们的状态变得相互关联,即一个光子
光的干涉 课件

类型一 两列光波发生干涉的条件
【例 1】在双缝干涉实验中,以白光为光源,在屏幕上观察到了彩色干 涉条纹,若在双缝中的一缝前放一红色滤光片(只能透过红光),另一 缝前放一绿色滤光片(只能透过绿光),已知红光与绿光频率、波长均 不相等,这时( ) A.只有红色和绿色的双缝干涉条纹,其他颜色的双缝干涉条纹消失 B.红色和绿色的双缝干涉条纹消失,其他颜色的干涉条纹依然存在 C.任何颜色的双缝干涉条纹都不存在,但屏上仍有光亮 D.屏上无任何光亮 解析:两列光波发生干涉的条件之一是频率相等,利用双缝将一束光 分成能够发生叠加的两束光,在光屏上形成干涉条纹,但分别用绿色 滤光片和红色滤光片挡住两条缝后,红光和绿光频率不等,不能发生 干涉,因此屏上不会出现干涉条纹,但仍有红光和绿光的衍射图样。 答案:C
答案:B
光的干涉
1.杨氏双缝干涉实验 (1)史实:1801 年,英国物理学家托马斯·杨成功地观察到了光的 干涉现象。 (2)实验过程:让一束平行的单色光投射到一个有两条狭缝的挡 板上,两条狭缝相距很近。如果光是一种波,狭缝就成了两个波源,它 们的频率、相位和振动方向总是相同的。两波源发出的光在挡板后 面的空间互相叠加,发生干涉现象:来自两个光源的光在一些位置相 互加强,在另一些位置相互削弱。 (3)实验现象:在屏上得到明暗相间的条纹。 (4)实验结论:证明光是一种波。 (5)现象解释:当两个光源与屏上某点的距离之差等于半波长的 偶数倍时(即恰好等于波长的整数倍时),两列光在这点相互加强,这 里出现亮条纹;当两个光源与屏上某点的距离之差等于半波长的奇 数倍时,两列光在这一点相互削弱,这里出现暗条纹。
类型二 干涉图样明、暗条纹的条件
【例 2】如图所示是双缝干涉实验装置,使用波长为 600nm 的橙色光 源照射单缝 S,在光屏中央 P 处观察到亮条纹,在位于 P 上方的 P1 处 出现第一条亮纹中心(即 P1 到 S1、S2 的路程差为一个波长),现换用 波长为 400 nm 的紫光源照射单缝,则( )
01第一章光的干涉

2.1 只有一个界面的情况
1n1 n2 2n1 n2
没有 a
有
2.2 有多个界面的情况
1 n1 n2 n3或n1 n2 n3 没有
2 n1 n3 n2或n1 n3 n2 有 3 n1 n3 n2或n1 n3 n2 ?
2020/5/3
a
界面1 界面2
n1
a1
n2 界面
a1
a2
S'
M
S' P SP
S' P SP
2
2020/5/3
j, 亮纹 =j 2 ,暗纹
P
M' I P0
I
D' D
yy
r1
P
r2
d
y
P0 y0
I
r0
20
六.干涉条纹的可见度
V Imax Imin I max I min
2. Imax Imin V 0 1. Imin 0 V 1
2020/5/3
39
2 1 i i'
2d0
n22
n12 sin 2 i1
2
j
1 和1’;2和2’
的光线虽非相
干光,但相同
2'
i' i 1'
倾角时光程差 相等,加强则 同时加强。减
弱则都减弱
5)扩展 光源成为观察等倾干涉条纹的有利条件。
1.3 讨论:薄膜厚度对条纹的影响。
2020/5/3
40
小结
n1 n2 ……
……
nm
例1 1
r1
· r2
·
2
2020/5/3
p
· 例2
d1 d2
第3章 光的干涉1

nr
λ’
r λ
nr 这表明,光在介质中传播路程 r 和在真空中传播路程 nr 引起的相位差相同。 只从相位变化看问题:媒质中的行程 r ,折合到真空中 的长度是 n r。 光程:光在媒质中传播的波程与媒质折射率的乘积。
nr
光线穿过多种媒质时,其光程为:
r1 r2 n1 n2
ri ni
rn nn
/d 2 /d sin
x1
x2
k
x
七、讨论
1.条纹间距与各量之间的关系
a. x r1 S1 S d r2 D S2 P x
O
x
D
d
b. d x
x
P x
D
D
d
o
S
S1 d S2
r1
r2
O
I
d x
S
S1 d S2
r1
r2
D
P x
总结干涉问题分析的要点:
(1)搞清发生干涉的光束; (2)计算波程差(光程差); (3)搞清条纹特点: 形状、 位置、 级次分布、条纹移动等; (4)求出光强公式、画出光强曲线。
八. 其他分波面干涉实验
分波面法获得相干光
在同一波面上两个不同的部位发出的光 产生干涉的方法称为分波面法。
又如:菲涅耳双面镜、劳埃镜。
o
d
例3.在图示的双缝干涉 n1 r1 S1 实验中,若用薄玻璃片 d ( 折射率n1 =1.4 ) 覆盖缝 o S1 ,用同样的玻璃片 r2 (但折射率n2=1.7)覆 S2 n2 盖缝 S2 ,将使屏上原来 未放 玻璃时的中央明条纹所在处 o 变为第五 条明纹,设单色光波长 l = 480nm ,求玻璃 片的厚度d(可认为光线垂直穿过玻璃片)。
第一章光干涉

光程差为两束光的光程之差。
L2 L1 n2r2 n1r1
例 在相同的时间内,一束波长为的单色光在空气中
和在玻璃中
(A)传播的路程相等,走过的光程相等。
(B)传播的路程相等,走过的光程不相等。
(C)传播的路程不相等,走过的光程相等。
(D)传播的路程不相等,走过的光程不相等。
解:光在某媒质中的几何路程r与该媒质的折射率n的乘积 nr
r2
r1
(2 j 1)
2
(暗纹)
相长
r r 常量,干涉花相样长 为双叶螺旋双 曲面
2
1
同级条纹为旋 转双曲面
相长
如果是双缝干涉,则 相长
屏上条纹是直纹。
相长 如果s1s2相差不恒定, 则条纹是高速变化。 相长 无条纹.
1.3 分波面
双光束干涉
p
分波面法(杨氏)
S*
分振幅法
S*
分振动面法(5.9)
r2
s2
E1 A01 cos[t 10]
E2 A02 cos[t 20] s1
r1
P
r2
两波传至P点,引起两个振动:
s2
E1 p
A01
cos[(t
r1 ) v1
10 ]
E2 p
A02
cos[(t
r2 v2
) 20 ]
1
2
( r2
v2
r1 v1
)
(10
20 )
( r2
v2
r1 v1
) (10
二、干涉图样的形成:
then: I A2 A2 A2 2A A cos
1
2
12
2
1
光的干涉-PPT

光的干涉
薄膜干涉
让一束光经薄膜的两个表面反射后,形成的两束 反射光产生的干涉现象叫薄膜干涉.
点 击 画 面 观 看 动 画
光的干涉
薄膜干涉
1、在薄膜干涉中,前、后表面反射光的路程差由膜 的厚度决定,所以薄膜干涉中同一明条纹(暗条纹)应 出现在膜的厚度相等的地方.由于光波波长极短,所以 微薄膜干涉时,介质膜应足够薄,才能观察到干涉条 纹.2、用手紧压两块玻璃板看到彩色条纹,阳光下的肥 皂泡和水面飘浮油膜出现彩色等都是薄膜干涉.
第1节 光的干涉
光到底是什么?……………
17世纪明确形成 了两大对立学说
由于波动说没有 数学基础以及牛 顿的威望使得微 粒说一直占上风
牛顿
19世纪初证明了 波动说的正确性
惠更斯
微粒说
19世纪末光电效应现象使得 爱因斯坦在20世纪初提出了 光子说:光具有粒子性
波动说
这里的光子完全不同于牛顿所说的“微粒”
光的干涉
干涉现象是波动独有的特征,如果光真的 是一种波,就必然会观察到光的干涉现象.
光的干涉 光的干涉
1801年,英国物理学家托马斯·杨(1773~1829) 在实验室里成功的观察到了光的干涉.
双缝干涉
激
双
光
缝
束
屏上看到明暗相间的条纹 屏
光的干涉
S1 S2 d
双缝干涉
P2
P1
P
P
P1 P2
S1、S2
相干波源
P1S2-P1S1= d
光程差
P2S2-P2S1> d 距离屏幕的中心越远路程差越大
光的干涉
双缝干涉
1、两个独立的光源发出的光不是相干光,双缝干 涉的装置使一束光通过双缝后变为两束相干光,在光屏 上形成稳定的干涉条纹.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S
d S2 r
r2
O
d
暗纹中心坐标: d x = (2 k +1) 2d (k=0,1,2,) 0级,1级暗纹 (11-3)
明纹 暗纹
d x = k d P ( k =0,1,2, ) d x = (2 k +1) 2d B r1 S
复色光: 具有多个波长(频率)的光。: 1~2
激光的单色性最好! 如何获得单色光?
E S
2.光的干涉条件
频率相同;E 的振动方向相同; 相差恒定。
普通光源发出的光一般不能满足干涉条件。
3. 获得相干光的方法 对实验仪器的要求: ① 两束相干光取自同一波列:“一分为二”
② 光波的波程差小于波列长度。
理论:(1) 牛顿的微粒说: 光是按照惯性定律沿直线飞行的微粒流。
u水 u空气
(2)惠更斯的波动说: u水 光是在特殊媒质“以太”中传播的机械波。 此间微粒说占据统治地位。
u空气
三.波动光学时期 (19世纪)
实验: 光的干涉(杨-英) 光的衍射(费涅耳-法)。 此间波动 理论: 麦克斯韦建立电磁场理论,指出光也是电磁波。说占主导 地位。 赫兹证实电磁波的存在;并测出光速。 确定光不是机械波 四.量子光学时期(19世纪后期——20世纪初) 普朗克提出能量量子化假说 爱因斯坦提出光量子假说 认为: 光是以光速运动的粒子流。 光到底是什麽? , 光也是物质的一种 它既具有波的性质、也具有粒子的性质。 它既非波、也非粒子、更不是两者的混合物。它就是它自己!
电磁波动说在解释“热幅射”及“光电效应”等实验时遇到困难。
在某些条件下,波动性表现突出,在另一些条件下,粒子性
表现突出。光具有波粒二象性。
五.现代光学时期
(从20 世纪50年代起)
富里叶光学、 相干光学、 纤维光学、 全息光学与全息技术…. 它是既古老又年轻的科学,也是现代技术的基础之一。 分类:
第十一章 波动光学
光的干涉
(第一讲)
作业:11-8、11-9
预习:11-3
光的干涉重点:1. 双缝干涉 2. 薄膜干涉 (劈尖、牛顿环)
波动光学 光学发展简史 概述: 人们对光的认识经历了一个“否定之否定”的过程。 一.光学的萌芽时期 (公元前5世纪~16世纪) 观察、实验:光的直线传播、反射和折射, 形成了“光线”的概念 发明:透镜、凹面镜、望远镜。 二.几何光学时期 (17~18世纪) 实验:建立了反射和折射定律 发现: 光的“色散”现象、红外线、紫外线
x = =常数
d d
条纹疏密均匀。 (11-J1) ——与k无关,
x =
S S S1 d r1 r2 d
d d
S2 讨论: 条纹间距x
屏
1)条纹间距x 与d 的关系 ; 1 、 d 一定时, x — d 2)条纹间距x 与 的关系 ; d、 d 一定时,
S
r.干涉条纹的分布(重点) x 波程差 r=(r2 r1) = d d dx 当 r= = (2 k +1) 时, d 2 干涉减弱条件 r1 S
1
明纹中心坐标: d (k=0,1,2,) x = k d x P B x I
x
b.原双缝等宽,现将其 若为白光入射? 中一缝的宽度略变窄, 不同之间是否干涉? 发生什么变化?
参与题:a. S,条纹动否? x变否? x变否? 亮度变否?
例1 在杨氏双缝实验中,屏与双缝的距离 d =1m,用钠光灯作 单色光源(=589.3nm), 问(1) d=2mm和d=10mm两种情况下,相邻 明纹间距x各为多大?(2) 如肉眼仅能分辨两条纹的间距为 0.15mm,现用肉眼观察干涉条纹,双缝的最大间距是多少?
方法有二: 1. 波阵面分割法; 2. 振幅分割法。
(1) 波阵面分割法 侧视图
双缝干涉
S1
r1
r2
侧视图 P
S
S2 单 缝
双缝
屏
(2) 振幅分割法 S P
透 镜 P
S 透 镜
薄膜
侧视图
11-2 杨氏双缝干涉 劳埃德镜 一.杨氏双缝实验 (1801) ※ 1.装置 和原理
S S1 S2
c
(4000Å~7600Å)
E
H
z
y
b) 人眼对颜色的感觉是由光波的频率决定的。 c) 引起眼睛视觉效应和光化学效应的是光波场中的电场矢量 。 底片感光 光矢量 E d) 眼睛及物理仪器检测的光的强度就是光的能流密度。
I A2
定义:相对光强
IA E
2
2 0
11-1 相干光 一.光源 (发光体) 1.普通光源 ——由于自发辐射发出的光。
1
x
2级明纹 1级暗纹
S
d S2 r
r2
x
O
I
1级明纹 0级暗纹 0级明纹 0级暗纹 1级明纹 1级暗纹 2级明纹
d
说明: 1) 干涉条纹是平行于双缝的直线。 2) 条纹间距相等[相邻两明(或暗)纹中心的距离] d d x=xk+1 xk = (k+1) k d d
热光源: 利用热能激发 ──白炽灯、蜡烛…;
Laser 冷光源: 电致发光——电场激发(日光灯); 光致发光——由 X 射线、放射线、可见光激发(荧光); 激光器 化学发光——由化学能激发(磷光) 。
2.激光光源 ——由于受激辐射产生的光
E2
E1
二.相干光 1.单色光 具有单一波长(频率)的光。——理想情况
针孔 日光
屏 单 缝 双 缝
2.干涉条纹的分布(重点) S1、S2——同相相干波源
定量分析 P B r1
包括条纹的位置、 形状、 疏密。
S1
d
波程差
r =(r2 r1) dsin
d tan x S2 r = d d d dx 当 r= = k 时, 1m d~1mm) d << d x <<d (d ~ 很小 d 干涉加强条件 d 明纹中心坐标: x = k (k=0,1,2,) (11-2) d
1)几何光学——研究光的直线传播及光学仪器的制造;
2)波动光学——研究光的波动性; 3)量子光学——研究光与物质的相互作用。
11-1 相干光
几点说明: a)光是一种电磁波。可见光 14 ~ 4.31014Hz : 7.5 10 能够引起人眼视觉和使底片感光的是E(光矢量) x
:400nm~760nm