厦门大学微积分I高等数学期末考试(A卷)

合集下载

厦门大学2020年《高等数学》期末考试试题及答案解析

厦门大学2020年《高等数学》期末考试试题及答案解析

一、 单选题(32 分. 共 8 题, 每题 4 分)1)设b 为 3 维行向量, 123123 V {(,,)|(,,)} x x x x x x b == ,则____。

C A)对任意的b ,V 均是线性空间;B)对任意的b ,V 均不是线性空间;C)只有当 0 b = 时,V 是线性空间;D)只有当 0 b ¹ 时,V 是线性空间。

2)已知向量组 I : 12 ,,..., s a a a 可以由向量组 II : 12 ,,..., t b b b 线性表示,则下列叙述正确的是____。

AA)若向量组 I 线性无关,则s t £ ;B)若向量组 I 线性相关,则s t > ;C)若向量组 II 线性无关,则s t £ ;D)若向量组 II 线性相关,则s t > 。

3)设非齐次线性方程组AX b = 中未定元个数为 n ,方程个数为m ,系数矩阵 A 的秩为 r ,则____。

DA)当r n < 时,方程组AX b = 有无穷多解; B) 当r n = 时,方程组AX b = 有唯一解;C)当r m < 时,方程组AX b = 有解;D)当r m = 时,方程组AX b = 有解。

4)设 A 是m n ´ 阶矩阵,B 是n m ´ 阶矩阵,且AB I = ,则____。

A A)(),() r A m r B m == ;B)(),() r A m r B n == ;C)(),() r A n r B m == ;D)(),() r A n r B n == 。

5)设 K 上 3 维线性空间 V 上的线性变换j 在基 123 ,, x x x 下的表示矩阵是 111 101 111 æöç÷ç÷ ç÷ èø,则j 在基123 ,2, x x x 下的表示矩阵是____。

(完整word版)微积分期末试卷A及答案

(完整word版)微积分期末试卷A及答案

共 4 页,第 1 页 学生答题注意:勿超黑线两端;注意字迹工整。

共 4页,第 2 页) ()f x 在x a =处可导; (B )()f x 在x a =处不连续; (C)。

lim ()x af x →不存在 ; (D ) ()f x 在x a =处没有定义。

、设lnsin y x =,则dy =( )(A) 1cos x ; (B ) 1cos dx x;(C) cot x dx -; (D) cot x dx 。

6. 若()f x 的一个原函数为2x ,则()f x dx '=⎰( ) (A)12x C + (B ) 2x C + (C) x C + (D ) 2C +7、 1dx =⎰( )(A ) 2; (B ) 2π-; (C ) 0; (D )。

8、对-p 级数∑∞=11n p n ,下列说法正确的是( )(A ) 收敛; (B ) 发散;(C ) 1≥p 时,级数收敛; (D) 级数的收敛与p 的取值范围有关。

9、二元函数在(,)xy f x y ye =点0(1,1)p 可微,则(,)xy f x y ye =在0p 的全微 )00)()limx x f x x→-- .cos x ,求它的微分共 4 页,第 5 页 学生答题注意:勿超黑线两端;注意字迹工整。

共 4页,第 6 页5、(10分)求微分方程()x xe y dx xdy +=在初始条件1|0x y ==下的特解;6、(12分)判断级数211ln(1)n n ∞=+∑的敛散性。

《微积分》课程期末考试试卷参考答案及评分标准(A 卷,考试)一、单项选择(在备选答案中选出一个正确答案,并将其号码填在题目后的括号内.每题3分,共30分)1、(C );2、(D );3、(B);4、(A );5、(D);6、(B);7、(A );8、(D );9、(A); 10、(D)。

二、填空(每题4分,共20分)1、 bx n e a b )ln (;2、 同阶无穷小;3、3- ;4、0;5、2。

2015-2016第一学期微积分IV期末试卷答案(A卷)

2015-2016第一学期微积分IV期末试卷答案(A卷)

一、求下列数列的极限(每题5分,共10分):1.21lim(1)n n n -→∞+解:2222111lim(1)lim[(1)][lim(1)]n n n n n n e n n n----→∞→∞→∞+=+=+=2.2222lim()123n n n n nn n n n n→∞+++⋅⋅⋅++++ 解:222222221231n n n n n n n n n n n n n n ≤+++⋅⋅⋅≤++++++ , 又2222211lim lim 1,lim lim 111111n n n n n n n n n n n→∞→∞→∞→∞====++++ 所以由夹逼准则知,2222lim()1123n n n n nn n n n n→∞+++⋅⋅⋅=++++二、求下列函数的极限:(每小题5分,共20分).1. x →解:23x →==厦门大学《微积分IV 》课程期末试卷试卷类型:(A 卷) 考试日期 2016.01.122. 2211lim x x x x→--解:221111lim lim 2x x x x x x x →→-+==-或者用洛必达法则,2211122lim lim 22121x x x x x x x →→-===---3.30lim sin x x x x →-解:3200036limlim lim 6sin 1cos sin x x x x x xx x x x→→→===--4. lim )x x x →+∞解:lim )limlimlimx x x x x x →+∞===12==。

三、求函数的微分或导数:(每小题5分,共20分)1. 已知2sin y x x =,求dy .解:2(2sin cos )dydy dx x x x x dx dx==+2.已知sin xy x =,求y '. 解:y '=22(sin )()sin cos sin x x x x x x xx x''⋅--=3.已知32cos (1)y x =-,求(1)y '解:22222223cos (1)[cos(1)]3cos (1)(sin(1))(1)y x x x x x '''=-⋅-=-⋅--⋅-2222223cos (1)sin(1)(2)6cos (1)sin(1)x x x x x x =--⋅-⋅-=⋅-⋅-所以222(1)61cos (11)sin(11)0y '=⋅⋅-⋅-=4. 设()y y x =由方程y e xy e +=所确定,求(0)y '.解:方程ye xy e +=两边对x 求导,得0y e y y x y ''++⋅=,从而y y y e x -'=+,又(0)1y =,因此(0)(0)1(0)0y y y e e-'==-+。

厦门大学《高等数学(AC)》课程试卷07年

厦门大学《高等数学(AC)》课程试卷07年

一、填空:(每小题4分,共20分) 1、22(21)t t ∆-+= 。

2、微分方程25cos2x y y y e x '''-+=待定特解的形式为 。

3、已知12t t y C C a =+是差分方程21320t t t y y y ++-+=的通解,则a = 。

4、级数21(2)(1)9nnnn x n ∞=--⋅∑的收敛域为 。

5、微分方程20ydx xdy y xdx -+=的通解为 。

二、判断下列级数的敛散(每小题5分,共10分):1、1!n n n n ∞=∑2、nn ∞=三、求下列方程的通解或特解:(每小题7分,共28分)1、求微分方程()0ydx y x dy +-= 满足(0)1y = 的特解。

2、求差分方程1363tt t y y +-=通解。

3、设()f x 二阶可导,并且()20()()(1)x t f x f u du dt x =+-⎰⎰,求()f x 。

4、求微分方程28cos y a y bx ''+= 的通解,其中,a b 为正常数。

四、计算下列各题:(每小题7分,共28分)1、求曲面积分()()()y z dydz z x dzdx x y dxdy ∑-+-+-⎰⎰其中∑为錐面(02)z z =≤≤的下侧。

2、将函数21()32f x x x =++展开成4x -()的幂级数。

3、求幂级数11(1)2n nn n x -∞=+∑的和函数,并求数项级数1(1)2n n n ∞=+∑的和。

4、设二阶连续导函数()f x 使曲线积分[2()3()5]()x LI f x f x e ydx f x dy ''=-+++⎰与路径无关,且有1(0)0,(0)4f f '==,试求曲线积分 (1,2)(0,0)[2()3()5]()x f x f x e ydx f x dy ''-+++⎰的值。

《微积分》课程期末考试试卷(A)及参考答案

《微积分》课程期末考试试卷(A)及参考答案

3、若函数
f (x, y)
x y ,则
x y
f
(
1 x
,
y)



A、 x y
x y
B、 1 xy
1 xy
C、 1 xy
1 xy
4、设 D 由 y x, y 2x, y 1围成,则 dxdy ( )
D
A、 1
2
B、 1
4
C、1
5、( )是一阶微分方程

3x 2
3y2
(6
分)。
2、
z y

xy
ln
x (3
分);
2z y 2

xy
ln 2
x
(6
分)。
3、
f
1 x
(
x,
y)

1
x x2
y2
(5
分);
f
1 x
(3,4)

2 (6
5
分)。
4、
z x

y

1 y
,
z y

x

x y2
(4
分);
dz

(y

1 )dx y

(x

x y2
六、求方程 yy' x 的通解。(6 分)

七、判别级数 n1
2n n3n
的敛散性。(6
分)
《微积分》课程期末考试试卷(A)参考答案
一、 填空题(每题 3 分,共 36 分)。
1、
x3 y3
2x
xy y
3xy
2、 1

14-15厦门大学微积分I高等数学期末试卷(A卷)

14-15厦门大学微积分I高等数学期末试卷(A卷)

一、计算下列各题:(每小题4分,共36分)1.求极限)0(21lim 1>++++∞→p nn p pp p n 。

2.求2cos ()x t x f x e dt =⎰的导数。

3.求由曲线3y x =-,1x =,2x =,0y =所围成的图形面积。

4.计算广义积分20x x e dx +∞-⎰。

厦门大学《微积分I 》课程期末试卷试卷类型:(理工类A 卷) 考试日期 2015.1.215.计算定积分120sin 2x x dx π⎡⎤⎛⎫⎢+ ⎪⎢⎝⎭⎢⎣⎰。

6.求方程2x ydy dx +=的通解。

7.求不定积分2(1)(1)xdx x x ++⎰。

8.求方程1y y x x'-=的通解。

9.已知11y =,21y x =+,231y x =+都是微分方程2222x y xy y '''-+=的解,求此方程的通解。

二、计算下列各题:(每小题5分,共30分)1. 求极限20)(02sin lim x dt e x x t x x ⎰-→⋅。

2.计算22sin 2cos x x dx x ππ-⎤⎥+⎦⎰。

3.设函数)(x y y =由方程1cos 020322=+⎰⎰dt t dt e x y t 决定,求dxdy 。

4. 求微分方程32y y ''=满足初始条件00|1,|1x x y y =='==的特解。

5.求曲线⎰=x t t x f 0d sin )(相应于π≤≤x 0的一段弧的长度。

6. 设物体作直线运动,已知其瞬时速度2()(/)v t t =米秒,其受到与运动方向相反的阻力()5()F t v t =(牛顿),求物体在时间间隔[]0,1(单位秒)内克服阻力所作的功。

三、计算下列各题:(每小题6分,共24分)1.求微分方程32()()1dy x x y x x y dx++-+=-的通解。

2.设0>a ,求直线231aa x y +-=与x 轴,y 轴所围三角形绕直线a x =旋转一周所得旋转体的体积。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。

2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。

3.若当时,α与β 是等价无穷小量,则 。

0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。

=→)(lim x f ax 5.的连续区间是 。

)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。

=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. 。

='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。

Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。

11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。

=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。

当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。

厦门大学《高等数学(AC)》经管类(A卷)期末试卷及答案

厦门大学《高等数学(AC)》经管类(A卷)期末试卷及答案

一、解下列各题 (每小题6分,共42分)1、 220limarctan xt x x e dtx x-→-⎰. 2、设函数()f x 连续,且31()x f t dt x -=⎰,求(7)f .3、设(cos )ln(sin )f x dx x c '=+⎰,求()f x .4、已知点()3,4为曲线2y a =a , b .5、求函数2()2ln f x x x =-的单调区间与极值.6、设函数21()cos x f x x⎧+=⎨⎩0,0.x x ≤> 求2(1)f x dx -⎰.7、求曲线3330x y xy +-=的斜渐近线.二、计算下列积分(每小题6分,共36分)1、31sin cos dx x x ⎰.2、.3、523(23)x dx x +⎰.4、41cos 2xdx x π+⎰. 5、312⎰ 6、2220x x edx +∞-⎰,其中12⎛⎫Γ= ⎪⎝⎭.三、应用题(每小题6分,共12分)1、 假设在某个产品的制造过程中,次品数y 是日产量x 的函数为: 2100,102100.x x y xxx ⎧≤⎪=-⎨⎪>⎩并且生产出的合格品都能售出。

如果售出一件合格品可盈利A 元,但出一件次品就要损失3A元。

为获得最大利润,日产量应为多少? 2、设函数()f x 连续,(1)0f =,且满足方程1()()xf x xe f xt dt -=+⎰,求()f x 及()f x 在[]1,3上的最大值与最小值.四、证明题(每小题5分,共10分)1、当0x >时,证明:(1ln x x +>2、设函数)(x f 在[],a b 上连续,()0f x ≥且不恒为零,证明()baf x dx ⎰0>.一、解下列各题 (每小题6分,共42分)1、解:2220023200011lim lim lim arctan 33xxt t x x x x x e dtx e dte x x x x ---→→→---===⎰⎰ 2、 解:两边求导有233(1)1xf x -=,令2x =,得1(7)12f =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厦门大学微积分I高等数学期末考试(A卷)
————————————————————————————————作者:————————————————————————————————日期:
一、计算下列各题:(每小题4分,共36分)
1.求极限)0(21lim 1>++++∞→p n
n p p
p p n 。

2.求2cos ()x t x f x e dt =⎰
的导数。

3.求由曲线3y x =-,1x =,2x =,0y =所围成的图形面积。

4.计算广义积分20x x e dx +∞-⎰。

厦门大学《微积分I 》课程期末试卷
试卷类型:(理工类A 卷) 考试日期 2015.1.21
5.计算定积分()123021sin 21x x dx x π⎡⎤⎛⎫⎢⎥+ ⎪⎢⎥⎝⎭+⎢⎥⎣⎦
⎰。

6.求方程
2x y dy dx
+=的通解。

7.求不定积分2(1)(1)
x dx x x ++⎰。

8.求方程1y y x x
'-
=的通解。

9.已知11y =,21y x =+,231y x =+都是微分方程2222x y xy y '''-+=的解,求此方程的通解。

二、计算下列各题:(每小题5分,共30分)
1. 求极限20)(02sin lim
x dt e x x t x x ⎰-→⋅。

2. 计算322sin cos cos 2cos x x x x dx x π
π-⎡⎤-+⎢⎥+⎣⎦⎰。

3.设函数)(x y y =由方程1cos 020322=+⎰⎰dt t dt e x y t 决定,求dx
dy 。

4. 求微分方程32y y ''=满足初始条件00|1,|1x x y y =='==的特解。

5.求曲线⎰
=x t t x f 0d sin )(相应于π≤≤x 0的一段弧的长度。

6. 设物体作直线运动,已知其瞬时速度2()(/)v t t =米秒,其受到与运动方向相反的阻力
()5()F t v t =(牛顿),求物体在时间间隔[]0,1(单位秒)内克服阻力所作的功。

三、计算下列各题:(每小题6分,共24分)
1.求微分方程32()()1dy x x y x x y dx
++-+=-的通解。

2.设0>a ,求直线231a
a x y +-
=与x 轴,y 轴所围三角形绕直线a x =旋转一周所得旋转体的体积。

3. 设二阶常系数线性微分方程sin y y y x αβγ'''++=的一个特解为
2312cos sin ,55
x x y e e x x =+++试确定,,αβγ,并求出该方程的通解。

4.设)(x f 为),(+∞-∞上的连续函数, 且当0≠x 时满足函数方程: ⎰⎰⎰-+-=1000))(1()()()(2
dx x f x dt t tf dt x
t f x f x x , 求)(x f 。

四、证明题:(每小题5分,共10分;其中第2题和第3题任选一题)
1.设()f x 可导,120
(1)2()f f x dx =⎰,证明: (0,1)ξ∃∈,使得()0f ξ'=。

2. 证明:[]22002ln(sin )ln(sin 2)ln 2x dx x dx ππ=-⎰⎰,并利用此等式计算20ln(sin )x dx π⎰。

3.设)(x f 和)(x g 均在],[b a 上单调不减的连续函数(b a <),证明: ⎰⎰⎰-≤b
a b a b a dx x g x f a b dx x g dx x f )()()()()(。

相关文档
最新文档