基于人机工程学的矿井通风系统可靠性分析详细版

合集下载

基于人机工程学的模拟矿井通风设备设计

基于人机工程学的模拟矿井通风设备设计

煤层 , 根据安全规 程规定 , 设 计确 定采 区回风 上 山为 专用 回
风巷 。通 风方 式 为 中 央分 列式 , 通 风方 法 为 地 面机 械 抽 出 式 。由主平硐 、 副 平硐 进 风 , 东 翼 回风 斜井 回风 。东翼 回风
费也少 1 . 1 6万 元。经 综 合 比较 , 设计推荐一方案, 即选 用
更加 宜人 、 安全 、 高效。
【 关键 词 】 模拟矿 井; 通风设计 ; 人机 工程 【 基 金项 目】 本文 为新 疆工程 学院科研 基金项 目( 编号 : 2 0 1 2 x g y 2 4 1 4 1 2 ) 研 究成果。 【 作者 单位 】 蔺惊 , 肖萍 ; 新 疆工程 学院
二、 矿 井通 风 方式
本井 田开 采 面积 较 大 , 根据 矿 井 的开 拓及 井 筒 布置 形 式, 矿井通风方 式采用 中央分 列式 。矿井 初期 , 共 布 置三 个
调速精确性 高 , 空 气动 力性 能 优越 , 可 靠性 高 , 反 风量 大 ; 产
品配带消音器 、 箱 式 风 门、 轴 承 润滑站 等 。缺点 是 占地 面积 大, 安装技术要求高 , 施工周期长 , 土建工程量大 。
9 0=9 4. 5 m。 / s

Q b难 =1 . 0 5×1 0 0=1 0 5 m / s 。负 压 : 通 风容
根据 矿井 风量 、 负压 以及 国内通 风设 备使 用情 况 , 设计
考虑 了两个方案 。防爆 对旋 轴流 式 通风机 两套 , 配 风机 用 防爆 变 频 电 动机 , 2 X 2 5 0 k W、 6 6 0 V、
发, 开展采煤机械 中人 一机 一环 境 的系统 化研 究 , 以创造 适

矿井通风管理及其系统可靠性

矿井通风管理及其系统可靠性

浅论矿井通风管理及其系统可靠性矿井通风管理是矿井生产过程中重要的管理内容之一,通风状况的好坏直接影响到井下工人的生命健康安全、矿井的生产效率和经济效益。

做好矿井通风工作,要针对现场实际情况,解决相关的矿井通风技术难题,从系统安全角度出发,全面提高通风管理的整体水平。

近年来,由于通风管理不善,不能适应矿井通风系统的动态、随机等特性的要求,重特大灾害事故时有发生。

所以,为实现矿井的安全生产,在提高通风技术水平的同时,必须加强矿井通风的管理工作。

1 良好矿井通风系统的标志在进行矿井通风系统的优化工作之前,必须对原通风系统展开分析,查明该系统的问题所在,论证其优化改造的必要性。

良好矿井通风系统的标志是:(1)各矿井主要通风机装置运行状态良好。

矿井通风机装置的运行状态主要取决于工况点,工况点是矿井风网风阻曲线与主要通风机特性曲线的交汇点,矿井主要通风机装置的工况点合适,则它的运行稳定性和经济性良好。

稳定性是指主要通风机装置运行过程中工况点只有一个,其工作风量和工作风压不发生周期性变动。

经济性是指通风机装置保持高效率运行且装置运行状态良好。

(2)通风井巷联接形式合理。

通风并巷联接形式合理就是要使通风系统安全可靠、技术可行、经济合理。

安全可靠是通风网络系统制定的基本原则。

其具体要求是在矿井正常生产情况下符合安全规程规定,无安全隐患,不危及安全生产:在意外事故状态下能保证人员安全撤离,不损害或少损害生产设备和设施。

经济合理包括两个含意,其一是通风井巷、设备的投资较少:其二是在网络联接形式确定的情形下,网络内部实行最优化调节。

(3)通风网络内部最优化调节。

井下通风网络的内部优化调节是通风系统经济合理的重要组成部分,它直接关系到各矿井主要通风机装置的工作风量和工作风压,从而影响矿井通风电耗,所以在网络系统、通风井巷联接方式确定(由安全要求、生产要求、技术要求所决定)的情形下,选择内部最优的调节方案是改善技术经济合理性的最重要的手段。

矿井通风系统可靠性分析与评价

矿井通风系统可靠性分析与评价
矿 井 通 风 系 统 可 靠性 分 析 ( ) 井 通风 系统 可靠 性 主要 自然影 响 因素 一 矿 1通风 方 式 . 矿井进 、 回风 井 的相 对 位 置 的 布 置 方 式 即为 矿 井 通 风 方 式 。 矿 井 通 风 方 式 包 括 中 央 式 、 角 式 、 区 式 、 合 式 4种 ; 井 通 对 分 混 矿 风 方 法 有 抽 出 式 、 人 式 、 合 式 。通 风 方 法 的 选 择 直 接 影 响 矿 压 混 井 通 风 的漏 风 率 大 小 。
空气 在 进 行 生 产 或 通 风 及 其 它 特 殊 用 途 而 掘 出 的井 巷 中 流 动 , 足 生产 和安 全 的 需 要 。空气 流过 的井 巷 与 通 风 构筑 物就 组 满 成 了矿 井 通 风 系统 的通 风 网络 。通 风 巷 道 按 其 位 置 在 网络 中 的 相 互 关 系可 分 为并 联巷 道 、 联 巷道 和角 联 巷 道 。 串 矿井 通 风 网络 属 于大 型 复 杂 网络 .对 于这 样 一 个 具 有 上 百 条分 支 的大 型 复 杂 网络 , 在许 多角 联 分 支 。 仅 风 网 中 的角 联 存 不 网络 存 在 着 风 流 稳 定 性 问题 ,而 且 其 它 风 路 中也 不 同程 度 地 存 在着 风 流 稳 定 性 问题 。 见 , 风 网络 中风 流 流 动方 向及 风 量 大 可 通 小持 续 稳 定 地 满 足 用 风 点 的 需 要 对 于 矿 井 通 风 系 统 的 可 靠 性 起 着 决 定 性 作用 。
影 响 到 井 下 风 流 的稳 定 性 。 l . 风 巷 道 维护 状 况 ( 5 。通 风 巷 道 是 构成 通 风 网络 的基 3通 S) 础 , 道 的 畅通 保 证 了井 下 风 流 正 常流 动 ; 道 的 障 碍 则 可 能 阻 巷 巷 断 、 弱风流 , 减 降低 用 风 点 的风 质 等 。

矿井通风系统可靠性分析

矿井通风系统可靠性分析
对 于通风 系统 而 言 , 主 扇 风 机 是影 响其 可靠 性
人式 、 混 合式 Ⅱ ] 。
在抗 灾 能力 方 面 ,不 同的通 风方 式 与方法 各 有
不同。 通 常 情况 下 , 最佳 的通 风方 式是 顺 向流 动风 向 且折 返 『 生较 小 。通 风 方式 的选 取 除 了会 给 通风 线 路 长短 带来 影 响 ,还 与矿井 的漏 风率 和 通风 阻力 存 在
煤业有限责任公 司, 研究方向为通风。
矿井通风 系统可靠性分析
王利 民
( 山西新景矿煤业 有限责任公司 , 山西 摘 阳泉 0 4 5 0 0 0 )
要: 主要 针对影响矿 井通 风 系统可 靠性 的主要 因素展 开分析 , 并 阐述 了相关的改进措 施 , 希 望为提升矿 井
通风 系统可 靠性提供 重要 参考与借鉴 。相关 工作人 员应提 高对通风 系统可靠性的重视 , 从 而促进矿 井抗 灾能
力 与 安 全 性 的进 一 步提 升 。
关键词 : 矿 井通 风 系统
中图 分 类 号 : T D 7 2 4
可靠性 因素 完善
文 献标 识码 : A 、 文章编号 : 1 0 0 3 — 7 7 3 X( 2 0 1 7 ) 0 6 — 0 1 5 2 — 0 2
1 - 3 通 风动 力 通 常可 将矿 井通 风 动 力划 分 为两 大类 型 :一类 是 自然 动 力 , 另 一 类 是 机 械 动力 , 其 中, 自然 动 力 主 要 来 源 于 自然 风压 ,而 季 节与 温度 变 化是 影 响 自然 风 压 的重要 因素 。 在 自然 风压 的作 用之 下 , 矿 井将 会 出现 自然 通风 的现 象 。 为此 , 通 风 中单 纯地依 赖 于 自 然风压 , 极容 易 引发 供 风量 不稳 的问题 , 将 会 直 接影 响矿 井安 全 生产 的顺 利 进行 。机 械动力 主要 包 括三 种类型 , 主扇风 机 、 局扇 风机 、 辅 助风 机 。

论矿井通风系统的可靠性

论矿井通风系统的可靠性

E %
式 中 P 一通风项 目处 于 j i 状态 的概 率 ,
n 系统状态 数 目。 一
式 中 W 为 通风网络中的巷道条数 ; l l为 通风网络的结点数 ;
( 2 )
如果矿 井通风 系统 的工作效率 可理解成通风 系统的风量供 应 程度, 即可通 过 系统 处于 工作状 态 ( 未失效 的平 均深 度与 5s 来进 行 评定 :当 系统处 于工 作状态 ( 未失效 ) e= l 时 i ,当系统 处于 失 效 状态 时 e = l5S , 。矿 井通 风 系统不会 有其 它状态 ,因此 ,系 统 处于一 种状 的概 率可通 过其 可工作 系数 k 来评 定 ,即 1= s S 3 k, , 1= — S根据 公式 (1 3 lk, , 1) E l・ + ( = Ks 1— 5S( )1一 K ) l一 5S (一 ) (2 s一 1 Ks 1 )
Mi w三 .i I _p+ =
= , U/ 1
() 3
() 4
按 照上述矿 井通风 系统可 靠性的 定义 , 井通 风系统丧 失其 矿 若对矿井通风 系统 不 同方案按 公式( 计算 出可靠性 指标 进行 1 ) 工作能 力就 可称作矿井 通风 系统的 失效 。 ’ 比较 , 即可选 择最 可靠 的方案 。 整个 矿井及 其通风 系统应 留有 足够 的备 用系数 , 成部分 其组 这种 方法 比较 简单 。 但使 用这种 方法必须 具备矿 井通风 系统 失效 ( 一个或几个分支 同时失效 ) 通常不至于造成整个矿井通风 网络 的拓 扑值 、巷道长 度 、 通风 设施 的数 目和类 型 , 主要 巷道群 的相 失效 。 大多数 情况 下 , 在 仅发 生通 风 系统 丧失部 分工 作能 力而 已。 对可 工作 系数 、 w , k i 通风 设施 的主要 类型 k c以及仅 仅一个 基 vi 决定 性 因素 。 按照上述 对矿 井通 风系统 失效 的定义 , 靠性 可 wo 拓扑数 值 、 道长 度和 通风设 施 巷 因素可解 释为影 响通 风 系统 风量分 配的 因素 。 最常 见的影响 风量 准巷 道 k 的绝 对可 工作系数 。 很 分 配的 因素有 : 始数据 , 算 方法 , 原 计 通风 网络 各部分 的空 气动 的类 型和数 目 容易获得 相对可 工作 系数可通 过在井下 比较观测 力阻力及其拓扑 结构以及 主要扇风机 装置的 可靠性 。 从可 靠性的 角度来 看 , 决定 通风 系统各部分 空 气动 力阻力的 原始 数据 是否确 实特 别重要 。 这些数 据是 指评 定支架 、 巷道 横断

基于人机工程学的矿井通风系统可靠性分析正式样本

基于人机工程学的矿井通风系统可靠性分析正式样本

文件编号:TP-AR-L4070In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编制:_______________审核:_______________单位:_______________基于人机工程学的矿井通风系统可靠性分析正式样本基于人机工程学的矿井通风系统可靠性分析正式样本使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。

材料内容可根据实际情况作相应修改,请在使用时认真阅读。

摘要:矿井通风系统是矿井生产系统的重要辅助系统,其可靠性高低对矿井生产和安全管理有着直接的影响。

将人机工程学用于矿井通风系统的可靠性的研究,就是用人机系统的观点来研究矿井通风中人、机、环境3个子系统各自的特点及相关性,并给出了矿井通风“人—机—环境”系统可靠性的定义和数学模型。

关键词:人机工程学;通风系统;可靠性矿井通风系统由通风动力及其装置、通风井巷网络、风流检测、控制系统组成。

在生产时期其任务是利用各种动力,以最经济的方式,向井下各用风地点提供足够的新鲜空气,保证工作人员的呼吸,稀释并排除瓦斯等各种有害物质,降低热害,给井下工人创造良好的工作环境;发生事故时,有效地控制风流方向和大小,与其他措施相结合,防止灾害的扩大,进而达到消灭事故的目的。

人们将其实现上述任务的能力程度称为矿井通风的可靠性。

以前的研究为了简化工程求解的难度,系统的可靠性研究只考虑硬件部分的可靠性,而人和环境被认为完全可靠,即可靠度为1。

矿井通风系统可靠性影响因素分析

矿井通风系统可靠性影响因素分析

矿井通风系统可靠性影响因素分析摘要:在矿井的安全生产当中,矿井的通风系统是其中一个比较重要的环节,同时它对于矿井的安全生产也有非常重要的影响。

本文就简要的对矿井通风系统可靠性影响因素进行了分析,希望可供相关参考。

关键词:矿井;通风系统;可靠性;影响;分析一、矿井通风系统可靠性的概念矿井的通风系统是一个很容易受到多方面因素影响的随机、复杂以及非稳定的动态系统。

对矿井通风系统的影响,主要的因素一般就有通风方式或方法是否合理,通风的动力和网络,通风构筑物的一些情况,巷道的封闭与贯通,工作面的转移和推进,自然风压,采取的接替,巷道中的行人、堆积物和行车,生产水平的过渡等一些自然因素。

除了这些主要的自然因素之外,还有一些来自管理方面的因素,例如通风管理的相关规章制度,人员的因素以及通风监测系统的合理利用等。

矿井的通风系统具有一些非常复杂的关联属性,具体的一些表现就是系统的时变性、多环性、强藕合性以及可维修性等,所以矿井的通风系统是很容易产生一些事故的隐患以及随机的故障。

所以要对矿井通风系统的可靠性进行研究,就应该要对整个通风系统的特点以及对通风系统可靠性影响因素进行全面的分析。

二、影响矿井通风系统可靠性的因素(1)、通风动力的因素在矿井的生产过程当中,通风动力一般分成自然动力和机械动力这样两大类。

自然动力的主要来源就是自然的风压。

在地面的四季温度不断变化的过程当中,自然风压也是会随着不断变化的,矿井在自然风压的作用之下产生的自然通风是一种不能避免的自然客观存在的现象,对于矿井的通风,自然风压有的时候会产生有利的作用,但是有的时候自然风压也会产生不利的作用。

如果在一个矿井当中只是依靠自然风压来进行通风的话,因为当自然风压在改变的时候可能也会造成矿井下风流和风向的改变,有的时候甚至会出现风流停滞的情况,所以这样就会使得井下的供风量不是很稳定,对于矿井的安全生产需要是不能够很好的满足。

而机械动力主要就包括了主扇风机、辅助扇风机以及局扇风机。

浅析矿井通风系统可靠性评价问题

浅析矿井通风系统可靠性评价问题
c o a l mi n e v e n t i l a t i o n s y s t e m. An d u s i n g t h e s c r i p t l a n g u a g e o f MA TL AB, t h e c o r r e s p o n d i n g s o twa f r e i s d e v e l o p e d . T h e v e n t i l a t i o n s y s t e m i s e v a l u a t e d , he t r e s u R s s h o w ha t t he t s y s t e m i s v e r y r e l i a b l e , a n d t h e i n l f u e n c e f a c t o r s a r e f o u n d b y he t g r e y r e l a t i o n a l ra g p h , wh i c h ma k e s he t e v a l u a t i o n r e s u l t mo r e i n t u i t i v e a n d a c c u r a t e .
化。
靠性 评价 问题 进行研究 ,希 望能够 与业 界 同仁一起
探讨 ,分享经验 。
( 2) 矿井等积孔 凰 假定在无 限空间有一 薄壁 , 其 上开一面积为 A的孔 口,当孔 口通过 的风量等 于 矿 井风量 ,且两 侧风压差 等于矿井通 风阻力时 ,孔 口的面积 A就 叫该矿井 的等积孔 。 当等积孔 A > 2 时, 为通风容易 时期 ; 当等积孑 L A = I ~ 2时 ,为通风难 易 程度 中等时期 ; 当等积孔 A < I 时通 风能力 可能会 接近满 负荷 状 态 ,而且 由于三 采 区整 体通 风 系统 未形 成 ,1 0 . 3 0 8 A 面与 1 0 . 3 0 8 B面等 待 对接 等 实 际情 况影 响 , 造 成通风 系统不合理 。为 了矿井 的安全 生产和通 风 系统满足 《 煤矿安全规程 》等相关 法律法规 的要求 , 结合 矿井 目前 的生产现状 ,进行全矿井 通风系统优
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文件编号:GD/FS-4869
(解决方案范本系列)
基于人机工程学的矿井通风系统可靠性分析详细版
A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing.
编辑:_________________
单位:_________________
日期:_________________
基于人机工程学的矿井通风系统可
靠性分析详细版
提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。

,文档所展示内容即为所得,可在下载完成后直接进行编辑。

摘要:矿井通风系统是矿井生产系统的重要辅助系统,其可靠性高低对矿井生产和安全管理有着直接的影响。

将人机工程学用于矿井通风系统的可靠性的研究,就是用人机系统的观点来研究矿井通风中人、机、环境3个子系统各自的特点及相关性,并给出了矿井通风“人—机—环境”系统可靠性的定义和数学模型。

关键词:人机工程学;通风系统;可靠性
矿井通风系统由通风动力及其装置、通风井巷网络、风流检测、控制系统组成。

在生产时期其任务是利用各种动力,以最经济的方式,向井下各用风地点
提供足够的新鲜空气,保证工作人员的呼吸,稀释并排除瓦斯等各种有害物质,降低热害,给井下工人创造良好的工作环境;发生事故时,有效地控制风流方向和大小,与其他措施相结合,防止灾害的扩大,进而达到消灭事故的目的。

人们将其实现上述任务的能力程度称为矿井通风的可靠性。

以前的研究为了简化工程求解的难度,系统的可靠性研究只考虑硬件部分的可靠性,而人和环境被认为完全可靠,即可靠度为1。

对“人—机—环境”系统可靠性研究,可以弥补在工程领域可靠性研究只分析硬件可靠性而设定人员为完全可靠的不足,使可靠性的研究更加完善。

事实上,系统的故障既可能是由硬件引起的,也可能是由操作人员的操作失误或者是由于环境条件所引起。

因此,在分析系统的可靠性时,应该对人—机—环境三要素进行综合考虑。

可靠性工程是从20世纪40年代开始迅速发展起来的一门新兴综合学科,涉及数学、物理、化学、电子、机械、经济管理以及人机工程等各个领域,致力于研究提高各种产品的可靠性、维修性和安全性,是一个十分复杂的系统工程。

煤矿安全事故占我国安全事故的比重很大,可靠性是衡量矿井通风系统优劣的重要指标,研究矿井通风系统的可靠性成为现实的需要。

可靠性的高低直接关系到矿井能否安全生产及防止事故的发生。

人机工程学是以人的生理、心理特征为依据,运用系统工程的观点,分析研究人与机械、人与环境及机械与环境之间相互作用,为设计操作简便省力、安全舒适、人—机—环境的配合达到最佳状态的工程系统提供理论和方法的学科。

1系统组成的相互关系
根据“人—机—环境”系统工程理论,任何一个有人参与的工作系统,都称为人—机—环境系统。

在矿井通风系统中,“人”是指参与矿井通风系统的管理者、决策者和维护矿井通风系统正常运转的人员,以及由他们所引起的行为结果,如组织管理和各种规章制度等;“机”为矿井通风系统的各种硬件设施,包括矿井通风动力、矿井通风网络、矿井通风设施、局部通风系统、矿井通风监测系统等;“环境”是指矿井通风系统存在于矿井生产系统这个大环境中,是矿井生产这个大系统中的子系统。

矿井通风系统与其他子系统共同孕育发展,也是“人—机—环境”系统相互作用而构造的整体结果。

矿井生产可能引起如下“环境”变化:采动影响导致顶板塌落,通风巷道变化;瓦斯气体涌入工作空间;粉尘浓度加大;地热、机电设备与地下水等热源
和湿源增加了井下空气的温度与湿度。

这就是矿井生产作用于环境,导致环境的变化过程。

工作环境随着开采过程的动态变化,人机系统的环境不断变化,这种变化的环境又反作用于人与机,引起人—机—环境之间的信息传递不可靠,需要及时的调整以适应环境变化。

有时会引起人—机—环境之间的联系中断,造成事故的发生。

矿井通风系统是以人、机与环境组成的有机系统,而人是这个系统的核心,因为人是机的控制者,同时人又是机的不安全条件和其自身不安全行为导致的事故受害者;由于人、机与环境的缺陷,而造成的事故切断系统实现功能目标的途径,反过来又会对系统造成破坏或者是对设备、人、环境条件的破坏。

2系统可靠性的分析方法
人是安全系统中的一个子系统,要研究人的因
素,就必然涉及所操作的机及其所处的环境,应对由人、机与环境构成的系统进行分析。

在这个系统中,人是核心,人、机与环境各子系统并重。

人、物、环境,即构成事故的三要素。

当三要素相矛盾,即重叠阴影部分为事故必然发生区域。

一般先由物、环境的缺陷形成隐患,人的不安全行为触及后即发生事故。

还表明以下3点:第一,管理可以改善人、物、环境条件和状态;第二,事故对生产任务起否决作用;第三,安全管理重点是三角形ABC危险E域。

这种分析方法全面反映了系统可靠性的现象和本质。

3 发系统可靠性的定义
按照“人—机—环境”系统工程理论,可以将矿井通风“人—机—环境”系统可靠性定义为:由人、机、环境组成的工作系统,在规定的时间内,在规定的条件下,无差错地完成规定任务的能力。

而可
靠性的一个重要的定量指标为可靠度。

因此,“人—机—环境”系统的可靠度可定义为:由人、机、环境组成的工作系统,在规定的时间内,在规定的条件下,无差错地完成规定任务的概率。

上述定义表述为数学公式为:
Rs=N/N0×100%
式中,Rs为系统的可靠度;N0为系统执行任务的总次数;N为系统无差错完成任务的次数。

“人—机—环境”系统可靠性的研究任务,就是试图利用理论计算或实验测试的方式,确定包含有人在内的矿井通风整个系统的可靠度。

矿井通风“人—机—环境”系统的可靠度是受人、机、环境三个因素的影响,也即系统的可靠度是人、机、环境三大因素的函数,其通用表达式为:
Rs=F(Rh,Rm,Re)
式中,Rs为通风系统的可靠度;Rh为人的可靠度;Rm为机的可靠度;Re为环境的可靠度。

由于人的可靠度和机的可靠度都直接受到环境因素的影响,为了便于对系统进行定量评价,这里假定人的可靠度和机的可靠度都是环境的隐函数。

这时矿井系统的可靠度可以简化为:
Rs=F(Rh(e),Rm(e))
式中,Rs为系统的可靠度;Rh(e)为受环境因素影响的人的可靠度;Rm(e)为受环境因素影响的机的可靠度。

由上式可以看出,矿井通风“人—机—环境”系统的可靠度可以简化成由人的可靠度和机的可靠度两部分组成。

假定某矿井通风系统,根据实测和统计分析其人的可靠度为Rh(e)=0.78,机的可靠度Rm
(e)=0.85,则有:Rs=Rh(e)×Rm(e)=0.78×0.85=0.663。

为了提高系统的可靠度,若单纯只对机器进行改进,并将其可靠度提高到Rm=0.999,则系统的可靠度为0.779。

由此可见,即使花费很大的投资来单纯提高机器的可靠度,而不去提高人的可靠度,那么系统的总体可靠性仍然得不到明显改善。

4结语
对由人、机与环境组成的通风系统可靠性,除了研究机的可靠性之外,还应该对人和环境的可靠性进行全面而深入的研究。

只有这样,才能对系统的可靠性获得全面的了解,并运用电子技术、专家系统等方法来全面提高矿井通风系统的可靠性。

可在这里输入个人/品牌名/地点
Personal / Brand Name / Location Can Be Entered Here。

相关文档
最新文档