比较指数式大小的常用方法
专题04比较大小(解析版)

《比较大小》专项突破高考定位比较大小题型每年必考,而且以多种形式出现,可以囊括高中各部分知识,综合性极强,该题型很好的考察了学生的综合素养。
考点解析(1)特殊值法(2)单调性法(3)基本不等式法(4)放缩法(5)图像法(6)作差法(7)作商法(8)构造法(9)反证法题型解析类型一、特殊值法例1-1.已知111,,,a b a M a N a P b a b <<===,则,,M N P 的大小关系正确的为() A .N M P << B .P M N <<C .M P N <<D .P N M <<【答案】B【分析】根据指数函数与幂函数的单调性即可求解.【详解】 解:111a b <<,01b a ∴<<<,∴指数函数x y a =在R 上单调递减,b a a a ∴>,即N M >,又幂函数a y x =在()0,∞+上单调递增,a a ab ∴>,即M P >,N M P ∴>>,故选:B.例1-2.设02x π<<,记lnsin a x =,sin b x =,sin x c e =,则比较a ,b ,c 的大小关系为( ) A .a b c <<B .b a c <<C .c b a <<D .b c a << 【答案】A【分析】 根据02x π<<,得到()sin 0,1b x =∈,再利用对数函数和指数函数的性质判断.【详解】 因为02x π<<,所以()sin 0,1b x =∈,lnsin 0a x =<,sin 1x c e =>,所以a b c <<,故选:A例1-3.已知()()2221,2,2,2,2x x xx a b c ∈===,则,,a b c 的大小关系为( ) A .a b c >>B .b c a >>C .b a c >>D .c a b >> 【答案】B【分析】根据指数函数的单调性,将问题转化为比较当()1,2x ∈时2,2,2x x x 的大小,利用特值法即可求得结果.【详解】因为()2222x x b ==,函数2x y =是单调增函数,所以比较a ,b ,c 的大小,只需比较当()1,2x ∈时2,2,2x x x 的大小即可.用特殊值法,取 1.5x =,容易知3222.25,23,22x x x ===,再对其均平方得()()()2222232.25 5.0625,29,228x x x =====, 显然()()()22232229228 2.25 5.0625x x x =>==>==, 所以222x x x >>,所以b c a >>故选:B.【点睛】本题考查利用指数函数的单调性比较指数式的大小关系,属基础题.本题解题的关键在于将问题转化为比较当()1,2x ∈时2,2,2x x x 的大小,再通过特殊值法即可得答案.例1-4.设0x y >>,1x y +=,若1ya x ⎛⎫= ⎪⎝⎭,1log xyb xy ⎛⎫ ⎪⎝⎭=,1log yc x =,则实数a ,b ,c 的大小关系是( )A .a b c <<B .b a c <<C .b c a <<D .c b a <<【答案】C【分析】利用0x y >>,1x y +=可知01y x <<<,结合不等式性质知11x >,01xy <<,1111xy y x >>>,再利用指数函数、对数函数的性质直接求解.【详解】 0x y >>,1x y +=,01y x ∴<<<利用不等式性质可知11x>,01xy <<,1111xy y x >>>, ∴011()()1y a x x=>=,1()log 10xy b xy ==-<,111log 1log log 1y y y c x y =>>=-, ∴实数a ,b ,c 的大小关系为b c a <<.故选:C.【点睛】方法点睛:本题考查指数对数的大小判断,判断方法:解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1,考查学生的转化能力,属于基础题.类型二、单调性法例2-1.设233344443,,332a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .a c b >>B .a b c >>C .c b a >>D .b c a >> 【答案】C【分析】 根据指数函数43⎛⎫= ⎪⎝⎭x y 与幂函数34y x =的单调性判断,,a b c 的大小关系. 【详解】 因为函数43⎛⎫= ⎪⎝⎭x y 在R 上是增函数,所以23344433<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,即a b <,又因为函数34y x =在(0,)+∞上是增函数,所以33444332⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以b c <,故a b c <<.故选:C练.已知 4.10.90.1445,,554a b c -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则这三个数的大小关系为( ) A .a c b >>B .b c a >>C .c a b >>D .c b a >> 【答案】B【分析】 利用指数函数的单调性即可比较大小.【详解】0.90.94554b -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 因为54xy ⎛⎫= ⎪⎝⎭在R 上单调递增﹐则1b c >>, 又 4.1044155a ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭. 故b c a >>.故选:B.练.设3log πa =,32log 2b =,1ln e 4c =,则a ,b ,c 大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >> 【答案】B【分析】根据指数函数、对数函数的性质判断可得;【详解】解:因为1ln ln10e<=,所以1ln 0e 0441<<=,即01c <<,又2333332log 2log 2log 4log log 31π==>>=,即1b a >>,所以b a c >>;故选:B类型三、简单同构法(同底、同指、同真、同分母、同分子等)例3-1.已知43a =,3log 4b =,0.13c -=,则a 、b 、c 的大小关系为( ) A .a b c >>B .c b a >>C .b a c >>D .a c b >> 【答案】A【分析】 首先根据题意得到4333log 3log 4>,从而得到a b >,又根据3log 41b =>,100.313c -<==,从而得到b c >,即可得到答案.【详解】 因为4334log 33a ==, 344333=3=81464⎛⎫>= ⎪⎝⎭, 所以4333log 3log 4>,即a b >.又因为33log 4log 31b =>=,100.313c -<==,即b c >,所以a b c >>.故选:A练.已知2516log 3,log 9,0.3a a b c -===,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a【答案】D【分析】 利用对数运算、指数运算化简,b c ,结合对数函数的性质比较三者的大小关系.【详解】22444log 3log 3log 41b ==<=,所以01a b <<<,5555325log log log 5253log 32231010100.30.3110333a c --⎛⎫⎛⎫⎛⎫====>=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以cb a >>.故选:D例3-2.已知ln 22a =,ln33b =,ln 55c =,则a ,b ,c 的大小关系为( ) A .a b c <<B .a c b <<C .b a c <<D .c a b <<【答案】D【分析】运用比差法分别比较,a b 与,a c ,进而可得结果.【详解】 因为ln 2ln 33ln 22ln 3ln8ln 902366a b ---=-==<,所以a b <; 又ln 2ln 55ln 22ln 5ln 32ln 250251010a c ---=-==>,所以a c >, 所以c ab <<.故选:D.练.已知12019ln 20202020a =+,12020ln 20212021b =+,12021ln 20222022c =+,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c b a >>D .c a b >>【答案】A【分析】根据三个数的形式,构造函数,利用导数判断函数的单调性,最后根据单调性进行比较大小即可.【详解】构造函数()ln 1f x x x =+-,()111x f x x x -'=-=,当01x <<时,()0f x '>, ()f x 单调递增,所以111202*********f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b c >>. 故选:A练.已知ln 22a =,1b e =,ln 33c =,则a 、b 、c 的大小关系为( ) A .b c a <<B .c a b <<C .a c b <<D .c b a << 【答案】C【分析】结合导数求()ln x f x x=的单调性,可判断,b a b c >>,令a c -,结合对数的运算性质可判断出c a >,从而可选出正确答案.【详解】解:设()ln x f x x =,则()21ln x f x x-'=,当0x e <<时,()0f x '>; 当x e >时,()0f x '<,则()f x 在()0,e 上单调递增,在(),e +∞上单调递减,则当x e =时,()max ln 1e f x e e ==,即,b a b c >>; ln 2ln 33ln 22ln 3ln8ln 902366a c ---=-==<,则c a >,所以bc a >>, 故选:C .【点睛】思路点睛:比较几个数的大小关系时,常用的思路是:1、求出函数的单调性,结合增减性进行判断;2、利用作差法,判断两数与零的关系;3、利用作商法,判断两数与1的关系.练.已知7log 22a =,7log 33b =,7log 66c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .b a c >>C .a c b >>D .b c a >> 【答案】B【分析】先把a 、b 、c 化为“同构”形式,利用函数的单调性判断大小.【详解】∵log log m a a m b b =, ∵777log lo 6g 23g 2826lo a ===, 777log 3lo 6g 2g 3936lo b ===7log 66c = 因为7log y x =为增函数,所以777log 6log 8log 9<<,所以b a c >>.故选:B【点睛】指、对数比较大小:(1)结构相同的,构造函数,利用函数的单调性比较大小;(2)结构不同的,寻找“中间桥梁”,通常与0、1比较.练.已知e a =,33log e b =,5ln 5c =,则a ,b ,c 的大小关系为( ) A .c a b <<B .a c b <<C .b c a <<D .a b c <<【答案】D【分析】 设()ln x f x x =,e x ≥,利用导数判断函数的单调性,利用函数的单调性比较函数值的大小; 【详解】解:设()ln x f x x=,e x ≥,则()2ln 10(ln )x f x x -'=≥恒成立,∵函数()f x 在[e )+∞,上单调递增,又(e)a f =,333log e (3)ln 3b f ===,5(5)ln 5c f ==,∵e 35<<,()()()e 35f f f ∴<<,∵a b c <<,故选:D . 例3-3.已知0a b c d <<<<,若c a a c =,则d b 与b d 的大小关系为( )A .d b b d <B .d b b d =C .d b b d >D .不确定【分析】由c a a c =得ln ln a c a c =,构造新函数ln x y x =,利用导数讨论ln x y x =的单调性,从而判断出ln ln ln b c d b c d >>,即可 得到d bb d >.【详解】因为c a a c =,所以ln ln c a a c =,即ln ln aca c =, 设ln x y x =,则21ln x y x -'=,令21ln xy x -'==0,得x e =,当(0,)x e ∈时,0y '>,ln xy x =单调递增,当(,)x e ∈+∞时,0y '<,ln xy x =单调递减; 因为ln ln aca c =,0abcd <<<<,所以ae c <<, 所以ln ln ln b cdb c d >>,即d b b d >.故选:C.【点睛】指、对数比较大小:(1)结构相同的,构造函数,利用函数的单调性比较大小;(2)结构不同的,寻找“中间桥梁”,通常与0、1比较.练.若e a =π,3e b =,3c π=,则a ,b ,c 的大小关系为() A .b a c << B .a b c << C .c a b <<D .b c a << 【答案】A首先利用指数函数和幂函数的单调性得到b c <和a b >,再构造函数,利用导数得到函数的单调性得到a c <,即可得到答案.【详解】因为3x y =在R 上为增函数,所以33e π<,即b c <.因为e y x =在(0,)+∞为增函数,所以3e e π>,即a b >. 设ln ()x f x x=, 21ln ()x f x x -'=,令()0f x '=,x e =. (0,)x e ∈,()0f x '>,()f x 为增函数,(,)x e ∈+∞,()0f x '<,()f x 为减函数.则()(3)f f π<,即ln ln 33ππ<,因此3ln ln3ππ<, 即3ln ln 3ππ<,33ππ<.又33e πππ<<,所以a c <.所以b a c <<.故选:A【点睛】本题主要考查指数和幂的比较大小,利用导数得到函数的单调性来比较大小为解决本题的关键,属于中档题.练.已知5ln 4a π=,4ln5b π=,45ln c π=,则a ,b ,c 的大小关系是A .c b a <<B .c a b <<C .b a c <<D .a b c <<【答案】C令ln ()()x f x x e x=≥,利用导数研究函数的单调性即可得出a ,b ,c 的大小关系. 【详解】 解:令ln ()()x f x x e x =≥,21ln ()x f x x -'=, 可得函数()f x 在(),e +∞上单调递减,ln 4ln 5,5ln 44ln 5,45a b ππππ∴>∴>∴>, 同理可得:44ln ln 4,4ln ln 4,4,5ln 5ln 4,4c a ππππππππ>∴>∴>∴>∴>, ∵b a c <<.故选:C.【点睛】 本题考查了利用导数研究函数的单调性、对数函数的单调性,考查了推理能力与计算能力,属于中档题.类型四、中间量例4-1.若0.80.2a =,0.20.8b =,0.31.1c =,lg0.2d =,则a ,b ,c ,d 的大小关系是( ) A .c b a d >>>B .c a b d >>>C .b c a d >>>D .a c b d >>>【答案】A【分析】由指数函数、幂函数以及对数函数的单调性比较大小即可.【详解】由指数函数的单调性知:0.20.80.20.2>,0.301.1 1.11>=由幂函数的单调性知:0.20.20.80.2>,所以0.20.20.810.80.20.20c b a >>=>>=>,又由对数函数的单调性可知:lg 0.2lg10d =<=综上有:c b a d >>>.故选:A例4-2.已知1253a -⎛⎫= ⎪⎝⎭,2log 5b =,3log 7c =,则a ,b ,c 的大小顺序是( ) A .a b c >>B .c a b >>C .c b a >>D .b c a >> 【答案】D【分析】 由11225335-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,22log 5log 4>,333log 3log 7log 9<<判断.【详解】 因为112253135a -⎛⎫⎛⎫==< ⎪ ⎪⎝⎭⎝⎭,22log 5log 42b =>=,3331log 3log 7log 92c =<=<=,所以b c a >>故选:D练.已知a =b =2log 3c =,则a ,b ,c 的大小关系为( )A .b a c >>B .a c b >>C .a b c >>D .b c a >>【答案】C【分析】根据指数运算与对数的性质,求得2a >,2b <,12c <<,再结合22log log 3b c ==,利用对数函数的单调性,即可求解.【详解】根据指数运算与对数运算的性质,可得122a =>=,2b =<,2log 3(1,2)c =∈,设22log log 3b c =,因为函数2log y x =为增函数,由于8523>,所以b c >,所以a b c >>.故选:C.练.已知0.352,ln 2,2a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .c b a >>C .b c a >>D .c a b >> 【答案】B【分析】根据指数式与对数式互化公式,结合指数函数和对数函数的性质进行判断即可.【详解】由51log 2log log 522a a a =⇒==<,由112b >>>,0.312c =>,所以c b a >>, 故选:B类型五、放缩法例5-1.若1(,1)x e -∈,ln a x =,ln 1()2x b =,ln 2x c =,则a ,b ,c 的大小关系为( ) A .c b a >>B .b a c >>C .a b c >>D .b c a >>【答案】D【分析】 先利用ln y x =的单调性求出a 值范围;再利用2x y =的单调性比较b 和c 的大小而得解.【详解】因1(,1)x e -∈,且函数ln y x =是增函数,于是10a -<<;函数2x y =是增函数,1ln 0ln 1x x -<<<-<,而ln ln 1()22x x -=,则ln 11()22x <<,ln 1212x <<,即1122c b <<<<, 综上得:b c a >>故选:D练.设02x π<<,记lnsin a x =,sin b x =,sin x c e =,则比较a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .b c a << 【答案】A【分析】 根据02x π<<,得到()sin 0,1b x =∈,再利用对数函数和指数函数的性质判断.【详解】 因为02x π<<,所以()sin 0,1b x =∈,lnsin 0a x =<,sin 1x c e =>,所以a b c <<,故选:A练.已知sin3a =,3log sin 3b =,sin33c =,则a ,b ,c 的大小关系是() A .a b c >> B .b a c >>C .c a b >>D .c b a >>【答案】C【分析】利用指数函数、对数函数以及三角函数值即可得出选项.【详解】 因为32ππ<<,所以()sin30,1a =∈,33log sin 3log 10b =<=,sin30331c =>=,所以c a b >>.故选:C练.已知0.32=a , 1.12.3b =,3log 6c =,则a ,b ,c 的大小关系为()A .c a b <<B .c b a <<C .a c b <<D .b c a <<【答案】C【分析】根据指数函数,对数函数的单调性来判断数值大小.【详解】由对数及指数的单调性知:0.30.522 1.414a =<=, 1.12.3 2.3b =>,332log 6log 1.5c >=>,所以a ,b ,c 的大小关系为a c b <<.故选:C.类型六、比较法例6-1作差法.设2log 3a =,32log 2b =,32log 2c =-,则a ,b ,c 的大小顺序为( )A .b c a <<B .c b a <<C .a b c <<D .b a c <<【答案】A【分析】 先通过变形3339log 9log 2log 2c =-=,而332log 2log 4b ==,故可判断,b c 大小,再作差利用基本不等式有23log 3log 2220a c -=+->=即可得解.【详解】 由33333392log 2log 9log 2log log 42log 22c b =-=-=>==,23log 3log 222220a c -=+->>-=,所以a c >,所以a c b >>,故选:A.【点睛】本题考查了对数函数的比较大小,对数函数的比较大小是高考中重点考查对象,考查了利用中间量以及作差法比较大小,考查了变形转化以及对数的运算能力,比较大小有以下几种方法:(1)利用函数单调性比较大小;(2)中间量法比较大小;(3)作差法、作商法比较大小.例6-2作商法.已知0.75a =,52log 2=b ,21log 32=c ,则a 、b 、c 的大小关系是( ) A .a c b <<B .a b c <<C .b a c <<D .c b a <<【答案】A【分析】 根据对数的运算法则及性质比较,b c 与a 的大小,利用作商法比较,b c 的大小.【详解】 由30.754a ==, 因为3444(5)1254256=<=,故3454<,所以3455log 5log 4a b =<=,因为3444(2)89=<=,故342<所以3422log 2log a c =<= 因为58165>,故85165>,因为5832<,故8532<, 所以8555558225222log 24log 2log 16log 511log 3log 3log 3log 22b c ===>=, 所以b c >,故a c b <<,故选:A【点睛】关键点点睛:根据对数的运算性质将a 写成对数345log 5,342log 2,利用函数的单调性比较真数大小即可,利用作商及放缩的方法可得,b c 的大小,属于较难题目. 练.已知1ln 23a =,24log 25b =,25log 26c =,则a ,b ,c 的大小关系为 A .a b c >>B .a c b >>C .c b a >>D .b c a >> 【答案】D【分析】 先由题,易知1ln 231a =<,而2425log 251,?log 261b c =>=>,再将b ,c 作商,利用对数的运算以及基本不等式,求得比值与1作比较即可得出答案.【详解】 因为1ln 02<,故1ln 231a =< 2425log 251,?log 261b c =>=>2225252525252524log 26log 26log 241log 26log 24()[log (251)(251)]1log 2524c b +==⋅<=+⋅-< 所以c b < ,即b c a >>故选D【点睛】本题考查了对数的运算以及基本不等式的综合,解题的关键是在于运算的技巧以及性质,属于中档偏上题型.类型七、图像法例7-1.若()122211log ,0,222a b c a b b c -⎛⎫⎛⎫==>= ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .c a b <<B .c b a <<C .a c b <<D .b c a <<【答案】B【分析】 分别画出函数1221(),log ,2x y y x y x ===的图象,由图象交点坐标,即可判断得出,,a b c 的大小关系.【详解】分别画出函数1221(),log ,2x y y x y x ===的图象,如图所示, 由图象,可得c b a <<.故选:B.练.若44log x x -=,144log y y =,44log 0z z -+=,则实数x ,y ,z 的大小关系为( ) A .x y z <<B .z y x <<C .z x y <<D .y z x <<【答案】D【分析】 利用指数与对数函数的单调性,确定各方程根的范围,进而比较它们的大小.【详解】对于44log x x -=,由()4x f x -=与4()log g x x =有交点,()f x 过一、二象限,()g x 过一、四象限,∵()f x 与()g x 的交点必在第一象限且()f x 单调递减、()g x 单调递增,而1(1)(1)04f g =>=,11(2)(2)162f g =<=,可得()1,2x ∈,对于144log y y =,由()4y m y =与14()log n y y =有交点,()m y 过一、二象限,()n y 过一、四象限,∵()m y 与()n y 的交点必在第一象限且()m y 单调递增、()n y 单调递减,而(0)1m =,0lim ()y n y +→→+∞,111()2()222m n =>=,可得10,2y ⎛⎫∈ ⎪⎝⎭, 对于44log 0z z -+=,显然有12z =, ∵x ,y ,z 的大小关系为y z x <<,故选:D.例7-2.已知,,(0,)a b c ∈+∞,且ln 1a a =-,ln 1b b =,e 1c c =,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .c a b <<D .b a c <<【答案】C【分析】由题意可得ln 1a a =-,1ln b b =,1e c c =.依次作出e x y =,ln y x =,1y x =-,1y x =在(0,)+∞上的图像,然后根据函数图像可求得答案【详解】ln 1a a =-,1ln b b =,1e c c =.依次作出e x y =,ln y x =,1y x =-,1y x =在(0,)+∞上的图像,如图所示.由图像可知01c <<,1a =,1b >,所以c a b <<.故选:C.练.正实数a ,b ,c 满足22a a -+=,33b b +=,4log 4c c +=,则实数a ,b ,c 之间的大小关系为( )A .b a c <<B .a b c <<C .a c b <<D .b c a <<【答案】A【分析】将22a a -+=,33b b +=,4log 4c c +=,转化为函数13x y =+,122x y =+,4log y x =与4y x =-的图象交点的横坐标,利用数形结合法求解.【详解】4log 4c c +=4log 4c c ⇒=-,即c 为函数4log y x =与4y x =-的图象交点的横坐标,33b b +=134b b ⇒+=-,即b 为函数13x y =+与4y x =-的图象交点的横坐标,22a a -+=1242a a ⇒+=-,即a 为函数122x y =+与4y x =-的图象交点的横坐标, 在同一坐标系中画出图象,如图所示:由图象可知:b a c <<.故选:A.练.已知5630x y ==,log x z y =,则x ,y ,z 的大小关系为( )A .x y z <<B .z y x <<C .y x z <<D .z x y <<【答案】B【分析】首先对5630x y ==取对数,可比较x ,y 的大小关系,利用对数的运算判断,x y 与1的大小关系,即可利用单调性判断z 的范围,进而可得出x ,y ,z 的大小关系.【详解】对5630x y ==两边同时取常用对数可得lg 5lg 6lg 30x y ==, 所以lg 30lg 5x =,lg 30lg 6y =, 因为lg y x =在()0,∞+单调递增,所以0lg5lg6<<,所以lg30lg30lg5lg 6>,即x y >, 又因为5lg30lg5lg 61log 61lg5lg5x +===+>, 6lg30lg5lg 61log 51lg 6lg 6y +===+>, 所以0log log 1x x z y x <=<=,所以z y x <<.故选:B.【点睛】关键点点睛:本题解题的关键点是取对数判断x ,y 的大小关系,判断x 与1的关系利用单调性得出z 的范围.类型八、方程中隐含条件例8-1.已知正数x ,y ,z 满足ln z x y ye zx ==,则x ,y ,z 的大小关系为( ) A .x y z >>B .y x z >>C .x z y >>D .以上均不对【答案】A【分析】将z 看成常数,然后根据题意表示出,x y ,再作差比较出大小即可【详解】解:由ln z x y ye zx ==,得ln x y zx =,则ln z y =,得z y e =, 所以z ze e zx ⋅=,所以2ze x z =,令()(0)z f z e z z =->,则()10z f z e -'=>,所以函数()f z 在(0,)+∞上单调递增,所以0()(0)01f z f e >=-=,所以z e z >,即y z > 所以22()0z z z z z z e e ze e e z x y e z z z---=-==>, 所以x y >,综上x y z >>,故选:A练.设正实数a ,b ,c ,满足2ln 2a c e b b ce ===,则a ,b ,c 的大小关系为( ) A .a b c <<B .a c b <<C .c a b <<D .b a c <<【答案】B【分析】通过构造函数()(0)x f x xe x =>,利用导数判断函数的单调性,并判断c 的范围,通过变形得c b e =,得,b c 的大小关系,再直接解方程求a 的范围,最后三个数比较大小.【详解】设()(0)x f x xe x =>,0x >时,()()10x f x x e '=+>恒成立,()f x 在(0,)+∞单调递增,1,12x ⎛⎫∈ ⎪⎝⎭时,()f x e ⎫∈⎪⎝⎭,2<,所以1,12c ⎛⎫∈ ⎪⎝⎭,ln ln ln b c b b b e ce =⋅=,故ln b c =,即)c b e e =∈,而ln 2122a =<,所以a c b <<. 故选:B【点睛】关键点点睛:本题的关键是构造函数()(0)x f x xe x =>,并且根据指对互化ln ln ln b b b b e =⋅,这样根据单调性可得ln b c =.练.设x ,y ,z 为正实数,且235log log log 1x y z ==>,则2x ,3y ,5z 的大小关系是( ) A .532z y x << B .235x y z << C .325y x z << D .235x y z == 【答案】B【分析】,,x y z 为正实数,且235log log log 1x y z k ===>,可得:22,33,55k k k x y z =>=>=>,然后变形,构造函数,利用幂函数的单调性即可得出.【详解】,,x y z 为正实数,且235log log log 1x y z k ===>,可得22,33,55k k k x y z =>=>=>. ∵11121,31,51235k k k x y z ---=>=>=>, 令()1k f x x -=,又()f x 在()0+∞,上单调递增, ∵()()()532f f f >>,即532z y x >>, 故选:B .【点睛】 关键点睛:本题的关键是指数式与对数式的互化、构造幂函数并运用其的单调性. 例8-2.已知a 、b 、c 均为不等于1的正实数,且ln ln a c b =,ln ln c b a =,则a 、b 、c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .a c b >>【答案】A【分析】分析可知,ln a 、ln b 、ln c 同号,分a 、b 、()0,1c ∈和a 、b 、()1,c ∈+∞两种情况讨论,结合对数函数的单调性可得出a 、b 、c 的大小关系.【详解】ln ln a c b =,ln ln c b a =,且a 、b 、c 均为不等于1的正实数, 则ln a 与ln b 同号,ln c 与ln a 同号,从而ln a 、ln b 、ln c 同号.∵若a 、b 、()0,1c ∈,则ln a 、ln b 、ln c 均为负数,ln ln ln a c b b =>,可得a b >,ln ln ln c b a a =>,可得c a >,此时c a b >>;∵若a 、b 、()1,c ∈+∞,则ln a 、ln b 、ln c 均为正数,ln ln ln a c b b =>,可得a b >,ln ln ln c b a a =>,可得c a >,此时c a b >>.综上所述,c a b >>.故选:A.【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个:(1)判断各个数值所在的区间;(2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.练.已知大于1的三个实数,,a b c 满足2(lg )2lg lg lg lg 0a a b b c -+=,则,,a b c 的大小关系不可能是( )A .a b c ==B .a b c >>C .b c a >>D .b a c >> 【答案】D【分析】令()22lg lg lg f x x x b b c =-+,则lg a 为()f x 的零点,根据判别式可得b c ≥,就b c =和b c >分类讨论后可得,,a b c 的大小关系.【详解】令()22lg lg lg f x x x b b c =-+,则lg a 为()f x 的零点且该函数图象的对称轴为lg x b =,故24lg 4lg lg 0b b c ∆=-≥,因为1,1b c >>,故lg 0,lg 0b c >>,所以lg lg b c ≥即b c ≥.又()()()()22lg lg lg lg lg lg lg ,lg lg lg lg lg lg lg f b b c b b c b f c c b c c c b =-=-=-=-,若b c =,则()()lg lg 0f b f c ==,故lg lg lg a b c ==即b c =.若b c >,则()()lg 0,lg 0f b f c <<,所以lg lg a c <或者lg lg b a <,即a c b <<或a b c >>.故选:D.【点睛】本题考查二次函数的零点,注意先根据方程的形式构建二次函数,再利用零点存在定理来讨论,注意合理分类,本题为中档题.例8-3.已知22,32a b a b +=+=,则lg b a 与lg a b 的大小关系是( )A .lg lg b a a b <B .lg lg b a a b =C .lg lg b a a b >D .不确定【答案】C【分析】 令()()2,3x x f x x g x x =+=+,结合题意可知01b a <<<,进而有b b a a b b >>,再利用对数函数的单调性和运算性质即可求解【详解】令()()2,3x x f x x g x x =+=+,则当0x >时,()()g x f x >,当0x <时,()()g x f x <;由22,32a b a b +=+=,得()()2,2f a g b ==考虑到()()2f a g b ==得01b a <<<,b b a a b b ∴>>由b a a b >,得()()lg lg b aab >, 即lg lg b a a b >故选:C练.设实数a ,b 满足51118a b a +=,7915a b b +=,则a ,b 的大小关系为( ) A .a b <B .a b =C .a b >D .无法比较 【答案】A【分析】从选项A 或C 出发,分析其对立面,推理导出矛盾结果或成立的结果即可得解.【详解】假设a b ≥,则1111a b ≥,77a b ≥,由51118a b a +=得51151118()()11818a a a a a +≥⇒+≥, 因函数511()()()1818x x f x =+在R 上单调递减,又51116(1)1181818f =+=<,则()1(1)f a f ≥>,所以1a <;由7915a b a +=得797915()()11515b b b b b +≤⇒+≤, 因函数79()()()1515x x g x =+在R 上单调递减,又7916(1)1151515g =+=>,则()1(1)g b g ≤<,所以1b >;即有1a b <<与假设a b ≥矛盾,所以a b <,故选:A【点睛】思路点睛:应用反证法解决问题时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.巩固训练(精选以一敌百)1.(多选)(2022·全国·高三期中)已知a ,b 为正数,且1a b -=,则( ) A .221a b +<B .331a b ->C .222log log 2-<a bD .211b b a+> 【答案】BD【详解】由于1a b -=,取1,2b a ==,代入四个选项对于A :221a b +<,左边2251a b +=>故A 错误;对于C ,222log log 2a b -=,故C 错误2.(多选)(2022·江苏·南京市第一中学高三期中)已知实数,,x y z 满足ln 1y z x z e ⋅=⋅=.则下列关系式中可能成立的是( )A .x y z >>B .x z y >>C .z x y >>D .z y x >> 【答案】ABC 设1ln y x e k z ===,0k >,则k x e =,ln y k =,1z k=,画出函数图象,如图所示:当1k x =时,z x y >>;当2k x =时,x z y >>;当3k x =时,x y z >>; 故选:ABC。
指对数比较大小8种常考题型总结-高一数学(人教A版2019必修第一册)

第20讲 指对数比较大小8种常考题型总结【知识点梳理】指数和对数的比大小问题成为了高考和模拟题的一些拉档题,这里我们重点介绍几种比大小方法,让大家充分了解掌握一些指数对数大小比较的常用方法.(1)利用指数对数单调性比较大小;当底数一样或者可以化成一样,直接利用单调性比较即可 (2)利用指数对数函数图象关系比较大小(2)比较与0,1的大小关系,此类题目一般会放在单选第5题左右位置,比如12.02.0003.0=<<,12.0log 3.0log 1log 02.02.02.0=<<=(3)取中间值,比如遇到两个数都在0到1之间,我们可以比较它们与21的大小等 (4)去常数再比大小当底数和真数出现了倍数关系时候,需要将对数进行分离常数再比较.例如:log log 1log log n a a a a ma m ma m n =+=+;.(5)当真数一样我们考虑用换底公式,换为底数一样,再比较分母,如2ln =a 和2log 3=b ,e a 2log 12ln ==,3log 12log 23==b ,因为e 22log 3log >,所以b a > (6)乘倍数比较数的范围比较大小,比如3log 2=a 和4log 3=b ,则()5,427log 3log 3322∈==a ,()4,364log 4log 3333∈==b ,所以b a 33>,所以b a >(7)构造函数,利用函数的单调性比价大小 【题型目录】题型一:直接利用单调性比较大小 题型二:比较与1,0的大小关系 题型三:取中间值比较大小 题型四:利用换底公式比较大小 题型五:分离常数再比较大小 题型六:利用均值不等式比较大小题型七:乘倍数比较数的范围比较大小 题型八:构造函数比大小 【典型例题】题型一:直接利用单调性比较大小【例1】(2022·湖南邵阳·高一期末)已知222log 0.6,log 0.8,log 1.2a b c ===,则( ) A .c b a >>B .c a b >>C .b c a >>D .a b c >>【答案】A【分析】由对数函数得单调性即可得出结果. 【详解】∵2log y x =在定义域上单调递增, ∵222log 0.6log 0.8log 1.2<<,即c b a >>. 故选:A.【例2】(2022·全国·高三专题练习)已知2log 3a =,4log 6b =,8log 9c =,则a 、b 、c 的大小顺序为( ) A .a b c << B .a c b <<C .c b a <<D .b c a <<【答案】C【分析】先利用对数运算法则进行化简,再用函数单调性比较大小.【详解】42log 6log 6b ==,又382log 9log 9c ==,因为3369>>,2log y x =单调递增,所以c b a <<. 故选:C 【题型专练】1.(2022·广东珠海·高一期末)下列选项正确的是( ) A .22log 5.3log 4.7< B .0.20.2log 7log 9<C .3πlog πlog 3>D .log 3.1log 5.2(0a a a <>且1)a ≠【答案】C【分析】利用对数函数的单调性逐项判断可得答案.【详解】对于A ,因为2=log y x 是单调递增函数,所以22log 5.3log 4.7>,故A 错误; 对于B ,因为0.2=log y x 是单调递减函数,所以0.20.2log 7log 9>,故B 错误; 对于C ,因为33ππ3=1,1log πlog log 3log π><=,所以3πlog πlog 3>,故C 正确; 对于D ,当01a <<时,=log a y x 是单调递减函数,当1a >时,=log a y x 是单调递增函数, 所以当01a <<时,log 3.1log 5.2>a a ,当1a >时,log 3.1log 5.2<a a ,故D 错误. 故选:C.2.(2022·全国·高一单元测试)已知2log 3a =,ln 2b =,2log πc =,则a ,b ,c 的大小关系为( ) A .a b c >> B .c a b >>C .a c b >>D .c b a >>【答案】B【分析】根据对数函数的单调性并借助1比较即可求解.【详解】解:因为()2log f x x =为单调递增函数,所以22log πlog 31>>. 因为ln 21<,所以c a b >>. 故选:B .3.(2022·江西·上高二中模拟预测(文))已知1ln 3a=,33log 5log 2b =-,3c =a ,b ,c 的大小关系为( ) A .a c b >> B .b c a >> C .c a b >> D .c b a >>【答案】C【分析】根据对数的运算及对数函数的性质计算可得;【详解】解:2ln 3ln 3c ==,21ln e ln 3ln e 2=<<=,即12c <<, 又1ln 3a =,所以31ln elog e ln 3ln 3a ===,所以112a <<, 3335log 5log 2log 2b =-=,33315log 3log log 3122=<<=,即112b <<, 又5e 2>,所以335log e log 2>,即a b >, 综上可得c a b >>; 故选:C4.(2022·内蒙古·阿拉善盟第一中学高一期末)已知0.919x =,2log 0.1y =,2log 0.2z =,则( ) A .x y z >> B .x z y >>C .z x y >>D .z y x >>【答案】B【分析】利用指数函数和对数函数的性质比较大小即可 【详解】因为9x y =在R 上为增函数,且0.910>, 所以0.910991>=,即1x >,因为2log y x =在(0,)+∞上为增函数,且0.10.21<<, 所以222log 0.1log 0.2log 10<<=,即0y z <<, 所以x z y >> 故选:B.题型二:比较与1,0的大小关系【例1】(2022·甘肃酒泉·高二期末(理))若1223a ⎛⎫= ⎪⎝⎭,1ln 2b =,0.20.6c -=,则a ,b ,c 的大小关系为( ) A .c b a >> B .c a b >> C .b a c >> D .a c b >>【答案】B【分析】分别根据23xy ⎛⎫= ⎪⎝⎭、ln y x =、0.6x y =的单调性,比较a ,b ,c 与0、1的大小,即可比较【详解】23xy ⎛⎫= ⎪⎝⎭在(),-∞+∞上是减函数,12220133a ⎛⎫⎛⎫<== ⎪⎪⎝⎭⎝⎭< ; ln y x =在()0,+∞上是增函数,1lnln102b =<=; 0.6x y =在(),-∞+∞上是减函数,0.200.60.61c -=>=,故c a b >>, 故选:B【例2】(2022·全国·高一课时练习)已知0.3123log 2,log 3,2a b c -===,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【分析】利用函数的单调性判断出0a <,1b >,01c <<,即可得到正确答案. 【详解】因为13log y x=为减函数,所以1133log 2log 10a =<=,即0a <;因为2log y x =为增函数,所以22log 321log b =>=,即1b >; 因为2x y =为增函数,所以0.300221c -<=<=,即01c <<; 所以b c a >>. 故选:D【例3】(2022·天津·高考真题)已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b >>【答案】C【分析】利用幂函数、对数函数的单调性结合中间值法可得出a 、b 、c 的大小关系.【详解】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>.故答案为:C. 【题型专练】1.(2022·黑龙江·鸡东县第二中学二模)若0.110a =,lg0.8b =,5log 3.5c =,则( ) A .a b c >> B .b a c >> C .c a b >> D .a c b >>【答案】D【分析】根据指数函数以及对数函数的性质,判断a,b,c 的范围,即可比较大小,可得答案. 【详解】由函数10x y =为增函数可知0.1110a =>,由lg y x =为增函数可得lg0.80b =<,由由5log y x =为增函数可得50log 3.51c <=<,0.15101log 3.50lg0.8a c b ∴=>>=>>=,a cb ∴>>,故选:D2.(2022·浙江·诸暨市教育研究中心高二学业考试)已知5lg 0.2,log 6,ln 2a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .c a b << C .a c b << D .c b a <<【答案】C【分析】利用0,1分段法求得正确答案.【详解】55lg 0.20,log 6log 51,0ln 2ln e 1a b c =<=>=<=<=, 所以a c b <<. 故选:C3.(2022·陕西汉中·高一期末)已知0.60.622e log 0.6a b c -===,,,则a ,b ,c 的大小关系为( )A .b a c >>B .b c a >>C .a b c >>D .a c b >>【答案】C【分析】根据指数函数和对数函数的性质判断0.60.622e log 0.6a b c -===,,的范围,即可判断大小,即得答案.【详解】由于0.60.602022e e >2log 0.6lo <0<g 1a b c -====<=1,0=1,,故a b c >>, 故选:C题型三:取中间值比较大小【例1】(2022·吉林·东北师大附中模拟预测(文))已知32log 3a =,2log 3b =,139c =,则( ) A .c a b >> B .b a c >> C .b c a >> D .c b a >>【答案】D【分析】利用幂函数、对数函数的单调性结合中间值法可得出a 、b 、c 的大小关系. 【详解】因为332log log 103a =<=,2221log 2log 3log 42b =<=<=,1133982c =>=, 因此,c b a >>. 故选:D.【例2】(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a << B .b a c << C .a c b << D .a b c <<【答案】C【分析】对数函数的单调性可比较a 、b 与c 的大小关系,由此可得出结论. 【详解】55881log 2log 5log 22log 32a b =<==<=,即a c b <<. 故选:C.【例3】(2022·山东滨州·高二期末)已知6log 2a =,0.5log 0.2b =,0.30.6c =,则a ,b ,c 的大小关系为( ) A .a c b << B .a b c << C .b c a << D .c a b <<【答案】A【分析】根据指数函数、对数函数的性质计算可得.【详解】解:110.5222log 0.2log 5log 5log 42--==>=,即2b >,66610log 1log 2log 62=<<=,即102a <<,00.30.31110.60.60.50.52=>>>=,即112c <<,所以b c a >>; 故选:A 【题型专练】1.(2022·河南濮阳·高一期末(文))已知3log 4a =,4log 5b =,32c =,则有( ) A .a b c >> B .c b a >> C .a c b >> D .c a b >>【答案】D【分析】根据对数函数的单调性,借助中间值比较大小即可. 【详解】依题意,23043<<,3243∴< ,3log y x =是单调递增,32333log 4log 32∴<=,a c ∴<,23054<<,3254∴<,4log y x =是单调递增,32443log 5log 42∴<=,b c ∴<, 45430>>,5443∴> ,3log y x =是单调递增,54335log 4log 34∴>=,54a ∴>,45054<<,5454∴<,4log y x =是单调递增,54445log 5log 44∴<=,54b ∴<,综上所述,c a b >>. 故选:D.高二期末(理))设0.632log 8c =A .b a c << B .c b a << C .a c b << D .b c a <<【答案】D【分析】利用幂函数和对数函数的性质比较即可【详解】因为533223log 8log 20.60.615c ====<, 所以c a <,因为0.6y x =在(0,)+∞上为增函数,且910<, 所以0.60.6910<,因为lg y x =在(0,)+∞上为增函数, 所以0.60.6lg9lg100.6<=,所以b c <, 综上b c a <<,故选:D3.(2022·重庆九龙坡·高二期末)已知52log 4a =,31log 72b =,4log 52c =,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c a b <<D .a b c <<【答案】B【分析】根据对数得运算性质结合对数函数的性质,利用中间量法即可得出答案. 【详解】解:由552log 4log 16a ==,则12a <<, 3331log 7log 7log 912b ==<=, 42log 5log 52252c ===>,所以b a c <<. 故选:B.题型四:利用换底公式比较大小【例1】(2021·全国·高一期末)设x ,y ,z 为正数,且345x y z ==,则( ) A .x y z << B .y x z << C .y z x << D .z y x <<【答案】D【分析】令3451x y z k ===>,用k 表示出x ,y ,z ,再借助对数函数的性质即可比较作答. 【详解】因x ,y ,z 为正数,令345x y z k ===,则1k >, 因此有:31log log 3k x k ==,41log log 4k y k ==,51log log 5k z k ==, 又函数()log k f t t =在(0,)+∞上单调递增,而1345<<<,则0log 3log 4log 5k k k <<<, 于是得111log 3log 4log 5k k k >>, 所以z y x <<. 故选:D【例2】(2022·全国·高三专题练习)设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是( ) A .a >b >c B .b >a >cC .c >a >bD .c >b >a【答案】D【分析】根据对数函数与指数函数性质,结合中间值0、1比较可得. 【详解】∵0<ln2<lne=1,ln3>1,∵log 32ln 2ln 3=<ln2, ∵a <b <1, ∵c 125=>50=1, ∵c >b >a , 故选:D .【例3】(2022·全国·高三专题练习)设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是( ) A .a >b >c B .b >a >c C .c >a >b D .c >b >a【答案】D【分析】根据对数函数与指数函数性质,结合中间值0、1比较可得. 【详解】∵0<ln2<lne=1,ln3>1, ∵log 32ln 2ln 3=<ln2, ∵a <b <1, ∵c 125=>50=1, ∵c >b >a , 故选:D . 【题型专练】1.(2022河南·高三开学考试(文))设0.1log 4a =,50log 4b =,则( ) A .()22ab a b ab <+< B .24ab a b ab <+< C .2ab a b ab <+< D .2ab a b ab <+<【答案】D【分析】由对数函数性质得0,0a b <>,从而0ab <,由对数换底公式和对数运算法则计算得1112a b<+<,再由不等式性质可得结论.【详解】因为0.1log 4a =,50log 4b =,所以0,0a b <>,所以0ab <, ()44411log 0.1log 50log 51,2a b +=+=∈,即1112a b<+<,所以2ab a b ab <+<. 故选:D .2.(2022·重庆八中高三阶段练习)设2log a π=,6log b π=,则( )A .0a b ab -<<B .0ab a b <<-C .0ab a b <<-D .0a b ab <-<【答案】D【分析】根据对数函数的性质可得>0>0a b ab -,,111b a-<,由此可判断得选项. 【详解】解:因为22log >log 21a π==,6660log 1log log 61b π=<=<=,所以>1,01a b <<,所以>0>0a b ab -,,故排除A 、B 选项;又11log 6log 2log 3log 1a bb a abπππππ--==-=<<,且>0ab ,所以0a b ab <-<, 故选:D.3.(2021·江苏·海安高级中学高一阶段练习)设0.20.3a =,20.3b =,则( ) A .0a b ab +<< B .0ab a b <+< C .0a b ab +<< D .0ab a b <<+【答案】B【分析】根据指数式与对数式互化公式,结合对数的运算性质进行判断即可.【详解】由0.20.20.3log 0.3aa =⇒=,因为0.20.20.2log 1log 0.3log 0.2<<,所以01a <<,由220.3log 0.3bb =⇒=,因为22log 0.3log 0.51<=-,所以1b <-,因此0ab <,0a b +< 由0.20.31log 0.3log 0.2a a =⇒=,20.31log 0.3log 2b b=⇒=, 于是有:0.30.30.311log 0.2log 2log 0.4a b+=+=,因为0.30.3log 0.4log 0.31<=,所以1111b aa b ab++<⇒<,因为0ab <,所以b a ab +>, 即0ab a b <+<, 故选:B【点睛】关键点睛:利用对数函数的单调性,结合,a b 两数的倒数和与1之间的关系,进行判断是解题的关键.4.(2022·全国·高一课时练习多选题)已知正数x ,y ,z 满足346x y z ==,则下列说法中正确的是( ) A .1112x y z+= B .346x y z >>C .22xy z > D .32x y z +>⎝【答案】ACD【分析】将已知条件转化为对数的形式,利用对数运算、商比较法、基本不等式等指数对选项进行分析,从而确定正确答案.【详解】正数x ,y ,z 满足346x y z ==,设()3461x y zt t ===>,则3log x t =,4log y t =,6log z t =.对于A ,1111log 3log 4log 622t t t x y z+=+==,故A 正确; 对于B ,333log x t =,444log y t =,666log z t =, ∵33433log 3log 4144log 4x t y t ==<,∵34x y <, ∵44644log 2log 6166log 3y t z t ==<,∵46y z <,∵346x y z <<,故B 错误; 对于C ,由1111222z x y xy=+>(2x y ≠),两边平方,可得22xy z >,故C 正确; 对于D ,由22xy z >,可得232222222x y xy z z z ⎛⎫+>>=>+ ⎪ ⎪⎝⎭(x y ≠),故D 正确. 故选:ACD题型五:分离常数再比较大小【例1】(2022·河南·汝州市第一高级中学模拟预测(文))已知6log 3a =,8log 4b =,10log 5c =,则( ). A .b a c << B .c b a << C .a c b << D .a b c <<【答案】D【分析】结合对数的运算公式以及对数函数的单调性进行转化求解即可. 【详解】由题意得, 666261log 3log 1log 212log 6a ===-=-, 888281log 4log 1log 212log 8b ===-=-, 1010102101log 5log 1log 212log 10a ===-=-, 因为函数2log y x =在(0,)+∞上单调递增, 所以222log 6log 8log 10<<,则222111log 6log 8log 10>>, 所以a b c <<. 故选:D .【题型专练】1.设6log 3=a ,10log 5=b ,14log 7=c ,则( )A. a b c >>B. b c a >>C. a c b >>D. a b c >> 【答案】D【详解】由题意得,()()()335577log 321log 2,log 521log 2,log 721log 2a b c =⨯=+=⨯=+=⨯=+357log 2log 2log 2>>,所以可得:a b c >>故选:D .题型六:利用均值不等式比较大小【例1】(2022·黑龙江·绥化市第九中学高二期末)73a =,4log 20b =,33log 2log 6c =+,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .c b a >> D .c a b >>【答案】B【分析】根据对数函数的性质结合基本不等式分析比较即可 【详解】74133a ==+,4444log 20log 4log 51log 5b ==+=+,333log 2log 61log 4c =+=+, 因为433333334log 3log 81log 64log 43==>=,所以a c >,因为2423lg3lg5log 5lg5lg32log 4lg 4lg 4(lg 4)+⎛⎫ ⎪⎝⎭=⋅<222222lg15lg162lg 42221(lg 4)(lg 4)(lg 4)⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<==,43log 51,log 41>>, 所以43log 5log 4<,所以c b >, 综上a c b >>, 故选:B【例2】(2022·安徽省临泉第一中学高二期末)若lg 2lg5a =⋅,ln 22b =,ln 33c =,则a ,b ,c 的大小关系为( ) A .a b c << B .b c a << C .b a c << D .a c b <<【答案】A【分析】由基本不等式可判断14a <,由对数的性质可得14b >,再作差可判断,c b 大小.【详解】()2lg 2lg51lg 2lg544a +=⋅<=,2ln 2ln 41444b ==>,9ln ln 3ln 22ln 33ln 2803266c b --=-==>,则c b >.所以a b c <<. 故选:A . 【题型专练】1.(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >>C .0b a >>D .0b a >>【答案】A【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=. 又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.2.(2022·河南商丘·高二期末(文))已知log 5a =0.62b =,0.2log 6c =-,则实数a ,b ,c 的大小关系为( ) A .a c b >> B .a b c >>C .b a c >>D .b c a >>【答案】C【分析】根据换底公式可得,1a c >,再根据换底公式与基本不等式可得c a <,再根据5532b ⎛⎫> ⎪⎝⎭可得b a >,进而求得大小关系【详解】24log 5log 51a =>=,0.25log 6log 61c =-=>,则()25224lg 4lg 6log 6lg 4lg 62log 5(lg 5)lg 5c a +⎛⎫ ⎪⋅⎝⎭==<()()2222lg 24lg 25221lg 5lg 5⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=<=,所以c a <; 243log 5log 52a ==<,()5550.63282b ⎛⎫==> ⎪⎝⎭,所以32b >,则b a >.所以b a c >> 故选:C.题型七:乘倍数比较小【例1】(2020·全国·高考真题(理))已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <cC .b <c <aD .c <a <b【答案】A【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<;由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题. 【题型专练】1.已知3log 2=a ,4log 3=b ,5log 4=c ,则实数a ,b ,c 的大小关系为( ) A .a <b <c B .a b c >>C .b a c >>D .b c a >>【答案】B【详解】()5,427log 3log 3322∈==a ,()4,364log 4log 3333∈==b ,所以b a 33>,所以b a > 又因()6,5256log 4log 4433∈==b ,()5,4625log 5log 4444∈==c ,所以c b 44>,所以c b > 所以c b a >>,故选B 题型八:构造函数比大小【例1】(2022·全国·高一专题练习)设0a >,0b >,则下列叙述正确的是( ) A .若ln 2ln 2a b b a ->-,则a b > B .若ln 2ln 2a b b a ->-,则a b < C .若ln 2ln 2a a b b ->-,则a b > D .若ln 2ln 2a a b b ->-,则a b < 【答案】A【分析】利用函数的单调性分析判断即可【详解】因为ln y x =和2y x =在(0,)+∞上均为增函数, 所以()ln 2f x x x =+在(0,)+∞上为增函数, 所以()()f a f b >时,得0a b >>,反之也成立, 即ln 2ln 2a a b b +>+时,0a b >>,反之也成立, 所以ln 2ln 2a b b a ->-时,0a b >>,反之也成立, 故选:A【例2】(2022·四川·树德中学高二阶段练习(文))若2e 2e x x y y ---<-,则( ) A .()ln 10y x -+< B .()ln 10y x -+>C .ln 0x y ->D .ln 0x y -<【答案】B【分析】先构造函数()2e x xf x -=-,通过导函数得到单调性,从而得到x y <,故可通过函数单调性判断出()ln 1ln10y x -+>=,而x y 可能比1大,可能等于1,也可能()0,1x y -∈,故CD 均错误.【详解】令()2e x x f x -=-,则()2ln 2e 0x xf x -'=+>恒成立,故()2e x x f x -=-单调递增,由2e 2e x x y y---<-可得:x y <,故()ln 1ln10y x -+>=,A 错误,B 正确;x y 可能比1大,可能等于1,也可能()0,1x y -∈,故不能确定ln x y -与0的大小关系,CD 错误.故选:B【题型专练】1.(2021·江西·高二阶段练习(理))若1a b >>,且x y x y a a b b --->-,则( ) A .()ln 10x y -+> B .()ln 10x y -+< C .ln 0x y -> D .ln 0x y -<【答案】A【分析】根据题意,构造函数()x xf x a b -=-,利用函数单调性,结合对数函数的性质,即可判断和选择.【详解】因为x y x y a a b b --->-,即x x y y a b a b --->-,故令()x xf x a b -=-,则上式等价于()()f x f y >因为1a b >>,,x x y a y b -==-都是R 上的单调增函数,故()f x 为R 上的单调增函数,则由()()f x f y >,可得x y >,即0x y ->; 则11x y -+>,故()ln 10x y -+>,则A 正确;B 错误; 因为0x y ->,故无法判断ln x y -的正负,故C ,D 错误. 故选:A .【点睛】本题考查对数函数的单调性,以及函数单调性的应用,属综合中档题;解决问题的关键是根据已知条件,构造函数()x xf x a b -=-,并利用其单调性判断,x y 的大小关系.2.(2022·全国·高一单元测试)已知正实数x ,y 满足21211log log 22x yx y ⎛⎫⎛⎫+<- ⎪ ⎪⎝⎭⎝⎭,则( )A .11x y< B .33x y < C .()ln 10y x -+> D .122x y -<【答案】BC【分析】可以利用筛选法逐个检验选项或者构造函数,结合单调性求解.【详解】方法一(筛选法) 由题意,211log 22x yx y ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭.当x y >,即1x y >时,2log 0x y >,而1122x y ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以11022x y ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,故211log 22x yx y ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭不成立.当x y =时,2log 0x y =,11022x y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,211log 22x yx y ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭不成立,故0x y <<,所以11x y >,33x y <,故A 错误,B 正确.0y x ->,则11y x -+>,()ln 10y x -+>,故C 正确.0221x y -<=,故D 不一定正确.故选:BC .方法二(构造函数法) 由题意,2211log log 22x y x y ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭.设函数()21log 2xf x x ⎛⎫=- ⎪⎝⎭,显然()f x 在区间()0,∞+上单调递增,故由()()f x f y <,得0x y <<,故11x y>,故A 错误.33x y <,B 正确;由x y <,得11y x -+>,故()ln 1ln10y x -+>=,C 正确;0221x y -<=,故D 不一定正确, 故选:BC .。
指数函数的性质及常考题型(含解析)

【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个
)
B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于
数
函
数
︶
如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)
:
(1)底数相同,指数不同:利用指数函数的单调性来判断;
培
优
篇
高
【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).
中
(1)求()的解析式;
数
(2)解不等式( + 3) > (4).
学
︵
指
数
函
数
︶
【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1
指
C.0 < < 1, > 1
D. > 1,0 < < 1
数
函
【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =
如何比较指数、对数函数式的大小

方法集锦比较函数式大小问题的难度一般不大,常以选择题、填空题的形式出现在各类试卷中,其中比较指数、对数函数式的大小问题较为复杂,此类问题侧重于考查指数、对数函数的单调性、奇偶性、图象以及运算性质.比较函数式大小的常用方法有作差比较法、作商比较法、函数性质法、中价值法、公式法等.本文重点谈一谈比较指数、对数函数式大小的两种常用途径.一、利用函数的单调性我们知道,指数、对数函数具有单调性,当0<a <1时,指数函数y =a x (a >0,且a ≠1)在R 上单调递减;当a >1时,指数函数y =a x在R 上单调递增.当0<a <1时,对数函数y =log a x (a >0,且a ≠1)在()0,+∞上单调递减;当a >1时,指数函数y =log a x 在()0,+∞上单调递增.在比较指数、对数函数式的大小时,可将两个函数转化为底数、指数、真数相同的指数、对数函数式,再根据指数、对数函数的性质来进行比较.例1.已知a >b ,则().A.ln ()a -b >0B.3a <3bC.a 3-b 3>0D.||a <||b 解:对于A 项,根据y =ln x 的值域为R ,可知ln ()a -b 与0的大小关系无法判断,则A 项错误;对于B 、C 两项,可根据指数函数y =3x 在R 上单调递增判断3a>3b,则B 项错误,C 项正确;对于D 项,根据绝对值的性质无法判断||a 、||b 的大小关系.故本题选C 项.例2.(2020年全国Ⅰ卷理科,第12题)若2a+log 2a=4b+2log 4b ,则().A.a>2bB.a<2bC.a >b 2D.a <b 2分析:不等号两边的式子都是一个指数函数式和一个对数函数式的和,其结构相同,于是将其变形2a +log 2a =4b +2log 4b =22b +log 2b ,构造同底数的函数式f (x )=2x+log 2x ,再讨论f (x )在()0,+∞上的单调性,便可根据函数的单调性来比较a 、2b 的大小,从而选择出正确的选项.解:设f (x )=2x+log 2x ,则f (x )为增函数,因为2a +log 2a =4b +2log 4b =22b+log 2b所以f (a )-f (2b )=2a+log 2a -(22b+log 22b )=22b +log 2b -(22b +log 22b )=log 212=-1<0,所以f (a )<f (2b ),所以a <2b .f (a )-f (b 2)=2a +log 2a -(2b 2+log 2b 2)=22b +log 2b -(2b 2+log 2b 2)=22b -2b 2-log 2b ,当b =1时,f (a )-f (b 2)=2>0,此时f (a )>f (b 2),有a >b 2,当b =2时,f (a )-f (b 2)=-1<0,此时f (a )<f (b 2),有a <b 2,所以C 、D 两项错误.故本题选B 答案.有些要比较大小的式子很复杂,但是仔细一看就会发现其中有很多重复或者是相似的地方,可从中找到一些“端倪”,据此构造新函数,根据新函数的单调性来比较函数式的大小.二、取中间值运用中间值法比较两个指数、对数函数式的大小,通常要与放缩法相结合,即以中间值作为“桥梁”,根据不等式的传递性来将要比较的式子进行放缩,以便快速比较出各个指数、对数函数式与中间值的大小.例3.已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c的大小关系为().A.a<c<bB.a<b<cC.b<c<aD.c<a<b解:因为a =log 52<log 55=12,b =log 0.50.2<log 0.50.25=2,又12=0.51<0.50.2<0.50=1,故12<c <1,因此a <12<c <1<2<b ,所以a <c <b ,故A 选项正确.运用中间值法比较指数、对数函数式的大小,关键要选取合适的中间值.在选取中间值时,将要比较的式子进行合理变形,尽量将其与0,1,12等便于变形的数值靠拢.由于a =log 52<log 55=12,b =log 0.50.2<log 0.50.25=2,所以本题选取12和2作为中间值.相比较而言,第一种途径较为简单,且较为常用,第二种途径较为灵活,且较为复杂,常用于求解较为复杂的,且没有任何共同点的函数问题.在比较指数、对数函数式的大小时,同学们要有敏锐的观察力和较强的分析能力,这样才能根据函数式的特点快速选出合适的方法来求解.(作者单位:闽南师范大学数学与统计学院)43。
指数函数的图象与性质指数函数知识梳理指数函数运算法则公式

指数函数的图象与性质•指数函数y=a x(a>0,且a≠1)的图象和性质:0<a<1 a>1 图像图像定义域R值域(0,+∞)恒过定点图像恒过定点(0,1),即当x等于0时,y=1单调性在(∞,+∞)上是减函数在(∞,+∞)上是增函数函数值的变化规律当x<0时,y>1 当x<0时,0<y<1当x=0时,y=1 当x=0时,y=1当x>0时,0<y<1 当x>0时,y>1•底数对指数函数的影响:①在同一坐标系内分别作函数的图象,易看出:当a>l时,底数越大,函数图象在第一象限越靠近y轴;同样地,当0<a<l时,底数越小,函数图象在第一象限越靠近x轴.②底数对函数值的影响如图.③当a>0,且a≠l时,函数与函数y=的图象关于y轴对称。
利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较:若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值,•指数函数图象的应用:函数的图象是直观地表示函数的一种方法.函数的很多性质,可以从图象上一览无余.数形结合就是几何与代数方法紧密结合的一种数学思想.指数函数的图象通过平移、翻转等变可得出一般函数的图象.利用指数函数的图象,可解决与指数函数有关的比较大小、研究单调性、方程解的个数、求值域或最值等问题.高中数学必修之指数函数知识梳理知识点1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景,理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图象.3体会指数函数是一类重要的函数模型.知识梳理1.根式的性质2.有理指数幂考点1:指数幂的运算[规律方法] 1.指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.考点2:指数函数的图象及应用[规律方法]指数函数图象的画法(判断)及应用(1)画(判断)指数函数y=ax(a>0,a≠1)的图象,应抓住三个关键点:(1,a),(0,1) ,【1,1/a】(2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.[规律方法] 1.比较指数式的大小的方法是:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.解简单的指数方程或不等式可先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解.3.探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致.总结思想与方法1.根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.2.判断指数函数图象上底数大小的问题,可以先通过令x=1得到底数的值再进行比较。
专题09 比较指数式、对数式大小的方法-备战高考数学之学会解题必备方法技巧规律(全国通用)

09 判断比较指数式、对数式大小的方法典型例题精选与变式典型例题例1【2021陕西省宝鸡市千阳中学适应模拟】设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<cB.a<c<bC.b<a<cD.b<c<a解:∵y=0.6x为减函数,∴0.60.6>0.61.5,且0.60.6<1.又c=1.50.6>1,∴1.50.6>0.60.6>0.61.5,即c>a>B.【方法】底数相同,指数(真数)不同例2设a=log 3π,b=log,c=log,则( ) A.a>b>c B.a>c>b C.b>a>c D.b>c>a解:∵a=log 3π>log 33=1,b=loglog 22=1, ∴a>B.又23132122log b c log ==(log 23)2>1,b>0, ∴b>c ,故a>b>C.【方法】底数不同,指数(真数)相同例3【2021广西五市联合模拟】若31311log ,,log cos 35a b e c πππ===,则( )A. b c a >>B. b a c >>C. a b c >>D. c a b >> 解:31110log log 31,1,0cos 135a b e ππππ><==<=<<, 31log cos 05c π=<,b ac ∴>>,【方法】底数与指数(真数)都不相同最新模拟精选与提高 精选练习自主解析 体会应用1.已知10a =3log 6b =,2log c =,则a ,b ,c ,则( )A. b a c <<B. a c b <<C. a b c <<D. b c a <<【答案】B 【解析】【分析】根据指数函数的单调性判断a 的大小,再由对数函数的单调性和对数的运算可得出b 、c 的大小.【详解】因为001101a <==,又因为指数函数的值大于0,所以01a <<;因为3log x 在R 上单调递增,3333log 6log log 2>==,所以32b >,因为2log x 在R 上单调递增,2223log log log 2<<=,所以312c <<,所以a c b <<. 故选:B.【方法】底数与指数(真数)都不相同2. 已知0.31.2a =,0.3log 1.2b =, 1.20.3c =,则( ) A. b c a >> B. c a b >> C. a c b >> D. a b c >>【答案】C 【解析】【分析】根据指数函数和对数函数的单调性求出,,a b c 的范围即可求解. 【详解】0.301.211.2>=,1a ∴>,0.30.3log 1.2log 10<=,0b ∴<,1.2000.30.31<<=,01c ∴<<, a c b ∴>>.故选:C.【方法】底数与指数(真数)都不相同3. 设0.980.89x =,0.890.98y =,0.98log 0.89z =,则( ) A. z x y >> B. x z y >> C. z y x >> D. x y z >>【答案】C 【解析】【分析】首先根据指数函数以及幂函数的单调性比较,x y 的大小,再通过对数函数的单调性求得z 的范围,即可得解.【详解】由0.89x y =是减函数,0.89y x =在()0,∞+上是增函数,可得0.980.890.8900.890.890.981<<<<,由0.98log y x =是减函数,可得0.980.98log 0.89log 0.981>=,可得z y x >>, 故选:C.【方法】底数与指数(真数)都不相同 4. 设2log 0.3a =,0.32b =,sin 5c π=,则a ,b ,c 的大小关系是( )A. c b a <<B. b a c <<C. a c b <<D. a b c <<【答案】C 【解析】【分析】利用指数、对数三角函数的性质判定a ,b ,c 与0,1的大小关系,即可得到a ,b ,c 的大小关系.【详解】22log 0.3log 10a =<=,0.30221b =>=,sin (0,1)5c π=∈,所以a c b <<, 故选:C.【方法】底数与指数(真数)都不相同 5. 若3222log 33log 3log 2215,,5a b c ⎛⎫==⎪⎝⎭=,则( ) A. c a b >> B. b a c >>C. a c b >>D. a b c >>【答案】D 【解析】【分析】根据指对数运算法则化简成相同真数,底数不同的对数式,然后根据指数函数的单调性求得数的大小关系.【详解】由指数、对数运算性质知,332423133log log log log 3222255,55b c -====, 则由234333log log log 222>>知 234333log log log 222555>>,即a b c >>【方法】底数相同,指数(真数)不同 6. 若133a -=,b =log 25,c =ln3,则( ) A. b >a >c B. b >c >a C. c >a >b D. c >b >a【答案】B 【解析】【分析】根据指数函数、对数函数的性质判断可得;【详解】解:103331-<=,2223log 8log 5log 42=>>=,21ln ln 3ln 2e e =<<= 所以()0,1a ∈,()2,3b ∈,()1,2c ∈,所以b c a >> 故选:B【方法】底数与指数(真数)都不相同7. 已知0.5log 3a =,30.5b -=,0.53c -=试比较a ,b ,c 的大小为( ) A. a b c << B. a c b << C. c b a << D. c a b <<【答案】B 【解析】【分析】根据对数函数和指数函数的单调性将a 、b 、c 与0、1相比较,即可得到结论. 【详解】解:∵0.52log 3log 30a ==-<,3300.5221b -==>=, 1020.51103133c -⎛⎫⎛⎫<==<= ⎪ ⎪⎝⎭⎝⎭, ∵a c b <<, 故选:B .【方法】底数与指数(真数)都不相同8. 已知2sin 5a π=,2tan 7b π=,4logc =,则( )A. a b c >>B. b a c >>C. b c a >>D. a c b >>【解析】【分析】引入中间值根据2247352πππππ<<<<,即可判定大小 【详解】因为2247352πππππ<<<<,2sin 15π<<,2tan17π>.又4log =, 所以b a c >>. 故选:B【方法】底数与指数(真数)都不相同 9. 下列说法中正确的是( ) A. 20202019log 2021log 220210202020<<B. 20192020log 2020log 220210212020<<C.20202019log 2021lo 2021202002g 20<< D.20192020log 2020lo 2021202012g 20<< 【答案】A 【解析】【分析】构造函数()1lnxf x x =+,利用导数求出函数的单调性,再根据对数的运算及对数函数的性质计算可得;【详解】解:对于2(1)lg(1)lg(2)lg (1)lg lg(2)log (1)log (2)lg lg(1)lg lg(1)x x x x x x x x x x x x x ++++-++-+=-=++, 222lg(2)lg lg(2)()lg (1)2x x x x x +⋅+≤<+,所以当1x >时,(1)log (1)log (2)0x x x x ++-+>,故20192020log 2020log 2021>.根据函数ln ()1x f x x =+,(0)x >,则211ln ()(1)x x f x x +-'=+,()11ln g x x x =+-在定义域上单调递减,()111ln 0g e e e e =+-=>,()2222111ln 10g e e e e=+-=-<,所以存在()20,x e e ∈,使得()00g x =,所以()0,x x ∈+∞时()0f x '<,所以函数在()0,x +∞单调递减,所以ln2019ln202020202021>,所以2019ln 2020log 20202020ln 02019221>=, 所以20202019log 2021log 220210202020<< 故选:A【方法】底数与指数(真数)都不相同10. 已知sin3a =,3log sin 3b =,sin33c =,则a ,b ,c 的大小关系是( ) A. a b c >> B. b a c >> C. c a b >> D. c b a >>【答案】C 【解析】【分析】利用指数函数、对数函数以及三角函数值即可得出选项. 【详解】因为32ππ<<,所以()sin30,1a =∈,33log sin 3log 10b =<=, sin30331c =>=, 所以c a b >>. 故选:C【方法】底数与指数(真数)都不相同。
比较函数式大小的三种思路

一一一一一一一一一一一一一一一一一一λ+μ=k (定值),此时直线AB 及平行于AB 的直线为等和线,即可根据等和线的性质求得最值.五、利用极化恒等式极化恒等式:a ⋅b =14[(a +b )2-(a -b )2]是解答向量问题的重要工具.当遇到共起点的两向量的数量积最值问题时,可以考虑根据三角形法则和平行四边形法则,将两个向量的数量积的最值问题转化为两个向量的和、差的最值问题,利用极化恒等式求解.例6.如图6,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且 AD =λ BC ,AD ∙ AB =-32,则实数λ的值为,若M ,N 是线段BC 上的动点,且MN =1,则DM ∙DN 的最小值为.图6解:由 AD ∙ AB =-32,得(λ BC )∙ AB =λ| BC || AB |cos ∠B=λ×6×3æèöø-12=-32,解得λ=16.分别过D ,A 作BC 的垂线,垂足分别为E ,F ,由极化恒等式得,DM ∙ DN =||DQ 2-||QM 2=|| DQ 2-æèöø122≥|| DE 2-æèöø122=|| AF 2-æèöø122=132.一般地,若在三角形ABC 中,M 为BD 的中点,由极化恒等式可得: AB ∙ AD =| AM |2-| BM |2;在平行四边形ABCD 中, AB ∙ AD =14(| AC |2-| BD |2),这样就将向量的数量积问题转化为两条线段长度的平方差问题.解答本题,需先找到定点,再根据动点的变化情况求最值可见,求解平面向量最值问题的措施很多.解题的关键是要根据解题的需求,建立合适的平面直角坐标系和关系式,灵活运用函数的性质、等和线的性质、向量的几何意义、极化恒等式进行求解.(作者单位:云南省曲靖市会泽县茚旺高级中学)探索探索与与研研究究比较函数式的大小问题通常会综合考查一次函数、二次函数、指数函数、对数函数、幂函数的性质和图象.解答这类问题的常用方法有:特殊值法、放缩法、中间值法、基本不等式法等.在解题时,若能选用恰当的方法,就能达到事半功倍的效果.本文主要谈一谈下列三种比较函数式大小的思路.一、利用重要不等式在比较函数式的大小时,可根据已有的经验和不等式结论来进行比较,这样能有效地提升解题的效率.常用的重要不等式有:(1)基本不等式及其变形式:若ab >0,a 、b >0,则a +b ≥2ab 、21a +1b≤ab ≤a +b 2≤,当且仅当a =b 时等号成立;(2)切线不等式:e x +1、ln x ≤x -1;(3)柯西不等式:a ,b ,x ,y ∈R ,()a2+b 2()x 2+y 2≥(ax +by )2,(ax -by )2≥()a 2-b 2()x 2-y 2;等等.例1.设a =0.1e 0.1,b =19,c =-ln 0.9,请比较a ,b ,c的大小.解:由于b =19=109-1,c =-ln 0.9=ln 109,令x =-0.1,由切线不等式:e x ≥x +1,当且仅当x =0时等号成立,可得e -0.1>-0.1+1=0.9,则e 0.1<109,所以0.1e 0.1<0.1×109=19,即a <b ,令x =109,由切线不等式:e x≥x +1,得:ln 109<109-1=19,即c <b ,而e 0.1>0.1+1=1.1,则0.1e 0.1>0.1×1.1=0.11,由重要不等式:当x >1时,恒有ln x <12(x -1x )成立,可知-ln 0.9=ln 109<12(109-910)=19180<0.11,50探索探索与与研研究究即a >c ,综上所述,c <a <b .解答本题,要先将三个函数式进行化简,得b =19=109-1,c =-ln 0.9=ln 109;然后利用重要不等式:e x ≥x +1、ln x ≤x -1、ln x <12(x -1x )()x >1分别判断出a 、b 、c 三者的大小关系.函数与不等式之间联系紧密,在比较较为复杂的函数式的大小时,往往要灵活运用函数的性质以及与函数相关的重要不等式结论来辅助解题.二、借助中间值中间值法是比较函数式大小的一种常用方法.有时我们很难直接判断出要比较的函数式的大小,此时可采用中间值法来解题.首先将函数式分别进行化简,以确定其大概的取值范围,并判断其正负;然后选取合适的中间值,如0、1、-1等特殊值,分别比较出函数式与中间值的大小;再根据不等式的传递性来判断出几个函数式之间的大小关系.例2.已知a =0.70.7,b =0.71.5,c =1.50.7,试比较a ,b ,c 的大小.解:由于0<b =0.71.5<0.70.7=a <0.70=1,c =1.50.7>1.50=1,所以b <a <c .先利用指数函数y =0.7x的单调性比较出a 、b 之间的大小,并确定其取值范围为(0,1);然后根据指数函数y =1.5x的单调性比较出c 与1的大小,这样便以1为中间值,根据不等式的传递性来判断出a 、b 、c 的大小关系.例3.设a =log 50.5,b =log 20.3,c =log 0.32,则a ,b ,c 的大小关系是().A.b <a <cB.b <c <aC.c <b <aD.a >b >c解:a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg 2lg 0.3,log 50.5=lg 0.5lg 5=lg 2-lg 5=lg 2lg 0.2.∵-1<lg 0.2<lg 0.3<0,∴lg 2lg 0.3<lg 2lg 0.2,即c <a ,∴b <c <a ,本题选B.观察a 、b 、c 三个函数式,可发现三个函数式均为对数式,且底数和真数均不相同,因此需采用中间值法求解.首先根据对数函数的运算性质、公式对三个函数式进行化简;然后取中间值1、-1,根据对数函数y =log 0.3x 和y =lg x 的单调性分别判断出a 、b 、c 、1、-1之间的大小关系,进而比较出a 、b 、c 的大小.三、放缩函数式放缩法是比较函数式大小的重要方法之一.利用放缩法比较函数式的大小,需先对函数式进行恒等变形;再借助不等式的基本性质、函数的单调性对函数式进行合理放缩,进而比较出函数式的大小.例4.已知9m =10,a =10m -11,b =8m -9,请判断a ,b 的大小关系.解:∵9m =10,∴m =log 910>log 99=1,而a =10m-11=9m׿èöø109m-11=10׿èöø109m-11>10×109-11=19>0,b =8m-9=9m׿èöø89m-9=10׿èöø89m-9<10×89-9=-19<0,∴a >0>b .先根据指数幂的运算性质将指数式、对数式进行互化;再利用指数函数的单调性确定参数m 的取值范围;然后利用指数函数的单调性进行放缩,即可比较出a 、b 的大小.例5.已知7m =10,a =11m -13,b =6m -7,试判断a ,b 的大小关系.解:∵7m =10,∴m =log 710>log 77=1,而a =11m-13=7m׿èöø117m-13=10׿èöø117m-13>10×117-13>0,b =6m-7=7m׿èöø67m-7=10׿èöø67m-7<10×67-7<0,∴a >0>b .三个函数式中均含有参数m 和指数式,于是先根据指数的运算性质对函数式进行化简;再根据参数m 的取值范围,利用指数函数的单调性进行放缩,最终确定两个函数式的正负,从而比较出a ,b 的大小.解答比较函数式的大小问题,需要仔细研究要比较的函数式,找出二者之间的区别和联系,灵活运用重要不等式、中间值、函数的性质和图象,来确定函数的大小和取值范围.(作者单位:安徽省砀山第二中学)51。
指数函数大小比较方法

指数函数大小比较方法
指数函数大小比较,那可真是个让人挠头的事儿呢!不过别担心,咱有办法。
首先,看底数啊!如果底数大于1,那指数函数就是单调递增的哟!这不就像爬楼梯,越往上走越高嘛!要是底数大于0 小于1 呢,嘿,那就是单调递减啦,就像坐滑梯,越滑越低。
那怎么比大小呢?把指数函数的底数和指数都分析清楚呀!如果两个指数函数底数不一样,指数也不一样,咱可以找个中间值来帮忙呀!比如说,找个底数相同或者指数相同的中间函数来比较。
这就好比找个裁判,让两个选手比一比谁更厉害。
比较指数函数大小有啥要注意的呢?可千万别忽略底数的范围呀!要是不小心搞错了底数的大小关系,那可就全乱套啦!而且指数的正负也很重要哦,正指数和负指数的函数值可是有很大差别的呢。
那指数函数大小比较在实际中有啥用呢?哎呀,用处可大啦!比如在金融领域,计算利息啥的就可能用到指数函数呀!你想想,要是不会比较指数函数大小,那怎么算出最划算的投资方式呢?在科学研究中,很多数据的变化也可以用指数函数来表示呢。
举个例子吧,假如你有两种投资方案,一个是按照指数函数增长,
另一个也是指数函数增长,但是底数和指数都不一样。
你要是不会比较大小,怎么知道哪个方案更赚钱呢?通过比较指数函数大小,就能做出更明智的决策啦!
指数函数大小比较真的很重要呢!咱只要掌握了方法,就不怕搞不定那些复杂的函数啦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上重点研究的函数之一! 学习了指数函数后, 常常会遇 到比较指数式大小的一类问题! 这类问题在各种考试中 出现频率高、 灵活性强, 是考查指数函数性质的重要题 型, 且大多为选择题和填空题! 掌握好比较指数式大小 的方法, 在比较对数大小时也会有很大帮助! 一、单调性法 比较两个指数式的大小, 常可以归结为比较两个函 数值的大小, 所以需要我们能恰当地构造函数, 使两个 指数式为同一函数的两个函数值, 然后根据函数的单调 性来比较大小! 例 $ ! 设 "# # $ , "’ # (
-( +.
*" &$ $ &% $ &( ," &% $ &( $ &$
(( *%
说明 !
围, 这是关键的一步% 特殊值选取恰当, 可以减少代入特 殊值后计算的次数, 简化运算且 ! $ % )的大小% ( 参考答案见第 ’( 页)
" ,1 !
高一! 语数外
每 月 自 测
(
]
{
(
)
( )
* ’ 因为 # & *
(
)
*
为负数, ) *
( ) (
( *
大于 ( , * )
( )
( &
大于
* * & ’ 小于 ( , 所以 ) % * % # & ’ * ) * )’ / 当 " % ( 时, 有 ") $ # 0 % * * $ ) ( ; 当’ ( " 0’ ! $ % 1: )$ #0 *$ )( ( ( 时, 则有 " ( * ’ )$ #0 $ ! 1 时, " ! "* $ )( ’ " 当 " % ( 时, 有 ") $ # 0 ( "* $ ) ( ; 当’ ( " ( # $ ( 1: )$ #0 *$ )( ( 时, 则有 " % " ’
!(
$ *$
; 当 # ) ! ) % 时, 则有 !$( 说明 !
$ *%
$ !(
$ *$
%
决与函数有关的问题时, 一定不能忘了它的图象% 五、特殊值法 特殊值法( 或叫试数法)是一种解题中广泛使用的 好方法, 当然, 一般只能用于解选择题和填空题% 遇到比 较含有字母的两个指数式的大小时, 将特殊值代入, 通 过简单计算、 推理能快速得到正确的答案% 例 %! 关系是 )" ! # $ " # +" ! # ’ " # 解析 ! *" ! # ) " # ," ! # # " # % % 令 # ’ $, ! ’ , " ’ , 则 % $ ( $ 若 # $ #, # ) " ) ! ) %, 则 ! # 与 " # 的大小 ( ! ! )
!(
$ *$
; 当 # ) ! ) % 时, !$ (
$ $
$ *%
) !(
$ *$
%
$ *%
得 ( ’ % 或 + %, 此时 !$( " 令 $( * % ’ ( * $, $ ’ ! ( *$ %
$ $ 得 + % ) ( ) %% # 令 $( * % ) ( * $, $ $ 当 ! $ % 时, 由 $ ( * % ) ($ * $ , 从而有 !$( *% )
%! & %! $(
, ") #
( )
# ’
$#! *
, 则( ! ! )
! +" ! ") ! % ! " ! # !% " !’ ! ! ! ! ! -" "# % "’ % ") 解析 ! ’ #! ( , "’ # ’ #! $$ , ") # ’ # ! * !
," ! ! "’! % ! " !# !% ") ." "# % ") % "’
%! ) %! )
所以 - , % - - , ,- % %, % #! (,) 又 + % %, 所以 ( ) % # ! , 而 # ( ) ,所以 % #, , , , 所以 --, # - % , ,, + ,+ , + ,+ -+ -+
% #! 0 # #, 而 %! & !
%
)! #
( %! & # #,
$ *%
与 !(
$ *$
( ! $ #, 且 ! $ %) 的大小%
解析 ! 本题既要讨论幂指数 $ ($ * % 与 ($ * $ 的大 小关系, 又要讨论底数 ! 与 % 的大小关系%
$ $ 得 ( $ % 或 ( ) + %% ! 令 $( * % $ ( * $, $ $ 当 ! $ % 时, 由 $ ( * % $ ($ * $ , 从而有 !$( *% $
%
所以 # ! 0
% %! &
)! #
当比较的两个指数式不容易化为相同底数
高一! 语数外
!""# " $"
" ,( !
责编 ! 朱凌燕" 顾" 俊" 邮箱 ! #$%$&’()’’)*)+,- ./0
所以 ! "# $ " !# % 说明 ! 方 法 点 拨 作差比较法和作商比较法是比较两个数大 多采用作商法% 小的通法% 若指数式恒大于 # , 四、数形结合法 把要比较的两个指数式看作是两个指数函数的值, 然后在同一坐标系中分别作出这两个指数函数的图象, 再在相应的图象上描出函数值所对应的点, 由图象上点 的位置来确定两个指数式的大小% 数形结合的好处是直 观简便, 且无需运算% 对上面 的 例 $ , 我们还 可以用数形结合法来解% 如 右图, 分别画出& ’ % % & ( 与 & ’ # % ’ ( 的图象, 然后在 & ’ %% & 的图象上找到 ( ’ #% ( 时 对应的点, 在 & ’ #% ’ ( 的图象 由两个点的高低即可判断 上找到 ( ’ (% % 时对应的点, 出% % & #% ( 与# % ’ (% % 的大小, 显然 % % & #% ( $ # % ’ (% % % 说明 ! 函数的图象是函数性质最直观的体现, 解
(
用幂函数的单调性也可以迅速判断本题中两个指数式 的大小% 六、分类讨论法 当比较的两个指数式的底数相同但含有字母, 底数 无法确定是大于 % , 还是大于零小于 % 时, 就需要对底数 进行分类讨论, 以确定相应指数函数的单调性, 然后才 能运用指数函数的单调性进行比较% 例 & ! 比较 !$(
把 "# , "’ , ") 分别化为同底的指数幂: "# #
因为 " # ’ & 在( $ / ,’ / )是单调递增函数, 所以 "# % ") % "’ ! 故选 .! 说明 ! 解决本题时, 要善于观察三个指数的底数 之间的关系和转化方向, 利用指数函数的单调性来比较 指数式的大小! 二、中间量法 中间量法即选取适当的数作为中间量, 使其分别与 要比较的两个指数式比大小, 利用中间量这一“ 桥梁” 间接地得出两个指数式的大小! 最常用的中间量是 % , # 和 $ #, 有时根据具体情况要插入指数式进行放缩! 例 !! 解析 ! 说明 ! 比较 # ! 0 %! ) 与 % ! & )! # 的大小! 因为 #! 0
!""# " $"
责编 ! 朱凌燕" 顾" 俊" 邮箱 ! #$%$&’()’’)*)+,- ./0
(0 ’ 已知式可化为关于 #%0 的方程 #%& 0 ) ( #%" ) #%1) #%0 ) #%"#%1 ) ( ! ’ ’ & & 1 & )’ ( ( )由 $ ) ! $ )( % $ ) ! $ ! $ )* $ * ’ ’ , 由 ! ’ ’ 得: ( #%" # #%1) 所以 #% # # & 或 #% ’ ), " $) ! #%( $ ) ! $& ) ( )的定义域是 %; 可得函数 +( 1 1 所以 & ’ ,( % [ (’’ ,) 3 ) ’ ’ &, " " (’’ & )由 +( $) ! #%( $ ) ! $& ) ( ) , 可得 +( # $) ! ( (1 ’ ( ( )略’ #%( #$ ) ! $& ) ( ) , ( & )因为 +( $)在 % 上是单调函数, 且 +( * ) ! #$%& * 所以 +( # $)) +( $) ! #%( #$) ! $& ) ( )) #%( $) % +( ’) , 所以 +( $)在 % 上单调递增’ # $& ) $& ) () ! #%( ! ’, 所以 +( # $) ! $& ) ( ) ! #%( ! 又 +( ,・* $ )) +( * $ # .$ # &) ( ’, 即 +( , ・* $ ) ( # +( $) , 即函数 +( $) ! #%( $ ) ! $& ) ( )是奇函数’ * $ # . $ # & ) ! +( . $ # * $ ) &) , 所以 . $ # * $ ) & % , # +( ( * )略’ ・* $ , 即 .$ # ( , ) () * $ ) & % ’ 对 $ & % 恒成立’ 《 幂函数的概念、 图象和性质》 , ) ( % ’, & 所 以 , ) ( ’ 或 解得 # ( ! )’ ( ( ’ +! &" ,! * ’ ( ), ! ’ 或 , ! ( , # , ) ( ) & % ’, & ’’& & +( $) ! $ ; ( & )存在 - ! & 满足题意’ , ( &! & # (’ 《 比较指数式大小的常用方法》 (2 ’ ( () #’’ * ( (’ & ’’ ( *’ ( (’ " % ’ ! &’ (’ ) % ’’ . ’ " ! #$% " ( & # "$)在[ ’, (]上是 $ 的减函数, 则 " % (, 且 & ! & # "$ % ’ 在区间[ ’, (] 上恒成立’ 可得 ( ( " ( &’