2017届上海市嘉定区高三二模数学卷(含答案)
上海市长宁区、青浦区、宝山区、嘉定区2017-2018学年高三数学二模试卷(文科) Word版含解析

2017-2018学年上海市长宁区、青浦区、宝山区、嘉定区高考数学二模试卷(文科)一、填空题(共14小题,每小题5分,满分70分)1.设集合A={x||x|<2,x∈R},B={x|x2﹣4x+3≥0,x∈R},则A∩B=.2.已知i为虚数单位,复数z满足=i,则|z|= .3.设a>0且a≠1,若函数f(x)=a x﹣1+2的反函数的图象经过定点P,则点P的坐标是.4.计算:= .5.在平面直角坐标系内,直线l:2x+y﹣2=0,将l与两坐标轴围成的封闭图形绕y轴旋转一周,所得几何体的体积为.6.已知sin2θ+sinθ=0,θ∈(,π),则tan2θ= .7.定义在R上的偶函数y=f(x),当x≥0时,f(x)=2x﹣4,则不等式f(x)≤0的解集是.8.在平面直角坐标系xOy中,有一定点A(1,1),若OA的垂直平分线过抛物线C:y2=2px (p>0)的焦点,则抛物线C的方程为.9.已知x、y满足约束条件,则z=2x+y的最小值为.10.在(x2+)6(k为实常数)的展开式中,x3项的系数等于160,则k= .11.从棱长为1的正方体的8个顶点中任取3个点,则以这三点为顶点的三角形的面积等于的概率是.12.已知数列{a n}满足a1+a2+…+a n=n2+3n(n∈N+),则= .13.甲、乙两人同时参加一次数学测试,共有10道选择题,每题均有4个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有1道题的选项不同,如果甲最终的得分为27分,那么乙的所有可能的得分值组成的集合为.14.对于函数f(x)=,其中b>0,若f(x)的定义域与值域相同,则非零实数a 的值为.二、选择题(共4小题,每小题5分,满分20分)15.“sinα=0”是“cosα=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件16.下列正确的是()A.若直线l1∥平面α,直线l2∥平面α,则l1∥l2B.若直线l上有两个点到平面α的距离相等,则l∥αC.直线l与平面α所成角的取值范围是(0,)D.若直线l1⊥平面α,直线l2⊥平面α,则l1∥l217.已知、是平面内两个互相垂直的单位向量,若向量满足(﹣)•(﹣)=0,则||的最大值是()A.1 B.2 C.D.18.已知直线l:y=2x+b与函数y=的图象交于A,B两点,记△OAB的面积为S(O为坐标原点),则函数S=f(b)是()A.奇函数且在(0,+∞)上单调递增B.偶函数且在(0,+∞)上单调递增C.奇函数且在(0,+∞)上单调递减D.偶函数且在(0,+∞)上单调递减三、解答题(共5小题,满分60分)19.如图,在直三棱柱ABC﹣A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点;(1)求证:AC⊥平面BCC1B1;(2)求异面直线B1D与AC所成角的大小.20.已知函数f (x )=sin2x+cos2x ﹣1(x ∈R );(1)写出函数f (x )的最小正周期和单调递增区间;(2)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若f (B )=0, =,且a+c=4,试求b 的值.21.定义在D 上的函数f (x ),若满足:对任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界:(1)设f (x )=,判断f (x )在上是否有界函数,若是,请说明理由,并写出f (x )的所有上界的值的集合,若不是,也请说明理由;(2)若函数g (x )=1+a•()x +()x 在 .【考点】交集及其运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可. 【解答】解:A={x||x|<2,x ∈R}={x|﹣2<x <2}, B={x|x 2﹣4x+3≥0,x ∈R}={x|x≥3或x≤1}, 则A∩B={x|﹣2<x≤1}, 故答案为:(﹣2,1].2.已知i 为虚数单位,复数z 满足=i ,则|z|= 1 .【考点】复数代数形式的混合运算.【分析】设出z=a+bi ,得到1﹣a ﹣bi=﹣b+(a+1)i ,根据系数相等得到关于a ,b 的方程组,解出a ,b 的值,求出z ,从而求出z 的模.【解答】解:设z=a+bi ,则==i ,∴1﹣a ﹣bi=﹣b+(a+1)i ,∴,解得,故z=﹣i,|z|=1,故答案为:1.3.设a>0且a≠1,若函数f(x)=a x﹣1+2的反函数的图象经过定点P,则点P的坐标是(3,1).【考点】反函数.【分析】由于函数f(x)=a x﹣1+2经过定点(1,3),再利用反函数的性质即可得出.【解答】解:∵函数f(x)=a x﹣1+2经过定点(1,3),∴函数f(x)的反函数的图象经过定点P(3,1),故答案为:(3,1).4.计算:= .【考点】极限及其运算.【分析】先利用排列组合公式,将原式化简成的形式,再求极限.【解答】解:===.故答案为:.5.在平面直角坐标系内,直线l:2x+y﹣2=0,将l与两坐标轴围成的封闭图形绕y轴旋转一周,所得几何体的体积为.【考点】用定积分求简单几何体的体积.【分析】由题意此几何体的体积可以看作是:V=,求出积分即得所求体积.【解答】解:由题意可知:V=,∴V=π(y3﹣),=.故答案为.6.已知sin2θ+sinθ=0,θ∈(,π),则tan2θ= .【考点】同角三角函数基本关系的运用.【分析】由已知等式化简可得sinθ(2cosθ+1)=0,结合范围θ∈(,π),解得cosθ=﹣,利用同角三角函数基本关系式可求tanθ,利用二倍角的正切函数公式可求tan2θ的值.【解答】解:∵sin2θ+sinθ=0,⇒2sinθcosθ+sinθ=0,⇒sinθ(2cosθ+1)=0,∵θ∈(,π),sinθ≠0,∴2cosθ+1=0,解得:cosθ=﹣,∴tanθ=﹣=﹣,∴tan2θ==.故答案为:.7.定义在R上的偶函数y=f(x),当x≥0时,f(x)=2x﹣4,则不等式f(x)≤0的解集是.【考点】函数奇偶性的性质.【分析】根据条件判断函数的单调性和函数的零点,利用函数奇偶性和单调性的关系将不等式进行转化求解即可.【解答】解:当x≥0时,由f(x)=2x﹣4=0得x=2,且当x≥0时,函数f(x)为增函数,∵f(x)是偶函数,∴不等式f(x)≤0等价为f(|x|)≤f(2),即|x|≤2,即﹣2≤x≤2,即不等式的解集为,故答案为:.8.在平面直角坐标系xOy中,有一定点A(1,1),若OA的垂直平分线过抛物线C:y2=2px (p>0)的焦点,则抛物线C的方程为y2=4x .【考点】抛物线的简单性质.【分析】先求出线段OA的垂直平分线方程,然后表示出抛物线的焦点坐标并代入到所求方程中,进而可求得p的值,即可得到抛物线方程.【解答】解:∵点A(1,1),依题意我们容易求得直线的方程为x+y﹣1=0,把焦点坐标(,0)代入可求得焦参数p=2,从而得到抛物线C的方程为:y2=4x.故答案为:y2=4x.9.已知x、y满足约束条件,则z=2x+y的最小值为﹣6 .【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(﹣2,﹣2),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(﹣2,﹣2)时,直线在y轴上的截距最小,z有最小值为2×(﹣2)﹣2=﹣6.故答案为:﹣6.10.在(x2+)6(k为实常数)的展开式中,x3项的系数等于160,则k= 2 .【考点】二项式系数的性质.【分析】T r+1=k r x12﹣3r,令12﹣3r=3,解得r.即可得出.【解答】解:T r+1=(x2)6﹣r=k r x12﹣3r,令12﹣3r=3,解得r=3.∴T4=x3,∴20k3=160,解得k=2.故答案为:2.11.从棱长为1的正方体的8个顶点中任取3个点,则以这三点为顶点的三角形的面积等于的概率是.【考点】列举法计算基本事件数及事件发生的概率.【分析】从正方体的8个顶点中任意取3个构成三角形的顶点共有取法,其中以这三点为顶点的三角形的面积S=的三角形共有24个,由此能求出结果.【解答】解:从正方体的8个顶点中任意取3个构成三角形的顶点共有取法,其中以这三点为顶点的三角形的面积S=的三角形如图中的△ABC,这类三角形共有24个∴P(S=)==.故答案为:.12.已知数列{a n}满足a1+a2+…+a n=n2+3n(n∈N+),则= 2n2+6n .【考点】数列的求和.【分析】通过a1+a2+…+a n=n2+3n与a1+a2+…+a n﹣1=(n﹣1)2+3(n﹣1)作差,进而计算可知a n=2(n+1),分别利用等差数列、等比数列的求和公式计算即得结论.【解答】解:∵a1+a2+…+a n=n2+3n,∴当n≥2时,a1+a2+…+a n﹣1=(n﹣1)2+3(n﹣1),两式相减得:a n=(n2+3n)﹣=2(n+1),又∵a1=1+3=4满足上式,∴a n=2(n+1),=4+4n,∴=4n+4•=2n2+6n,故答案为:2n2+6n.13.甲、乙两人同时参加一次数学测试,共有10道选择题,每题均有4个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有1道题的选项不同,如果甲最终的得分为27分,那么乙的所有可能的得分值组成的集合为{24,27,30} .【考点】集合的表示法;计数原理的应用.【分析】甲最终的得分为27分,可得:甲答对了10道题目中的9道,由于甲和乙都解答了所有的试题,甲必然有一道题目答错了,不妨设为第一题.由于他们只有1道题的选项不同,如果是第一道题,则乙可能答错,也可能答对,即可得出分数.如果是第一道题以外的一个题目,则乙一定答错,而第一道题,则乙也一定答错,即可得出.【解答】解:∵甲最终的得分为27分,∴甲答对了10道题目中的9道,∵甲和乙都解答了所有的试题,∴甲必然有一道题目答错了,不妨设为第一题.∵甲和乙都解答了所有的试题,经比较,他们只有1道题的选项不同,如果是第一道题,则乙可能答错,也可能答对,此时乙可得30分或27分.如果是第一道题以外的一个题目,则乙一定答错,而第一道题,则乙也一定答错,此时乙可得24分.综上可得:乙的所有可能的得分值组成的集合为{24,27,30}.故答案为:{24,27,30}.14.对于函数f(x)=,其中b>0,若f(x)的定义域与值域相同,则非零实数a的值为﹣4 .【考点】函数的值域;函数的定义域及其求法.【分析】根据函数的定义域与值域相同,故可以求出参数表示的函数的定义域与值域,由两者相同,故比较二区间的端点得出参数满足的方程解方程求参数即可.【解答】解:若a>0,由于ax2+bx≥0,即x(ax+b)≥0,∴对于正数b,f(x)的定义域为:D=(﹣∞,﹣]∪.由于此时max=f(﹣)=,故函数的值域 A=.由题意,有﹣=,由于b>0,所以a=﹣4.故答案为:﹣4.二、选择题(共4小题,每小题5分,满分20分)15.“sinα=0”是“cosα=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由sinα=0可得α=kπ(k∈Z),即可判断出结论.【解答】解:sinα=0可得α=kπ(k∈Z),∴cosα=±1,反之成立,∴“sinα=0”是“cosα=1”的必要不充分条件.故选:B16.下列正确的是()A.若直线l1∥平面α,直线l2∥平面α,则l1∥l2B.若直线l上有两个点到平面α的距离相等,则l∥αC.直线l与平面α所成角的取值范围是(0,)D.若直线l1⊥平面α,直线l2⊥平面α,则l1∥l2【考点】空间中直线与平面之间的位置关系.【分析】根据各选项条件举出反例.【解答】解:对于A,若直线l1∥平面α,直线l2∥平面α,则l1与l2可能平行,可能相交,也可能异面,故A错误.对于B,若直线l与平面α相交于O点,在交点两侧各取A,B两点使得OA=OB,则A,B到平面α的距离相等,但直线l与α不平行,故B错误.对于C,当直线l⊂α或l∥α时,直线l与平面α所成的角为0,当l⊥α时,直线l与平面α所成的角为,故C错误.对于D,由定理“垂直于同一个平面的两条直线平行“可知D正确.故选:D.17.已知、是平面内两个互相垂直的单位向量,若向量满足(﹣)•(﹣)=0,则||的最大值是()A.1 B.2 C.D.【考点】平面向量数量积的运算.【分析】由向量垂直的条件可得•=0,运用向量的平方即为模的平方,可得|+|=,再化简运用向量的数量积的定义,结合余弦函数的值域,即可得到所求最大值.【解答】解:由题意可得•=0,可得|+|==,(﹣)•(﹣)=2+•﹣•(+)=||2﹣||•|+|cos<(+,>=0,即为||=cos<+,>,当cos<+,>=1即+,同向时,||的最大值是.故选:C.18.已知直线l:y=2x+b与函数y=的图象交于A,B两点,记△OAB的面积为S(O为坐标原点),则函数S=f(b)是()A.奇函数且在(0,+∞)上单调递增B.偶函数且在(0,+∞)上单调递增C.奇函数且在(0,+∞)上单调递减D.偶函数且在(0,+∞)上单调递减【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据条件求出AB的长度以及O到AB的距离,从而求出三角形OAB的面积函数,根据函数的表达式即可得到结论.【解答】解:设A(x1,y1),B(x2,y2),由2x+b=,即2x2+bx﹣1=0,则,则|AB|=,圆心到直线2x﹣y+b=0的距离d=,∴△OAB的面积S==,∴S=f(b)=,则函数f(b)为偶函数,当b>0时,y=和都为增函数,∴当b>0时,f(b)=为增函数.故选:B.三、解答题(共5小题,满分60分)19.如图,在直三棱柱ABC﹣A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点;(1)求证:AC⊥平面BCC1B1;(2)求异面直线B1D与AC所成角的大小.【考点】异面直线及其所成的角;直线与平面垂直的判定.【分析】(1)由已知推导出AC⊥BC,CC1⊥AC,由此能证明AC⊥平面BCC1B1.(2)以C为原点,直线CA、CB、CC1为x、y、z轴,建立空间直角坐标系,利用向量法能求出异面直线B1D与AC所成角的大小.【解答】证明:(1)∵底面△ABC是等腰直角三角形,且AC=BC,∴AC⊥BC,∵CC1⊥平面A1B1C1,∴CC1⊥AC,∵CC1∩BC=C,∴AC⊥平面BCC1B1.解:(2)以C为原点,直线CA、CB、CC1为x、y、z轴,建立空间直角坐标系,则C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),D(2,0,1),=(2,﹣2,﹣1),=(﹣2,0,0),设异面直线B1D与AC所成角为θ,则cosθ===.∴.∴异面直线B1D与AC所成角的大小为arccos.20.已知函数f(x)=sin2x+cos2x﹣1(x∈R);(1)写出函数f(x)的最小正周期和单调递增区间;(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0, =,且a+c=4,试求b的值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用两角和的正弦化简,由周期公式求得周期,再由相位在正弦函数的增区间内求得x的范围求得f(x)单调递增区间;(2)把f(B)=0代入函数解析式,求得B,展开数量积=,求得ac的值,结合a+c=4,利用余弦定理求得b的值.【解答】解:(1)f(x)=sin2x+cos2x﹣1=.∴T=;由,得.∴函数f(x)的单调递增区间为[],k∈Z;(2)由f(B)==0,得.∴或,k∈Z.∵B是三角形内角,∴B=.而=ac•cosB=,∴ac=3.又a+c=4,∴a2+c2=(a+c)2﹣2ac=16﹣2×3=10.∴b2=a2+c2﹣2ac•cosB=7.则b=.21.定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界:(1)设f(x)=,判断f(x)在上是否有界函数,若是,请说明理由,并写出f(x)的所有上界的值的集合,若不是,也请说明理由;(2)若函数g(x)=1+a•()x+()x在上是增函数;从而可得|f(x)|≤1,从而求得;(2)由题意知﹣3≤1+a•()x+()x≤3在上是增函数;故f(﹣)≤f(x)≤f();即﹣1≤f(x)≤,故|f(x)|≤1,故f(x)是有界函数;故f(x)的所有上界的值的集合是.22.设椭圆Г:(a>b>0)的右焦点为F(1,0),短轴的一个端点B 到F的距离等于焦距:(1)求椭圆Г的标准方程;(2)设C、D是四条直线x=±a,y=±b所围成的矩形在第一、第二象限的两个顶点,P是椭圆Г上任意一点,若,求证:m2+n2为定值;(3)过点F的直线l与椭圆Г交于不同的两点M、N,且满足于△BFM与△BFN的面积的比值为2,求直线l的方程.【考点】椭圆的简单性质.【分析】(1)由椭圆的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距,列出方程组,求出a,b,由此能求出椭圆Г的标准方程.(2)求出C(2,),D(﹣2,),设P(x0,y0),则,由已知=,得=1,由此能证明m2+n2=为定值.(3)=2等价于=2,设l:y=k(x﹣1),由,得(3+4k2)y2+6ky﹣9k2=0,由此利用韦达定理、椭圆性质,结合已知条件能求出直线l的方程.【解答】解:(1)∵椭圆Г:(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距,∴,解得a=2,b=,∴椭圆Г的标准方程为.证明:(2)∵C、D是四条直线x=±a,y=±b所围成的矩形在第一、第二象限的两个顶点,∴C(2,),D(﹣2,),设P(x0,y0),则,由已知=,得,∴=1,∴m2+n2=为定值.解:(3)=2等价于=2,当直线l的斜率不存在时, =1,不合题意,故直线l的斜率存在,设l:y=k(x﹣1),由,消去x,得(3+4k2)y2+6ky﹣9k2=0,设M(x1,y1),N(x2,y2),则,,由=2,得=﹣2,则,,∴3+4k2=8,k=,∴直线l的方程为y=.23.已知数列{a n}、{b n}满足:a,a n+b n=1,b;(1)求b1、b2、b3、b4;(2)求证:数列{}是等差数列,并求{b n}的通项公式;(3)设S n=a1a2+a2a3+…+a n a n+1,若不等式4aS n<b n对任意n∈N*恒成立,求实数a的取值范围.【考点】数列的求和;等差数列的通项公式;数列递推式.【分析】(1)通过已知条件代入计算即得结论;(2)通过两边同时减1并取倒数,利用a n+b n=1化简可知数列{}是等差数列,进而计算可得结论;(3)通过(2)可知b n=,进而裂项可知a n a n+1=﹣,并项相加可知S n=,进而问题转化为求的最小值,计算即得结论.【解答】(1)解:依题意,b1=1﹣a1=1﹣=,b2===,a2=1﹣b2=1﹣=,==,a3=1﹣b3=1﹣=,==;(2)证明:∵,a n+b n=1,∴b n+1﹣1=﹣1=﹣1=,两边同时取倒数,得: ==﹣1=﹣1=﹣1=﹣1,∴数列{}是等差数列,又∵==﹣4,∴=﹣4﹣(n﹣1)=﹣(n+3),∴数列{b n}的通项公式b n=1﹣=;(3)解:由(2)可知b n=,∴a n=1﹣b n=,a n a n+1==﹣,∴S n=a1a2+a2a3+…+a n a n+1=﹣+﹣+…+﹣=﹣=,∵不等式4aS n<b n对任意n∈N*恒成立,∴不等式4a•<对任意n∈N*恒成立,∴a<=1+,∵随着n的增大而减小,且=0,∴a≤1.2016年6月24日。
上海市嘉定、黄浦区高三年级第二次模拟考试数学试卷(理)(含答案)word版

2017年上海市嘉定、黄浦区高三年级第二次模拟考试数学试卷(理科)考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效.2.答卷前,考生务必将姓名、准考证号等相关信息在答题卷上填写清楚. 3.本试卷共23道试题,满分150分;考试时间120分钟.一、填空题(本大题满分56分)本大题共有14小题,考生应在答题卷相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分. 1.函数12()log (21)f x x =+的定义域为 .2.若双曲线221xy m -=的一个焦点为F (2,0),则实数m = . 3.若2x 3ππ≤≤,则方程2sin 10x +=的解x = .4.已知幂函数()y f x =存在反函数,若其反函数的图像经过点1(,9)3,则该幂函数的解析式()f x = .5.一盒中有7件正品,3件次品,无放回地每次取一件产品,直至取到正品.已知抽取次数ξ 的概率分布律如下表:.6.一名工人维护甲、乙两台独立的机床,若在一小时内,甲、乙机床需要维护的概率分别为0.9、0.85,则两台机床都不需要维护的概率为 .7.已知z ∈C ,z 为z 的共轭复数,若10110i 0z z z =(i 是虚数单位),则z = . 8.已知α、0,2βπ⎛⎫∈ ⎪⎝⎭,若5cos()13αβ+=,4sin()5αβ-=-,则cos 2α= .9.如图,已知圆柱的轴截面11ABB A 是正方形,C 是圆柱下底 面弧AB 的中点,1C 是圆柱上底面弧11A B 的中点,那么异面 直线1AC 与BC 所成角的正切值为 .10.若过圆C :1,1,x y θθ⎧=+⎪⎨=-⎪⎩(02θ<π≤)上一点(1,0)P -作该圆的切线l ,则切线l 的方程为 .11.若(12)n x +(*n ∈N )二项展开式中的各项系数和为n a ,其二项AB1A 1C 1B 第9题式系数和为n b ,则=+-++∞→nn nn n b a a b 11lim.12.设集合{1,}P x =,{1,2,}Q y =,其中,{1,2,3,4,5,6,7,8,9}x y ∈,且P Q ⊆.若将满足上述条件的每一个有序整数对(,)x y 看作一个点,则这样的点的个数为 . 13.已知函数2()|2|f x x ax a =-+(x ∈R ),给出下列四个命题:① 当且仅当0a =时,()f x 是偶函数; ② 函数()f x 一定存在零点; ③ 函数在区间(,]a -∞上单调递减;④ 当01a <<时,函数()f x 的最小值为2a a -. 那么所有真命题的序号是 .14.已知△FAB ,点F 的坐标为(1,0),点A 、B 分别在图中抛物线24y x =及圆22(1)4x y -+=的实线部分上运动,且AB 总是平行于x 轴,那么△FAB 的周长的取值范围为 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.已知空间三条直线a 、b 、m 及平面α,且a 、b ≠⊂α.条件甲:m a ⊥,m b ⊥;条件乙:m α⊥,则“条件乙成立”是“条件甲成立”的………………………………………( ) A .充分非必要条件 B .必要非充分条件 C .充分且必要条件D .既非充分也非必要条件16.已知a 、0b >,则下列不等式中不一定成立的是……………………………………( )A .2a bb a +≥ B .11()()4a b a b +⋅+≥C.2ab a b+D.a b ++17.已知△ABC 的三边分别是a b c 、、,且a b c ≤≤(*a b c ∈N 、、),若当b n =(*n ∈N )时,记满足条件的所有三角形的个数为n a ,则数列{}n a 的通项公式…………………( ) A .21n a n =- B .(1)2n n n a +=C .21n a n =+D .n a n =18.已知O 、A 、B 、C 是同一平面上不共线的四点,若存在一组正实数1λ、2λ、3λ,使得1230OA OB OC λλλ++=,则三个角AOB ∠、BOC ∠、COA ∠………………………( ) A .都是钝角 B .至少有两个钝角 C .恰有两个钝角D .至多有两个钝角三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题卷相应的编号规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分8分,第2小题满分4分.已知三棱锥P ABC -,PA ⊥平面ABC ,AB AC ⊥, 4AB AC ==,5AP =.(1)求二面角P BC A --的大小(结果用反三角函数值表示). (2)把△PAB (及其内部)绕PA 所在直线旋转一周形成一几何体,求该几何体的体积V .20.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.已知函数22()cos cos sin 1f x x x x x =⋅+--(x ∈R ) (1)求函数()y f x =的单调递增区间; (2)若5[,]123x ππ∈-,求()f x 的取值范围.21.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.某高科技企业研制出一种型号为A 的精密数控车床,A 型车床为企业创造的价值逐年减少(以投产一年的年初到下一年的年初为A 型车床所创造价值的第一年).若第1年A 型车床创造的价值是250万元,且第1年至第6年,每年A 型车床创造的价值减少30万元;从第7年开始,每年A 型车床创造的价值是上一年价值的50%.现用n a (*n ∈N )表示A 型车床在第n 年创造的价值.(1)求数列{}n a (*n ∈N )的通项公式n a ; (2)记n S 为数列{}n a 的前n 项和,nn S T n=.企业经过成本核算,若100n T >万元,则继续使用A 型车床,否则更换A 型车床.试问该企业须在第几年年初更换A 型车床?(已知:若正数数列{}n b 是单调递减数列,则数列12n b b b n +++⎧⎫⎨⎬⎩⎭也是单调递减数列).22.(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题ABCP满分6分.已知定点(2,0)F ,直线:2l x =-,点P 为坐标平面上的动点,过点P 作直线l 的垂线,垂足为点Q ,且FQ PF PQ ⊥+().设动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点F 的直线1l 与曲线C 有两个不同的交点A 、B ,求证:111||||2AF BF +=; (3)记OA 与OB的夹角为θ(O 为坐标原点,A 、B 为(2)中的两点),求cos θ的取值范围.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.对*n ∈N ,定义函数2()()n f x x n n =--+,1n x n -≤≤.(1)求证:()n y f x =图像的右端点与1()n y f x +=图像的左端点重合;并回答这些端点在哪条直线上.(2)若直线n y k x =与函数2()()n f x x n n =--+,1n x n -≤≤(2n ≥,*n ∈N )的图像有且仅有一个公共点,试将n k 表示成n 的函数.(3)对*n ∈N ,2n ≥,在区间[0,]n 上定义函数()y f x =,使得当1m x m -≤≤(*m ∈N ,且1m =,2,…,n )时,()()m f x f x =.试研究关于x 的方程()n f x k x =(0x n ≤≤,*n ∈N )的实数解的个数(这里的n k 是(2)中的n k ),并证明你的结论.2017学年嘉定、黄浦区高三年级第二次模拟考试数学试卷(理科)参考答案和评分标准说明:1.本解答仅列出试题的一种或两种解法,如果考生的解法与所列解答不同,可参考解答中的评分精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分.一、填空题(本大题满分56分)本大题共有14小题,考生应在答题卷相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分. 1.1(,)2-+∞ 2.3 3.67π 4.12x- 5.118 6.0.015 7.0或i - 8.6365 910.220x y -+= 11.13- 12.1413.①④ 14.(4,6)二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.A 16.C 17.B 18.B三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题卷相应的编号规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分8分,第2小题满分4分.[解](1)解法一:设BC 的中点D ,联结AD ,PD ,易知在等腰三角形PBC 、ABC 中,PD BC ⊥,AD BC ⊥,故PDA ∠为二面角P BC A --的平面角. (2分)在等腰Rt △ABC 中,由4AB AC ==及AB AC ⊥,得AD = 由PA ⊥平面ABC ,得PA AD ⊥.在Rt △PAD中,tan PA PDA AD ∠== (6分) 故二面角P BC A --的大小为arc (8分)解法二:如图建立空间直角坐标系,可得各点的坐标(0,0,0)A ,(4,0,0)B ,(0,4,0)C ,(0,0,5)P .于是(4,0,5)PB =- ,(4,4,0)BC =-. (2分)由PA ⊥平面ABC ,得平面ABC 的一个法向量1(0,0,1)n =. 设2(,,)n u v w =是平面PBC 的一个法向量.因为2n PB ⊥ ,2n BC ⊥ ,所以20n PB ⋅= ,20n BC ⋅=, 即450u w -=,440u v -+=,解得45w u =,v u =,取5u =,得2(5,5,4)n =-. (4分)设1n 与2n 的夹角为ϕ,则1212cos n n n n ϕ⋅==(6分) 结合图可判别二面角P BC A --是个锐角,它的大小为. (8分) (2)由题设,所得几何体为圆锥,其底面半径为4,高为5.该圆锥的体积21805433V π=⨯⨯π⨯=. (12分)20.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.[解](1)由题设()2cos212sin(2)16f x x x x π=+-=+-, (2分)由222262k x k ππππ-+π+≤≤,解得36k x k πππ-π+≤≤,故函数()y f x =的单调递增区间为,36k k ππ⎡⎤π-π+⎢⎥⎣⎦(k ∈Z ). (6分)(2)由5123x ππ-≤≤,可得22366x ππ5π-+≤≤. (7分)考察函数sin y x =,易知1sin(2)16x π+-≤≤, (10分)于是32sin(2)116x π+--≤≤.故()y f x =的取值范围为[3,1]-. (12分)21.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.[解](1)由题设,知1a ,2a ,…,6a 构成首项1250a =,公差30d =-的等差数列.故28030n a n =-(6n ≤,*n ∈N )(万元). (3分)7a ,8a ,…,n a (7n ≥,*n ∈N )构成首项761502a a ==,公比12q =的等比数列.故71502n n a -⎛⎫=⨯ ⎪⎝⎭(7n ≥,*n ∈N )(万元). (6分)于是,728030,16150,72n n n n a n --⎧⎪=⎨⎛⎫⨯⎪ ⎪⎝⎭⎩≤≤≥(*n ∈N )(万元). (7分) (2)由(1)知,{}n a 是单调递减数列,于是,数列{}n T 也是单调递减数列.当16n ≤≤时,26515nn S T n n==-,{}n T 单调递减,6175100T =>(万元).所以100n T >(万元).当7n ≥时,66110010501001115022n n n n S T n n n--⎡⎤⎛⎫+⨯-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦===, (9分) 当11n =时,11104T >(万元);当12n =时,1296T <(万元). (13分)所以,当12n ≥,*n ∈N 时,恒有96n T <.故该企业需要在第11年年初更换A 型车床. (14分) 22.(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.[解](1)设点P 的坐标为(,)x y . (1分)由题意,可得(2,)Q y -,(4,)FQ y =- ,(2,)PF x y =-- ,(2,0)PQ x =--.(3分) 由FQ 与PF PQ + 垂直,得()0FQ PF PQ ⋅+=,即28y x =(0x ≥). (6分) 因此,所求曲线C 的方程为28y x =(0x ≥).[证明](2)因为过点F 的直线1l 与曲线C 有两个不同的交点A 、B ,所以1l 的斜率不为零,故设直线1l 的方程为2x my =+. (7分)于是A 、B 的坐标11(,)x y 、22(,)x y 为方程组28,2,y x x my íï=ïìï=+ïî的实数解. 消x 并整理得28160y my --=. (8分)于是12128,16,y y m y y +=⎧⎨=-⎩进一步得2121284,4.x x m x x ⎧+=+⎪⎨=⎪⎩ (10分)又因为曲线28y x =(0x ≥)的准线为2x =-,所以12121212411111||||222()42x x FA FB x x x x x x +++=+==+++++,得证. (12分) (3)由(2)可知,11(,)OA x y =u u r ,22(,)OB x y =uu u r.于是cos ||||OA OB OA OB q ?===×uu r uu u ruu r uu u r , (16分)可求得cos q =3,05轹÷ê-÷÷êøë. (18分) 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.[证明](1)由()n f n n =得()n y f x =图像右端点的坐标为(,)n n ,由1()n f n n +=得1()n y f x +=图像左端点的坐标为(,)n n ,故两端点重合. (2分) 并且对*n ∈N ,这些点在直线y x =上. (4分) [解](2)由题设及(1)的结论,两个函数图像有且仅有一个公共点,即方程2()n x n n k x --+=在1n x n -≤≤上有两个相等的实数根.整理方程得22(2)0n x k n x n n +-+-=,由22(2)4()0n k n n n ∆=---=,解得2n k n =± (8分) 此时方程的两个实数根1x ,2x 相等,由122n x x n k +=-,得122[2(22nn k x x n n -===-±= 因为121n x x n -=≤≤,所以只能2n k n =-2n ≥,*n ∈N ).(10分)(3)当2n ≥时,2n k n =-=,可得12n k <<, 且n k 单调递减. (14分)① 当3n ≥时,对于21i n -≤≤,总有1n i k k <<,亦即直线n y k x =与函数()i f x 的图像总有两个不同的公共点(直线n y k x =在直线y x =与直线i y k x =之间).对于函数1()f x 来说,因为12n k <<,所以方程1()n k x f x =有两个解:10x =,22n x k =-(0,1)∈.此时方程()n f x k x =(0x n ≤≤,*n ∈N )的实数解的个数为2(1)121n n -+=-.(16分)② 当2n =时,因为212k <<,所以方程21()k x f x =有两个解.此时方程2()f x k x =(02x ≤≤)的实数解的个数为3. (17分)综上,当2n ≥,*n ∈N 时,方程()n f x k x =(0x n ≤≤,*n ∈N )的实数解的个数为21n -. (18分)。
2017年-上海各区-数学高三二模试卷和答案

宝山2017二模一、填空题(本大题共有12题,满分54分,第16题每题4分,第712题每题5分)考生应在答题纸的相应位置直接填写结果.1.若集合{}|0A x x =>,{}|1B x x =<,则A B ⋂=____________2.已知复数z1z i ⋅=+(i 为虚数单位),则z =____________ 3.函数()sin cos cos sin x x f x x x=的最小正周期是____________4.已知双曲线()2221081x y a a -=>的一条渐近线方程3y x =,则a =____________ 5.若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为____________6.已知,x y 满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是____________7.直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的交点个数是____________8.已知函数()()()220log 01xx f x x x ⎧≤⎪=⎨<≤⎪⎩的反函数是()1f x -,则12f -1⎛⎫= ⎪⎝⎭____________9.设多项式()()()()23*11110,nx x x x x n N ++++++++≠∈的展开式中x 项的系数为n T ,则2limnn T n →∞=____________10.生产零件需要经过两道工序,在第一、第二道工序中产生的概率分别为0.01和p ,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是0.9603,则p =____________11.设向量()(),,,m x y n x y ==-,P 为曲线()10m n x ⋅=>上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为____________12.设1210,,,x x x 为1,2,,10的一个排列,则满足对任意正整数,m n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为____________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设,a b R ∈,则“4a b +>”是“1a >且3b >”的( ) A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件14.如图,P 为正方体1111ABCD A B C D -中1AC 与1BD 的交点,则PAC 在该正方体各个面上的射影可能是( )A. ①②③④B.①③C. ①④D.②④15.如图,在同一平面内,点P 位于两平行直线12,l l 同侧,且P 到12,l l 的距离分别为1,3.点,M N 分别在12,l l 上,8PM PN +=,则PM PN ⋅的最大值为( )A. 15B. 12C. 10D. 916.若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设()()20x f x x xλ+=>,若对于任意()2,6t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ的取值范围是( )A. (]0,2B. (]1,2C. []1,2D. []1,4三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分8分,第2小题满分6分)如图,在正方体1111ABCD A B C D -中,E 、F 分别是线段BC 、1CD 的中点. (1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18.(本题满分14分,第1小题6分,第2小题8分)已知抛物线()220y px p =>,其准线方程为10x +=,直线l 过点()(),00T t t >且与抛物线交于A 、B 两点,O 为坐标原点.(1)求抛物线方程,并证明:OA OB ⋅的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点,记PT 的最小值为函数()d t ,求()d t 的解析式.19.(本题满分14分,第1小题6分,第2小题8分)对于定义域为D 的函数()y f x =,如果存在区间[](),m n D m n ⊆<,同时满足:①()f x 在[],m n 内是单调函数;②当定义域是[],m n 时,()f x 的值域也是[],m n 则称函数()f x 是区间[],m n 上的“保值函数”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)已知()()2112,0f x a R a a a x=+-∈≠是区间[],m n 上的“保值函数”,求a 的取值范围.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)数列{}n a 中,已知()12121,,n n n a a a a k a a ++===+对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里,a k 均为实数) (1)若{}n a 是等差数列,求k ; (2)若11,2a k ==-,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设T,R 若存在常数0M >,使得对任意t T ∈,均有t M ≤,则称T 为有界集合,同时称M 为集合T 的上界.(1)设121|,21x xA y y x R ⎧⎫-==∈⎨⎬+⎩⎭、21|sin 2A x x ⎧⎫=>⎨⎬⎩⎭,试判断1A 、2A 是否为有界集合,并说明理由;(2)已知()2f x x u =+,记()()()()()()11,2,3,n n f x f x f x f f x n -===.若m R ∈,1,4u ⎡⎫∈+∞⎪⎢⎣⎭,且(){}*|n B f m n N =∈为有界集合,求u 的值及m 的取值范围;(3)设a 、b 、c 均为正数,将()2a b -、()2b c -、()2c a -中的最小数记为d ,是否存在正数()0,1λ∈,使得λ为有界集合222{|,dC y y a b c ==++a 、b 、c 均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.宝山区答案1.(0,1)2.13. π4.35. 5.16. 37. 28. 19.1210. 0.03 11.212.512 13. B14. C15.A16.A17. (1) (2)arctan 218.(1)24y x =,证明略(2)2)(t),(0t 2)d t ⎧≥⎪=⎨<<⎪⎩19. (1)证明略(2)12a或32a 20. (1)12k =(2)2(21,),(2,)n n n k k N S n n k k N **⎧-=-∈=⎨=∈⎩ (3)25k =-21.(1)1A 为有界集合,上界为1;2A 不是有界集合 (2)14u =,11,22m ⎡⎤∈-⎢⎥⎣⎦ (3)15λ=解析:(2)设()()011,,,1,2,3,...n n a m a f m a f a n -====,则()n n a f m =∵()2114a f m m u ==+≥,则222111111024a a a a u a u ⎛⎫-=-+=-+-≥ ⎪⎝⎭且211111024n n n n n a a a u a a ---⎛⎫-=-+-≥⇒≥ ⎪⎝⎭若(){}*|N n B f m n =∈为有界集合,则设其上界为0M ,既有*0,N n a M n ≤∈∴()()()112211112211......n n n n n n n n n a a a a a a a a a a a a a a a ------=-+-++-+=-+-++-+2222121111111...242424n n a u a u a u m u --⎛⎫⎛⎫⎛⎫=-+-+-+-++-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222212111111...22244n n a a a m n u u n u u --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-++-+≥-+⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦若0n a M ≤恒成立,则014n u u M ⎛⎫-+≤ ⎪⎝⎭恒成立,又11044u u ≥⇒-≥ ∴14u =,∴()214f x x =+ 设12m λ=+(i )0λ>,则()22101011112422a a f m m a a λλλ⎛⎫⎛⎫-=-=++-+=⇒>> ⎪ ⎪⎝⎭⎝⎭∴111...2n n a a a m ->>>>>记()()212g x f x x x ⎛⎫=-=- ⎪⎝⎭,则当1212x x >>时,()()12g x g x >∴()()()2111110n n n n n g a f a a a a g m a a λ----=-=->=-=∴()211n a a n λ>+-,若0na M ≤恒成立,则0λ=,矛盾。
2017年上海市嘉定区高考数学二模试卷 --有答案

2017年上海市嘉定区高考数学二模试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.函数y=2sin2(2x)﹣1的最小正周期是.2.设i为虚数单位,复数,则|z|=.3.设f﹣1(x)为的反函数,则f﹣1(1)=.4.=.5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是.6.设等差数列{a n}的前n项和为S n,若=,则=.7.直线(t为参数)与曲线(θ为参数)的公共点的个数是.8.已知双曲线C1与双曲线C2的焦点重合,C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,则C2的方程为.9.若,则满足f(x)>0的x的取值范围是.10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.11.设等差数列{a n}的各项都是正数,前n项和为S n,公差为d.若数列也是公差为d 的等差数列,则{a n}的通项公式为a n=.12.设x∈R,用[x]表示不超过x的最大整数(如[2.32]=2,[﹣4.76]=﹣5),对于给定的n∈N*,定义C=,其中x∈[1,+∞),则当时,函数f(x)=C的值域是.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x2﹣3x+2=0”的逆否命题是()A.若x≠1,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=1C.若x2﹣3x+2=0,则x≠1 D.若x2﹣3x+2≠0,则x≠114.如图,在正方体ABCD﹣A1B1C1D1中,M、E是AB的三等分点,G、N是CD的三等分点,F、H分别是BC、MN的中点,则四棱锥A1﹣EFGH的左视图是()A. B. C.D.15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足,,则△ADP的面积为()A. B.C.D.16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f(ax+1)≤f(x﹣2)在上恒成立,则实数a的取值范围是()A.[﹣2,1]B.[﹣2,0]C.[﹣1,1]D.[﹣1,0]三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a﹣b=2,c=4,sinA=2sinB.(Ⅰ)求△ABC的面积;(Ⅱ)求sin(2A﹣B).18.如图,在长方体ABCD﹣A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截长方体得到一个矩形EFGH,且A1E=D1F=2,AH=DG=5.(1)求截面EFGH把该长方体分成的两部分体积之比;(2)求直线AF与平面α所成角的正弦值.19.如图,已知椭圆C:(a>b>0)过点,两个焦点为F1(﹣1,0)和F2(1,0).圆O的方程为x2+y2=a2.(1)求椭圆C的标准方程;(2)过F1且斜率为k(k>0)的动直线l与椭圆C交于A、B两点,与圆O交于P、Q两点(点A、P在x轴上方),当|AF2|,|BF2|,|AB|成等差数列时,求弦PQ的长.20.如果函数y=f(x)的定义域为R,且存在实常数a,使得对于定义域内任意x,都有f(x+a)=f(﹣x)成立,则称此函数f(x)具有“P(a)性质”.(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当﹣1≤x≤1时,g(x)=|x|,若函数y=g(x)的图象与直线y=px有2017个公共点,求实数p的值.21.给定数列{a n},若满足a1=a(a>0且a≠1),对于任意的n,m∈N*,都有a n+m=a n•a m,则称数列{a n}为指数数列.(1)已知数列{a n},{b n}的通项公式分别为,,试判断{a n},{b n}是不是指数数列(需说明理由);(2)若数列{a n}满足:a1=2,a2=4,a n+2=3a n+1﹣2a n,证明:{a n}是指数数列;(3)若数列{a n}是指数数列,(t∈N*),证明:数列{a n}中任意三项都不能构成等差数列.2017年上海市嘉定区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.函数y=2sin2(2x)﹣1的最小正周期是.【考点】H1:三角函数的周期性及其求法.【分析】利用二倍角公式基本公式将函数化为y=Acos(ωx+φ)的形式,再利用周期公式求函数的最小正周期,【解答】解:函数y=2sin2(2x)﹣1,化简可得:y=1﹣cos4x﹣1=﹣cos4x;∴最小正周期T=.故答案为2.设i为虚数单位,复数,则|z|=1.【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数===﹣i,则|z|=1.故答案为:1.3.设f﹣1(x)为的反函数,则f﹣1(1)=1.【考点】4R:反函数.【分析】根据反函数的性质,原函数的值域是反函数的定义域即可求解【解答】解:的反函数,其反函数f﹣1(x),反函数的性质,反函数的定义域是原函数的值域,即.可得:x=1,∴f﹣1(x)=1.故答案为1.4.=3.【考点】8J:数列的极限.【分析】通过分子分母同除3n+1,利用数列极限的运算法则求解即可.【解答】解:===3.故答案为:3.5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是30°.【考点】MI:直线与平面所成的角.【分析】根据圆锥的底面积公式和侧面积公式,结合已知可得l=2R,进而解母线与底面所成角,然后求解母线与轴所成角即可.【解答】解:设圆锥的底面半径为R,母线长为l,则:2,其底面积:S底面积=πR2πRl=πRl,其侧面积:S侧面积=∵圆锥的侧面积是其底面积的2倍,∴l=2R,故该圆锥的母线与底面所成的角θ有,cosθ==,∴θ=60°,母线与轴所成角的大小是:30°.故答案为:30°.6.设等差数列{a n}的前n项和为S n,若=,则=.【考点】85:等差数列的前n项和.【分析】=,可得3(a1+4d)=5(a1+2d),化为:a1=d.再利用等差数列的求和公式即可得出.【解答】解:∵=,∴3(a1+4d)=5(a1+2d),化为:a1=d.则==.故答案为:.7.直线(t为参数)与曲线(θ为参数)的公共点的个数是1.【考点】QK:圆的参数方程;QJ:直线的参数方程.【分析】根据题意,将直线的参数方程变形为普通方程,再将曲线的参数方程变形为普通方程,分析可得该曲线为圆,且圆心坐标为(3,5),半径r=,求出圆心到直线的俄距离,分析可得直线与圆相切,即可得直线与圆有1个公共点,即可得答案.【解答】解:根据题意,直线的参数方程为,则其普通方程为x+y﹣6=0,曲线的参数方程为,则其普通方程为(x﹣3)2+(y﹣5)2=2,该曲线为圆,且圆心坐标为(3,5),半径r=,圆心到直线x+y﹣6=0的距离d===r,则圆(x﹣3)2+(y﹣5)2=2与直线x+y﹣6=0相切,有1个公共点;故答案为:1.8.已知双曲线C1与双曲线C2的焦点重合,C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,则C2的方程为.【考点】KC:双曲线的简单性质.【分析】求出双曲线的焦点坐标,利用渐近线的倾斜角的关系,列出方程,然后求解即可.【解答】解:双曲线C1与双曲线C2的焦点重合,C1的方程为,焦点坐标(±2,0).双曲线C1的一条渐近线为:y=,倾斜角为30°,C的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,可得C2的渐近线y=.2可得,c=2,解得a=1,b=,所求双曲线方程为:.故答案为:.9.若,则满足f(x)>0的x的取值范围是(1,+∞).【考点】7E:其他不等式的解法.【分析】由已知得到关于x的不等式,化为根式不等式,然后化为整式不等式解之.【解答】解:由f(x)>0得到即,所以,解得x>1;故x的取值范围为(1,+∞);故答案为:(1,+∞);10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.【考点】C9:相互独立事件的概率乘法公式.【分析】利用对立事件的概率公式,计算即可,【解答】解:设至少有一种新产品研发成功的事件为事件A且事件B为事件A的对立事件,则事件B为一种新产品都没有成功,因为甲乙研发新产品成功的概率分别为和.则P(B)=(1﹣)(1﹣)=,再根据对立事件的概率之间的公式可得P(A)=1﹣P(B)=,故至少有一种新产品研发成功的概率.故答案为.11.设等差数列{a n}的各项都是正数,前n项和为S n,公差为d.若数列也是公差为d的等差数列,则{a n}的通项公式为a n=.【考点】84:等差数列的通项公式.【分析】由题意可得:S n=na1+d.a n>0.= +(n﹣1)d,化简n≠1时可得:a1=(n﹣1)d2+2d﹣d.分别令n=2,3,解出即可得出.【解答】解:由题意可得:S n=na1+d.a n>0.=+(n﹣1)d,可得:S n=a1+(n﹣1)2d2+2(n﹣1)d.∴na1+d=a1+(n﹣1)2d2+2(n﹣1)d.n≠1时可得:a1=(n﹣1)d2+2d﹣d.分别令n=2,3,可得:a1=d2+2d﹣d,a1=2d2+2d﹣d.解得a1=,d=.∴a n=+(n﹣1)=.故答案为:.12.设x∈R,用[x]表示不超过x的最大整数(如[2.32]=2,[﹣4.76]=﹣5),对于给定的n∈N*,定义C=,其中x∈[1,+∞),则当时,函数f(x)=C的值域是.【考点】57:函数与方程的综合运用.【分析】分类讨论,根据定义化简C x n,求出C x10的表达式,再利用函数的单调性求出C x10的值域.【解答】解:当x∈[,2)时,[x]=1,∴f(x)=C=,当x∈[,2)时,f(x)是减函数,∴f(x)∈(5,);当x∈[2,3)时,[x]=2,∴f(x)=C=,当x∈[2,3)时,f(x)是减函数,∴f(x)∈(15,45];∴当时,函数f(x)=C的值域是,故答案为:.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x2﹣3x+2=0”的逆否命题是()A.若x≠1,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=1C.若x2﹣3x+2=0,则x≠1 D.若x2﹣3x+2≠0,则x≠1【考点】25:四种命题间的逆否关系.【分析】根据逆否命题的定义,我们易求出命题的逆否命题【解答】解:将命题的条件与结论交换,并且否定可得逆否命题:若x2﹣3x+2≠0,则x≠1故选:D14.如图,在正方体ABCD﹣A1B1C1D1中,M、E是AB的三等分点,G、N是CD的三等分点,F、H分别是BC、MN的中点,则四棱锥A1﹣EFGH的左视图是()A. B. C.D.【考点】L7:简单空间图形的三视图.【分析】确定5个顶点在面DCC1D1上的投影,即可得出结论.【解答】解:A1在面DCC1D1上的投影为点D1,E在面DCC1D1的投影为点G,F在面DCC1D1上的投影为点C,H在面DCC1D1上的投影为点N,因此侧视图为选项C的图形.故选C15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足,,则△ADP的面积为()A. B.C.D.【考点】9V:向量在几何中的应用.【分析】以A为原点,以BC的垂直平分线为y轴,建立直角坐标系.由于等边三角形△的边长为4,可得B,C的坐标,再利用向量的坐标运算和数乘运算可得,,利用△APD的面积公式即可得出.【解答】解:以A为原点,以BC的垂直平分线为y轴,建立直角坐标系.∵等边三角形△的边长为4,∴B(﹣2,﹣2),C(2,﹣2),由足= [(﹣2,﹣2)+(2,﹣2)]=(0,﹣),=(0,﹣)+(4,0)=(,﹣),∴△ADP的面积为S=||•||=××=,故选:A.16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f(ax+1)≤f(x﹣2)在上恒成立,则实数a的取值范围是()A.[﹣2,1]B.[﹣2,0]C.[﹣1,1]D.[﹣1,0]【考点】3N:奇偶性与单调性的综合.【分析】因为偶函数在对称区间上单调性相反,根据已知中f(x)是偶函数,且f(x)在(0,+∞)上是增函数,易得f(x)在(﹣∞,0)上为减函数,又由若时,不等式f(ax+1)≤f(x﹣2)恒成立,结合函数恒成立的条件,求出时f(x﹣2)的最小值,从而可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围.【解答】解:∵f(x)是偶函数,且f(x)在(0,+∞)上是增函数,∴f(x)在(﹣∞,0)上为减函数,当时,x﹣2∈[﹣,﹣1],故f(x﹣2)≥f(﹣1)=f(1),若时,不等式f(ax+1)≤f(x﹣2)恒成立,则当时,|ax+1|≤1恒成立,∴﹣1≤ax+1≤1,∴≤a≤0,∴﹣2≤a≤0,故选B.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a﹣b=2,c=4,sinA=2sinB.(Ⅰ)求△ABC的面积;(Ⅱ)求sin(2A﹣B).【考点】GL:三角函数中的恒等变换应用.【分析】解法一:(I)由已知及正弦定理可求a,b的值,由余弦定理可求cosB,从而可求sinB,即可由三角形面积公式求解.(II)由余弦定理可得cosA,从而可求sinA,sin2A,cos2A,由两角差的正弦公式即可求sin (2A﹣B)的值.解法二:(I)由已知及正弦定理可求a,b的值,又c=4,可知△ABC为等腰三角形,作BD⊥AC于D,可求BD==,即可求三角形面积.(II)由余弦定理可得cosB,即可求sinB,由(I)知A=C⇒2A﹣B=π﹣2B.从而sin(2A﹣B)=sin(π﹣2B)=sin2B,代入即可求值.【解答】解:解法一:(I)由sinA=2sinB⇒a=2b.又∵a﹣b=2,∴a=4,b=2.cosB===.sinB===.=acsinB==.∴S△ABC(II)cosA===.sinA===.sin2A=2sinAcosA=2×.cos2A=cos2A﹣sin2A=﹣.∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.解法二:(I)由sinA=2sinB⇒a=2b.又∵a﹣b=2,∴a=4,b=2.又c=4,可知△ABC为等腰三角形.作BD⊥AC于D,则BD===.==.∴S△ABC(II)cosB===.sinB===.由(I)知A=C⇒2A﹣B=π﹣2B.∴sin(2A﹣B)=sin(π﹣2B)=sin2B=2sinBcosB=2××=.18.如图,在长方体ABCD﹣A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截长方体得到一个矩形EFGH,且A1E=D1F=2,AH=DG=5.(1)求截面EFGH把该长方体分成的两部分体积之比;(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角;LF:棱柱、棱锥、棱台的体积.【分析】(1)由题意,平面α把长方体分成两个高为5的直四棱柱,转化求解体积推出结果即可.(2)解法一:作AM⊥EH,垂足为M,证明HG⊥AM,推出AM⊥平面EFGH.通过计算求出AM=4.AF,设直线AF与平面α所成角为θ,求解即可.解法二:以DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,求出平面α一个法向量,利用直线AF与平面α所成角为θ,通过空间向量的数量积求解即可.【解答】(本题满分,第1小题满分,第2小题满分8分)解:(1)由题意,平面α把长方体分成两个高为5的直四棱柱,,…,…所以,.…(2)解法一:作AM⊥EH,垂足为M,由题意,HG⊥平面ABB1A1,故HG⊥AM,所以AM⊥平面EFGH.…=10,)因为,,所以S△AEH因为EH=5,所以AM=4.…又,…设直线AF与平面α所成角为θ,则.…所以,直线AF与平面α所成角的正弦值为.…解法二:以DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(5,0,0),H(5,5,0),E(5,2,4),F(0,2,4),…故,,…设平面α一个法向量为,则即所以可取.…设直线AF与平面α所成角为θ,则.…所以,直线AF与平面α所成角的正弦值为.…19.如图,已知椭圆C:(a>b>0)过点,两个焦点为F1(﹣1,0)和F2(1,0).圆O的方程为x2+y2=a2.(1)求椭圆C的标准方程;(2)过F1且斜率为k(k>0)的动直线l与椭圆C交于A、B两点,与圆O交于P、Q两点(点A、P在x轴上方),当|AF2|,|BF2|,|AB|成等差数列时,求弦PQ的长.【考点】KH:直线与圆锥曲线的综合问题;K3:椭圆的标准方程;KL:直线与椭圆的位置关系.【分析】(1)求出c=1,设椭圆C的方程为,将点代入,解得a2=4,然后求解椭圆C的方程.(2)由椭圆定义,|AF1|+|AF2|=4,|BF1|+|BF2|=4,通过|AF2|,|BF2|,|AB|成等差数列,推出.设B(x0,y0),通过解得B,然后求解直线方程,推出弦PQ的长即可.【解答】(本题满分,第1小题满分,第2小题满分8分)解:(1)由题意,c=1,…设椭圆C的方程为,将点代入,解得a2=4(舍去),…所以,椭圆C的方程为.…(2)由椭圆定义,|AF1|+|AF2|=4,|BF1|+|BF2|=4,两式相加,得|AB|+|AF2|+|BF2|=8,因为|AF2|,|BF2|,|AB|成等差数列,所以|AB|+|AF2|=2|BF2|,于是3|BF2|=8,即.…设B(x0,y0),由解得,…(或设,则,解得,,所以).所以,,直线l的方程为,即,…圆O的方程为x2+y2=4,圆心O到直线l的距离,…此时,弦PQ的长.…20.如果函数y=f(x)的定义域为R,且存在实常数a,使得对于定义域内任意x,都有f(x+a)=f(﹣x)成立,则称此函数f(x)具有“P(a)性质”.(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当﹣1≤x≤1时,g(x)=|x|,若函数y=g(x)的图象与直线y=px有2017个公共点,求实数p的值.【考点】57:函数与方程的综合运用.【分析】(1)根据题意可知cos(x+a)=cos(﹣x)=cosx,故而a=2kπ,k∈Z;(2)由新定义可推出f(x)为偶函数,从而求出f(x)在[0,1]上的解析式,讨论m与[0,1]的关系判断f(x)的单调性得出f(x)的最值;(3)根据新定义可知g(x)为周期为2的偶函数,作出g(x)的函数图象,根据函数图象得出p的值.【解答】解:(1)假设y=cosx具有“P(a)性质”,则cos(x+a)=cos(﹣x)=cosx恒成立,∵cos(x+2kπ)=cosx,∴函数y=cosx具有“P(a)性质”,且所有a的值的集合为{a|a=2kπ,k∈Z}.(2)因为函数y=f(x)具有“P(0)性质”,所以f(x)=f(﹣x)恒成立,∴y=f(x)是偶函数.设0≤x≤1,则﹣x≤0,∴f(x)=f(﹣x)=(﹣x+m)2=(x﹣m)2.①当m≤0时,函数y=f(x)在[0,1]上递增,值域为[m2,(1﹣m)2].②当时,函数y=f(x)在[0,m]上递减,在[m,1]上递增,y min=f(m)=0,,值域为[0,(1﹣m)2].③当时,y min=f(m)=0,,值域为[0,m2].④m>1时,函数y=f(x)在[0,1]上递减,值域为[(1﹣m)2,m2].(3)∵y=g(x)既具有“P(0)性质”,即g(x)=g(﹣x),∴函数y=g(x)偶函数,又y=g(x)既具有“P(2)性质”,即g(x+2)=g(﹣x)=g(x),∴函数y=g(x)是以2为周期的函数.作出函数y=g(x)的图象如图所示:由图象可知,当p=0时,函数y=g(x)与直线y=px交于点(2k,0)(k∈Z),即有无数个交点,不合题意.当p>0时,在区间[0,2016]上,函数y=g(x)有1008个周期,要使函数y=g(x)的图象与直线y=px有2017个交点,则直线在每个周期内都有2个交点,且第2017个交点恰好为,所以.同理,当p<0时,.综上,.21.给定数列{a n},若满足a1=a(a>0且a≠1),对于任意的n,m∈N*,都有a n+m=a n•a m,则称数列{a n}为指数数列.(1)已知数列{a n},{b n}的通项公式分别为,,试判断{a n},{b n}是不是指数数列(需说明理由);(2)若数列{a n}满足:a1=2,a2=4,a n+2=3a n+1﹣2a n,证明:{a n}是指数数列;(3)若数列{a n}是指数数列,(t∈N*),证明:数列{a n}中任意三项都不能构成等差数列.【考点】8B:数列的应用.【分析】(1)利用指数数列的定义,判断即可;(2)求出{a n}的通项公式为,即可证明:{a n}是指数数列;(3)利用反证法进行证明即可.【解答】(1)解:对于数列{a n},因为a3=a1+2≠a1•a2,所以{a n}不是指数数列.…对于数列{b n},对任意n,m∈N*,因为,所以{b n}是指数数列.…(2)证明:由题意,a n+2﹣a n+1=2(a n+1﹣a n),所以数列{a n+1﹣a n}是首项为a2﹣a1=2,公比为2的等比数列.…所以.所以,=,即{a n}的通项公式为(n∈N*).…所以,故{a n}是指数数列.…(3)证明:因为数列{a n}是指数数列,故对于任意的n,m∈N*,有a n+m=a n•a m,令m=1,则,所以{a n}是首项为,公比为的等比数列,所以,.…假设数列{a n}中存在三项a u,a v,a w构成等差数列,不妨设u<v<w,则由2a v=a u+a w,得,所以2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u,…当t为偶数时,2(t+4)w﹣v(t+3)v﹣u是偶数,而(t+4)w﹣u是偶数,(t+3)w﹣u是奇数,故2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u不能成立;…当t为奇数时,2(t+4)w﹣v(t+3)v﹣u是偶数,而(t+4)w﹣u是奇数,(t+3)w﹣u是偶数,故2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u也不能成立.…所以,对任意t∈N*,2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u不能成立,即数列{a n}的任意三项都不成构成等差数列.…。
2017年-上海各区-数学高三二模试卷和答案

宝山2017二模一、填空题(本大题共有12题,满分54分,第1:6题每题4分,第7:12题每题5分)考生应在答题纸的相应位置直接填写结果.1.若集合{}|0A x x =>,{}|1B x x =<,则A B ⋂=____________2.已知复数z1z i ⋅=+(i 为虚数单位),则z =____________ 3.函数()sin cos cos sin x x f x x x=的最小正周期是____________4.已知双曲线()2221081x y a a -=>的一条渐近线方程3y x =,则a =____________ 5.若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为____________6.已知,x y 满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是____________7.直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的交点个数是____________8.已知函数()()()220log 01xx f x x x ⎧≤⎪=⎨<≤⎪⎩的反函数是()1f x -,则12f -1⎛⎫= ⎪⎝⎭____________9.设多项式()()()()23*11110,nx x x x x n N ++++++++≠∈L 的展开式中x 项的系数为n T ,则2limnn T n →∞=____________10.生产零件需要经过两道工序,在第一、第二道工序中产生的概率分别为0.01和p ,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是0.9603,则p =____________11.设向量()(),,,m x y n x y ==-u r r ,P 为曲线()10m n x ⋅=>u r r上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为____________12.设1210,,,x x x L 为1,2,L ,10的一个排列,则满足对任意正整数,m n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为____________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设,a b R ∈,则“4a b +>”是“1a >且3b >”的( ) A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件14.如图,P 为正方体1111ABCD A B C D -中1AC 与1BD 的交点,则PAC V 在该正方体各个面上的射影可能是( )A. ①②③④B.①③C. ①④D.②④15.如图,在同一平面内,点P 位于两平行直线12,l l 同侧,且P 到12,l l 的距离分别为1,3.点,M N 分别在12,l l 上,8PM PN +=u u u u r u u u r ,则PM PN ⋅u u u u r u u u r的最大值为( )A. 15B. 12C. 10D. 916.若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设()()20x f x x xλ+=>,若对于任意()2,6t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ的取值范围是( )A. (]0,2B. (]1,2C. []1,2D. []1,4三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分8分,第2小题满分6分)如图,在正方体1111ABCD A B C D -中,E 、F 分别是线段BC 、1CD 的中点. (1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18.(本题满分14分,第1小题6分,第2小题8分)已知抛物线()220y px p =>,其准线方程为10x +=,直线l 过点()(),00T t t >且与抛物线交于A 、B 两点,O 为坐标原点.(1)求抛物线方程,并证明:OA OB ⋅u u u r u u u r的值与直线l 倾斜角的大小无关;(2)若P 为抛物线上的动点,记PT 的最小值为函数()d t ,求()d t 的解析式.19.(本题满分14分,第1小题6分,第2小题8分)对于定义域为D 的函数()y f x =,如果存在区间[](),m n D m n ⊆<,同时满足:①()f x 在[],m n 内是单调函数;②当定义域是[],m n 时,()f x 的值域也是[],m n 则称函数()f x 是区间[],m n 上的“保值函数”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)已知()()2112,0f x a R a a a x=+-∈≠是区间[],m n 上的“保值函数”,求a 的取值范围.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)数列{}n a 中,已知()12121,,n n n a a a a k a a ++===+对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里,a k 均为实数) (1)若{}n a 是等差数列,求k ; (2)若11,2a k ==-,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 设T Ü,R 若存在常数0M >,使得对任意t T ∈,均有t M ≤,则称T 为有界集合,同时称M 为集合T 的上界.(1)设121|,21x xA y y x R ⎧⎫-==∈⎨⎬+⎩⎭、21|sin 2A x x ⎧⎫=>⎨⎬⎩⎭,试判断1A 、2A 是否为有界集合,并说明理由;(2)已知()2f x x u =+,记()()()()()()11,2,3,n n f x f x f x f f x n -===L.若m R ∈,1,4u ⎡⎫∈+∞⎪⎢⎣⎭,且(){}*|n B f m n N =∈为有界集合,求u 的值及m 的取值范围;(3)设a 、b 、c 均为正数,将()2a b -、()2b c -、()2c a -中的最小数记为d ,是否存在正数()0,1λ∈,使得λ为有界集合222{|,dC y y a b c ==++a 、b 、c 均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.宝山区答案1.(0,1)2.13. π4.35. 5.16. 37. 28. 1-9.1210. 0.03 11.212.512 13. B14. C15.A16.A17. (1) (2)arctan 218.(1)24y x =,证明略(2)2)(t),(0t 2)d t ⎧≥⎪=⎨<<⎪⎩19. (1)证明略(2)12a >或32a <-20. (1)12k =(2)2(21,),(2,)n n n k k N S n n k k N **⎧-=-∈=⎨=∈⎩ (3)25k =-21.(1)1A 为有界集合,上界为1;2A 不是有界集合 (2)14u =,11,22m ⎡⎤∈-⎢⎥⎣⎦ (3)15λ=解析:(2)设()()011,,,1,2,3,...n n a m a f m a f a n -====,则()n n a f m =∵()2114a f m m u ==+≥,则222111111024a a a a u a u ⎛⎫-=-+=-+-≥ ⎪⎝⎭且211111024n n n n n a a a u a a ---⎛⎫-=-+-≥⇒≥ ⎪⎝⎭若(){}*|N n B f m n =∈为有界集合,则设其上界为0M ,既有*0,N n a M n ≤∈∴()()()112211112211......n n n n n n n n n a a a a a a a a a a a a a a a ------=-+-++-+=-+-++-+2222121111111...242424n n a u a u a u m u --⎛⎫⎛⎫⎛⎫=-+-+-+-++-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222212111111...22244n n a a a m n u u n u u --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-++-+≥-+⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦若0n a M ≤恒成立,则014n u u M ⎛⎫-+≤ ⎪⎝⎭恒成立,又11044u u ≥⇒-≥ ∴14u =,∴()214f x x =+ 设12m λ=+(i )0λ>,则()22101011112422a a f m m a a λλλ⎛⎫⎛⎫-=-=++-+=⇒>> ⎪ ⎪⎝⎭⎝⎭∴111...2n n a a a m ->>>>>记()()212g x f x x x ⎛⎫=-=- ⎪⎝⎭,则当1212x x >>时,()()12g x g x >∴()()()2111110n n n n n g a f a a a a g m a a λ----=-=->=-=∴()211n a a n λ>+-,若0na M ≤恒成立,则0λ=,矛盾。
上海市长宁、嘉定区2017届高三数学一模+答案

2016-2017学年度长宁、嘉定区高三年级第一次质量调研数 学 试 卷一.填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,第1~6题每题填对得4分,第7~12题每题填对得5分.1.设集合},1|2|{R ∈<-=x x x A ,集合Z =B ,则=B A I _____________.2.函数⎪⎭⎫ ⎝⎛-=3sin πωx y (0>ω)的最小正周期是π,则=ω____________. 3.设i 为虚数单位,在复平面上,复数2)2(3i -对应的点到原点的距离为__________. 4.若函数a x x f ++=)1(log )(2的反函数的图像经过点)1,4(,则实数=a __________.5.已知nb a )3(+展开式中,各项系数的和与各项二项式系数的和之比为64,则=n ______.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有___________种.7.若圆锥的侧面展开图是半径为2cm 、圆心角为︒270的扇形,则这个圆锥的体积为_____________3cm . 8.若数列}{n a 的所有项都是正数,且n n a a a n 3221+=+++Λ(*N ∈n ),则=⎪⎭⎫ ⎝⎛++++∞→1321lim212n a a a n n n Λ_____________. 9.如图,在△ABC 中,︒=∠45B ,D 是BC 边上的一点,5=AD ,7=AC ,3=DC ,则AB 的长为_____________.10.有以下命题:① 若函数)(x f 既是奇函数又是偶函数,则)(x f 的值域为}0{;② 若函数)(x f 是偶函数,则)(|)(|x f x f =;③ 若函数)(x f 在其定义域内不是单调函数,则)(x f 不存在反函数;④ 若函数)(x f 存在反函数)(1x f-,且)(1x f -与)(x f 不完全相同,则)(x f 与)(1x f -图像的公共点必在直线x y =上.其中真命题的序号是______________(写出所有真命题的序号).11.设向量)2,1(-=OA ,)1,(-=a OB ,)0,(b OC -=,其中O 为坐标原点,0>a ,0>b ,若A 、B 、C 三点共线,则ba 21+的最小值为____________. 12.如图,已知正三棱柱的底面边长为2cm ,高为5cm ,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达1A 点的最短路线的长为__________cm .二.选择题(本大题共有4题,满分20分)每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.13.“2<x ”是“24x <”的……………………………………………………………( )(A )充分非必要条件 (B )必要非充分条件(C )充分必要条件 (D )既非充分又非必要条件14.若无穷等差数列}{n a 的首项01<a ,公差0>d ,}{n a 的前n 项和为n S ,则以下结论中一定正确的是……………………………………………………………………………( )(A )n S 单调递增 (B )n S 单调递减 (C )n S 有最小值 (D )n S 有最大值15.给出下列命题:(1)存在实数α使23cos sin =+αα; (2)直线2π-=x 是函数x y sin =图象的一条对称轴;(3))cos(cos x y =(R ∈x )的值域是]1,1[cos ;(4)若α,β都是第一象限角,且βα>,则βαtan tan >.其中正确命题的序号为……………………………………………………………………( )(A )(1)(2) (B )(2)(3) (C )(3)(4) (D )(1)(4)16.如果对一切正实数x ,y ,不等式yx a x y 9sin cos 42-≥-恒成立,则实数a 的取值范围是…………………………………………………………………………………………( )(A )⎥⎦⎤ ⎝⎛∞-34, (B )),3[∞+ (C )]22,22[- (D )]3,3[- 三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.如图:已知⊥AB 平面BCD ,CD BC ⊥,AD 与平面BCD 所成的角为︒30,且2==BC AB . (1)求三棱锥BCD A -的体积;(2)设M 为BD 的中点,求异面直线AD 与CM 所成角的大小(结果用反三角函数值表示).18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且72cos 22sin 82=-+A C B . (1)求角A 的大小;(2)若3=a ,3=+cb ,求b 和c 的值. 19.(本题满分16分)本题共有2个小题,第1小题满分5分,第2小题满分11分.某地要建造一个边长为2(单位:km )的正方形市民休闲公园OABC ,将其中的区域ODC 开挖成一个池塘.如图建立平面直角坐标系后,点D 的坐标为)2,1(,曲线OD 是函数2ax y =图像的一部分,过边OA 上一点M 在区域OABD 内作一次函数b kx y +=(0>k )的图像,与线段DB 交于点N (点N 不与点D 重合),且线段MN 与曲线OD 有且只有一个公共点P ,四边形MABN 为绿化风景区.(1)求证:28k b =-; (2)设点P 的横坐标为t ,① 用t 表示M ,N 两点的坐标;② 将四边形MABN 的面积S 表示成关于t 的函数)(t S S=,并求S 的最大值.20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数3329)(+⋅-=x x a x f .(1)若1=a ,]1,0[∈x ,求)(x f 的值域;(2)当]1,1[-∈x 时,求)(x f 的最小值)(a h ;(3)是否存在实数m 、n ,同时满足下列条件:①3>>m n ;② 当)(a h 的定义域为],[n m 时,其值域为],[22n m .若存在,求出m 、n 的值;若不存在,请说明理由.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知无穷数列}{n a 的各项都是正数,其前n 项和为n S ,且满足:a a =1,11-=+n n n a a rS ,其中1≠a ,常数r N ∈.(1)求证:n n a a -+2是一个定值;(2)若数列}{n a 是一个周期数列(存在正整数T ,使得对任意*N ∈n ,都有n T n a a =+成立,则称}{n a 为周期数列,T 为它的一个周期),求该数列的最小周期;(3)若数列}{n a 是各项均为有理数的等差数列,132-⋅=n n c (*N ∈n ),问:数列}{n c 中的所有项是否都是数列}{n a 中的项?若是,请说明理由;若不是,请举出反例.2016学年长宁、嘉定区高三年级第一次联合质量调研数学试卷参考答案与评分标准一.填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,第1~6题每题填对得4分,第7~12题每题填对得5分.1.}2{ 2.2 3.53 4.3 5.6 6.60 7.π873 8.2 9.265 10.① ② 11.8 12.13 二.选择题(本大题共有4题,满分20分)每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.13.B 14.C 15.B 16.D三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 17.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.(1)因为⊥AB 平面BCD ,所以ADB ∠就是AD 与平面BCD 所成的角,即︒=∠30ADB ,且AB 为三棱锥BCD A -的高. …………………………(2分)由2==BC AB ,得32=BD ,又由CD BC ⊥,得22=CD . …………(3分) 所以,324213131=⋅⋅⋅⋅=⋅=∆AB CD BC h S V BCD . ……………………(5分) (2)取AB 中点E ,连结EM ,EC ,则EM ∥AD ,所以EMC ∠就是异面直线AD 与CM 所成的角(或其补角), ……………………………………(1分)在△EMC 中,2=EM ,3=CM ,5=EC , …………………………(3分)所以,633225342cos 222=⋅⋅-+=⋅-+=∠CM EM EC CM EM EMC , ……………………(6分) 即63arccos =∠EMC . 所以异面直线AD 与CM 所成角的大小为63arccos. ……………………(7分) 18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.(1)由72cos 22sin 82=-+A C B ,得01)cos(4cos 42=+++C B A ,……(2分) 因为π=++C B A ,所以A C B cos )cos(-=+,故0)1cos 2(2=-A ,…………(4分) 所以,21cos =A ,3π=A . …………………………………………………………(6分) (2)由余弦定理,A bc c b a cos 2222-+=,得322=-+bc c b , ………………(2分)33)(2=-+bc c b ,得2=bc , ……………………………………(4分)由⎩⎨⎧==+,2,3bc c b 解得⎩⎨⎧==,1,2c b 或⎩⎨⎧==.2,1c b ………………………………(8分) 19.(本题满分16分)本题共有2个小题,第1小题满分5分,第2小题满分11分.(1)将)2,1(D 代入2ax y =得,2=a, 所以二次函数的解析式为22x y =(10≤≤x ), …………………………(2分) 由⎩⎨⎧=+=,2,2x y b kx y 得022=--b kx x , …………………………………………(3分) 由题意,△082=+=b k ,所以82k b -=. ……………………………………(5分) (2)① 由(1),一次函数的解析式为82k kx y -=, …………………………(1分) 因为直线过点)2,(2t t P ,所以8222k kt t -=,解得t k 4=,故22t b -=.…………(2分) 所以一次函数为224t tx y -=,令0=y ,得2t x =,即⎪⎭⎫ ⎝⎛0,2t M , ………………(3分) 令2=y ,得⎪⎭⎫ ⎝⎛+=t t x 121,即⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+2,121t t N . ………………………………(5分) ② 22||t MA -=,⎪⎭⎫ ⎝⎛+-=t t NB 1212||, …………………………………………(1分) 当点N 与点B 重合时,22242=-⋅t t ,解得32-=t ,所以)1,32(-∈t . 所以,⎪⎭⎫ ⎝⎛+-=⋅+⋅=t t AB NB MA t S 214|||)||(|21)(,)1,32(-∈t .…………(4分)因为221≥+t t ,当且仅当22=t 时取等号,所以当且仅当22=t (km ),时)(t S 取最大值)24(-(2km ). ………………………………………………(6分)20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.(1)当1=a 时,由3329+⋅-=x x y ,得2)13(2+-=x y , ………………(2分)因为]1,0[∈x ,所以]3,1[3∈x ,]6,2[∈y . …………………………………(4分) (2)令t x =3,因为]1,1[-∈x ,故⎥⎦⎤⎢⎣⎡∈3,31t ,函数)(x f 可化为 2223)(32)(a a t at t t g -+-=+-=. …………………………………………(2分) ① 当31<a 时,3292831)(a g a h -=⎪⎭⎫ ⎝⎛=; …………………………………………(3分) ② 当331≤≤a 时,23)()(a a g a h -==; …………………………………………(4分) ③ 当3>a 时,a g a h 612)3()(-==. ……………………………………………(5分)综上,⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤≤-<-=.3.612,331,3,31,32928)(2a a a a a a a h ………………………………………………(6分) (3)因为3>>m n ,a a h 612)(-=为减函数,所以)(a h 在],[n m 上的值域为)](,)([m h n h , …………………………………………(2分)又)(a h 在],[n m 上的值域为],[22n m ,所以,⎪⎩⎪⎨⎧==,)(,)(22n m h m n h 即⎪⎩⎪⎨⎧=-=-,612,61222n m m n …(3分) 两式相减,得))(()(622n m n m n m n m -+=-=-,因为3>>m n ,所以6=+n m ,而由3>>m n 可得6>+n m ,矛盾.所以,不存在满足条件的实数m 、n . …………………………………………(6分)21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.(1)由11-=+n n n a a rS ①, 得1211-=+++n n n a a rS ②②-①,得)(211n n n n a a a ra -=+++, ………………………………(2分)因为0>n a ,所以r a a n n =-+2(定值). ………………………………(4分)(2)当1=n 时,a a =1,故12-=aa ra ,a r a ra a 112+=+=, ……………(1分) 根据(1)知,数列}{n a 的奇数项和偶数项分别成等差数列,公差都是r ,所以, r n a a n )1(12-+=-,nr a a n +=12, …………………………………………(3分) 当0>r 时,}{n a 的奇数项与偶数项都是递增的,不可能是周期数列, …………(4分) 所以0=r ,所以a a n =-12,aa n 12=,所以,数列}{n a 是周期数列,其最小周期为2. ……………………………………………………(6分) (3)因为数列}{n a 是有理项等差数列,由a a =1,r a a +=12,r a a +=3,得 ⎪⎭⎫ ⎝⎛+=++r a r a a 12,整理得0222=--ra a , 得4162++=r r a (负根舍去),……………………………………………………(1分) 因为a 是有理数,所以162+r是一个完全平方数,设2216k r =+(*N ∈k ), 当0=r时,1=a (舍去). ……………………………………………………(2分) 当0>r 时,由2216k r =+,得16))((=+-r k r k ,由于r ,*N ∈k ,所以只有3=r,5=k 符合要求, …………………………(4分) 此时2=a ,数列}{n a 的公差232==r d ,所以213+=n a n (*N ∈n ).…………(6分) 对任意*N ∈n ,若132-⋅=n n c 是数列}{n a 中的项,令m n a c =,即213321+=⋅-m n , 则31341-⋅=-n m ,1=n 时,1=m ,2=n 时,*311N ∉=m ,故2c 不是数列}{n a 中的项. …………………………………………………(8分)。
年上海长宁区嘉定区高三数学模试卷含答案解析
年上海长宁区嘉定区高三数学模试卷含答案解析GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-2017年上海市长宁区、嘉定区高考数学一模试卷一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B=.2.函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有种.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是.(写出所有真命题的序号)11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为cm.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]三、解答题(共5小题,满分76分)17.如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).18.在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.19.某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.20.已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.21.已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n﹣1,其中a≠1,常数r∈N;+1(1)求证:a n﹣a n是一个定值;+2(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;a n+T(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.2017年上海市长宁区、嘉定区高考数学一模试卷参考答案与试题解析一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B={2} .【考点】交集及其运算.【分析】利用交集定义求解.【解答】解:|x﹣2|<1,即﹣1<x﹣2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}2.函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=2.【考点】正弦函数的图象.【分析】根据三角函数的周期性及其求法即可求值.【解答】解:∵y=sin(ωx﹣)(ω>0),∴T==π,∴ω=2.故答案是:2.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a= 3.【考点】反函数.【分析】由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.【考点】二项式系数的性质.【分析】令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n的值.【解答】解:令二项式中的a=b=1得到展开式中的各项系数的和4n又各项二项式系数的和为2n据题意得,解得n=6.故答案:66.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有60种.【考点】排列、组合及简单计数问题.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=2.【考点】数列的求和;极限及其运算.【分析】利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵++…+=n2+3n(n∈N*),∴n=1时, =4,解得a1=16.n≥2时,且++…+=(n﹣1)2+3(n﹣1),可得: =2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.【考点】余弦定理.【分析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.【解答】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f (x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是①②.(写出所有真命题的序号)【考点】必要条件、充分条件与充要条件的判断.【分析】①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(﹣x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x 上,比如函数y=﹣与其反函数y=x2﹣1(x≤0)的交点坐标有(﹣1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为8.【考点】基本不等式.【分析】A、B、C三点共线,则=λ,化简可得2a+b=1.根据+=(+)(2a+b),利用基本不等式求得它的最小值【解答】解:向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O 为坐标原点,a>0,b>0,∴=﹣=(a﹣1,1),=﹣=(﹣b﹣1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:812.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为13 cm.【考点】多面体和旋转体表面上的最短距离问题.【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【考点】等差数列的前n项和.【分析】S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】正弦函数的定义域和值域;两角和与差的正弦函数;正弦函数的对称性;余弦函数的定义域和值域.【分析】(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).【解答】解:(1)∵,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=﹣1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos (cos1),其值域是[cos1,1],(3)正确;(4)不妨令,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选B.16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【考点】函数恒成立问题.【分析】将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)min=3,于是问题转化为asinx﹣sin2x≤2恒成立.通过对sinx>0、sinx<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)min=3;当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f(y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.三、解答题(共5小题,满分76分)17.如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.【解答】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,===则V A﹣BCD=.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M (),=(2,﹣2,﹣2),=(),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.18.在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.【考点】余弦定理;解三角形.【分析】(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,解方程求得cosA 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b和c的值.【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.解得,∴.(II)由.又.由.19.某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.【考点】函数模型的选择与应用.【分析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由,消去y 得△=0即可证明b=﹣;(2)写出点P的坐标(t,2t2),代入①直线MN的方程,用t表示出直线方程为y=4tx﹣2t2,令y=0,求出M的坐标;令y=2求出N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式求出S的最大值.【解答】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2﹣kx﹣b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(﹣k)2﹣4×2×b=0,解得b=﹣;(2)解:设点P的横坐标为t,则P(t,2t2);①直线MN的方程为y=kx+b,即y=kx﹣过点P,∴kt﹣=2t2,解得k=4t;y=4tx﹣2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2﹣×2×[+(+)]=4﹣(t+);由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4﹣2;即S的最大值是4﹣.20.已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【考点】函数的最值及其几何意义;函数的值域.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.21.已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n﹣1,其中a≠1,常数r∈N;+1(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【考点】数列递推式.【分析】(1)由rS n=a n a n+1﹣1,利用迭代法得:ra n+1=a n+1(a n+2﹣a n),由此能够证明a n+2﹣a n为定值.(2)当n=1时,ra=aa2﹣1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2﹣ar ﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.【解答】(1)证明:∵rS n=a n a n+1﹣1,①∴rS n+1=a n+1a n+2﹣1,②②﹣①,得:ra n+1=a n+1(a n+2﹣a n),∵a n>0,∴a n+2﹣a n=r.(2)解:当n=1时,ra=aa2﹣1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2﹣ar﹣2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n﹣1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n﹣1=,则:3k=4×3n﹣1﹣1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.2017年4月18日。
2017年嘉定区中考数学二模试卷(解析版)
2017年嘉定区中考数学二模试卷(满分150分,考试时间100分钟)(2017.4)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.如果a 表示不为0的任意一个实数,那么下列四个算式中,正确的是 ··········· ( ) (A )a a a =-2323; (B )a a a =⋅313;(C )a a a =÷23; (D )a a =212)(.2.在解答“一元二次方程021212=+-a x x 的根的判别式为 ”的过程中,某班同学的作业中出现了下面几种答案,其中正确的答案是 ··································· ( ) (A )0241≥-a ; (B )a 241-; (C )081≥-a ; (D )a 81-.3.如果函数122++=x ax y 的图像不经过第四象限,那么实数a 的取值范围为 · ( ) (A )0<a ;(B )0=a ;(C )0>a ;(D )0≥a .4.从概率统计的角度解读下列诗词所描述的事件,其中属于确定事件的是 ········ ( ) (A )黄梅时节家家雨,青草池塘处处蛙; (B )人间四月芳菲尽,山寺桃花始盛开; (C )水面上秤锤浮,直待黄河彻底枯;(D )一夜北风紧,开门雪尚飘.5.已知⊙A 的半径长为2,⊙B 的半径长为5,如果⊙A 与⊙B 内含,那么圆心距AB 的长度可以为 ·············································· ······························ ·················· ( ) (A )0;(B )3;(C )6;(D )9.6.将两个底边相等的等腰三角形按照图1所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是 ················································································ ( )(A )有两组邻边相等的四边形称为“筝形”; (B )有两组对角分别相等的四边形称为“筝形”; (C )两条对角线互相垂直的四边形称为“筝形”;(D )以一条对角线所在直线为对称轴的四边形称为“筝形”.1二、填空题:(本大题共12题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】 7.计算:=-1)21( .8.已知73.13≈,那么≈31(保留两个有效数字........)9.不等式组⎩⎨⎧>+<01,32x x 的解集是 .10.方程2+x =x 的实数解是 .11.已知点),(11y x A 、点),(22y x B 在反比例函数xy 2-=的图像上.如果210x x <<,那么1y 与2y 的大小关系为:1y 2y (从“<”、“=”、“>”中选择).12.某校学生综合素质评价方案中有这样一段话:“学生自评、同学互评与班级评定小组评价在学生综合素质评价中所占的权重分别为%10、%30、%60”.如果甄聪明同学的自评分数、同学互评分数、班级评定小组给出的分数分别为96分、95分、95分,那么甄聪明同学的综合素质评价分数为 分.13.一名射击运动员连续打靶9次,假如他打靶命中环数的情况如图2所示,那么该射击运动员本次打靶命中环数的中位数为 环.14.如果非零向量a 与向量b 的方向相反,且b a 32=,那么向量a 为 (用向量b 表示).15.从山底A 点测得位于山顶B 点的仰角为︒30,那么从B 点测得A 点的俯角为度.16.已知扇形的弧长为8,如果该扇形的半径长为2,那么这个扇形的面积为 . 17.命题“相等的角不一定是对顶角”是 命题(从“真”或“假”中选择). 18.已知在△ABC 中,︒=∠90ACB ,10=AB ,53cos =A (如图3),将△ABC 绕着点C 旋转,点A 、B 的对应点分别记为A '、B ',B A ''与边AB 相交于点E .如果B A ''⊥AC ,那么线段E B '的长为 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:2122442--++-x x x ,其中2=x .ABC图320.(本题满分10分)解方程组:⎩⎨⎧=--=-.,032222y xy x y x21.(本题满分10分,每小题5分)将大小相同,形状也相同的三个菱形按照图4的方式拼接在一起(其中,点B 、C 、F 、G 在同一条直线上),3=AB .联结AG ,AG 与EF 相交于点P . (1)求线段EP 的长;(2)如果︒=∠60B ,求△APE 的面积.22.(本题满分10分,第(1)小题6分;第(2)小题4分)某种型号的家用车在高速公路上匀速行驶时,测得部分数据如下表:(1)如果该车的油箱内剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,求y 关于x 的函数解析式(不需要写出它的定义域);(2)张老师租赁该型号的家用车也在该高速公路的相同路段以相同的速度匀速行驶300千米(不考虑小轿车载客的人数以及堵车等因素).假如不在高速公路上的服务区加油,那么在上高速公路之前,张老师这辆车的油箱内至少..需要有多少升汽油?请根据题目中提供的相关信息简要说明理由.ABCD图4FEGHP23.(本题满分12分,每小题6分)已知:正方形ABCD ,点E 在边CD 上,点F 在线段BE 的延长线上,且CBE FCE ∠=∠.(1)如图5,当点E 为CD 边的中点时,求证:EF CF 2=; (2)如图6,当点F 位于线段AD 的延长线上,求证:DFDEBE EF =.24.(本题满分12分,每小题4分)在平面直角坐标系xOy (如图7)中,已知点A 的坐标为(3,1),点B 的坐标为(6,5),点C 的坐标为(0,5);某二次函数的图像经过点A 、点B 与点C . (1)求这个二次函数的解析式;(2)假如点Q 在该函数图像的对称轴上,且△ACQ 是等腰三角形,直接..写出点Q 的坐标; (3)如果第一象限内的点P 在(1)中求出的二次函数 的图像上,且21tan =∠PCA ,求PCB ∠的正弦值.ABCDEF图5ABCD 图6FE图725.(满分14分,第(1)小题5分,第(2)小题5分、第(3)小题4分)已知:8=AB ,⊙O 经过点A 、B .以AB 为一边画平行四边形ABCD ,另一边CD 经过点O (如图8).以点B 为圆心,BC 为半径画弧,交线段OC 于点E (点E 不与点O 、点C 重合).(1)求证:OE OD =;(2)如果⊙O 的半径长为5(如图9),设x OD =,y BC =,求y 关于x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为5,联结AC ,当AC BE ⊥时,求OD 的长.图9备用图图82017年嘉定区中考二模 数学试卷参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1、C ;2、B ;3、D ;4、C ;5、A ;6、D.二、填空题:(本大题共12题,每题4分,满分48分)7、2;8、58.0;9、231<<-x ;10、2=x ;11、>;12、1.95;13、9环;14、b a 23-=;15、︒30;16、8;17、真命题;18、524.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 解:2122442--++-x x x )2)(2(2)2)(2()2(2)2)(2(4-++--+-+-+=x x x x x x x x ······ 3分 21)2)(2()2()2)(2(2424+=-+-=-+---+=x x x x x x x x . ··································· 2+2+1分当2=x 时,原式=221221-=+. ···················································· 2分20.(本题满分10分)解:03222=--y xy x 可以化为:0))(3(=+-y x y x ,所以:03=-y x 或0=+y x . ·································································· 2分原方程组可以化为:⎩⎨⎧=-=-032y x y x ,(Ⅰ)与⎩⎨⎧=+=-02y x y x ,(Ⅱ) ·························· 2分 解(Ⅰ)得⎩⎨⎧==1,3y x ; 解(Ⅱ)得⎩⎨⎧-==1,1y x ················································· 2+2分 所以,原方程组的解为:⎩⎨⎧==;1,311y x 与⎩⎨⎧-==.1,122y x ················································· 2分21.(本题满分10分,每小题5分)解:(1)由题意得四边形ABGH 、ABFE 是平行四边形. ·································· 1分 ∴ AE ∥FG . ····················································································· 1分∴FGAEFP EP =. ······················································································· 1分ABCD图4FEGHPH 将6=AE ,3=FG 代入,得 2=FP EP ,即32=EF EP ································· 1分 又∵四边形ABFE 是平行四边形,3=AB ,∴3==AB EF .∴2=EP . ··········· 1分 (2)过点P 作AE PH ⊥,垂足为H (如图4). ········································· 1分 ∵四边形ABFE 是平行四边形,︒=∠60B ,∴︒=∠=∠60B PEH . ············ 1分 在Rt △PEH 中,︒=∠90PHE ,︒=∠60PEH ,2=EP ,∴323260sin =⨯=︒⋅=EP PH . ······················································· 2分 ∴△APE 的面积为33362121=⨯⨯=⋅PH AE . ··································· 1分22.(本题满分10分)解:(1)设油箱内剩余油量y (升) 与行驶路程x (千米)之间的函数关系式为b kx y +=. ······················································································· 1分分别将100=x ,52=y ;150=x ,48=y 代入上式,得⎩⎨⎧=+=+.48150,52100b k b k ······· 2分解得:⎪⎩⎪⎨⎧=-=.60,252b k ···················································································· 2分 ∴所求的函数关系式为60252+-=x y ························································· 1分 (2)方法1:由题意可得,该型号的汽车在该路段行驶时,每行驶100耗油8升. ·· 2分 设行驶300公里时需要耗油x 升,可得8:100:300x =,解得24=x 升. ············· 1分方法2:将300=x 代入60252+-=x y ,得36=y . ······································ 2分 243660=-. ··············································································· 1分 答:张老师的这辆车的油箱内至少..需要有24升汽油. ········································ 1分 备注:学生若是在得到24升油的基础上又考虑了其它因素(如离开高速公路之后还需要再行驶一段路程才可以抵达目的地(或寻找到加油站),因此给出了大于24升油的其它数据,只要能够自圆其说,且符合生活实际情况,那么可以酌情评分. 23.(本题满分12分,每小题6分)(1)证明:∵四边形ABCD 是正方形,∴BC CD =. ··········································· 1分∵点E 为CD 边的中点,∴CD CE 21=BC 21=. ··································· 1分 ∵CBE FCD ∠=∠,F F ∠=∠,∴△FCE ∽△FBC . ···························· 2分 ∴BCCECF EF =. ·················································································· 1分又∵BC CE 21=,∴21=CF EF .即EF CF 2=. ············································· 1分 (2)∵四边形ABCD 是正方形,∴DE ∥AB ,AD ∥BC ,AD =CD . ················ 1分∵点F 位于线段AD 的延长线上,DE ∥AB ,∴ADDFBE EF =. ························ 1分 又∵AD =CD ,∴CDDFBE EF =.(1) ··························································· 1分 ∵AF ∥BC ,∴CBE DFE ∠=∠.又∵CBE DCF ∠=∠,∴DCF DFE ∠=∠. ················································ 1分 又∵CDF FDE ∠=∠,∴△FDE ∽△CDF . ················································· 1分∴CD DF DF DE =(2).由(1)、(2)得 DFDE BE EF =. ········································ 1分24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为c bx ax y ++=2,将A (3,1)、B (6,5)、C (0,5)代入,得 ⎪⎩⎪⎨⎧==++=++.5,5636,139c c b a c b a 解得 94=a ,38-=b ,5=c . ································· 3分所以,这个二次函数的解析式为538942+-=x x y . ·········································· 1分 (2))6,3(1Q ,)4,3(2-Q ,)9,3(3Q ,)825,3(4Q . ············································ 4分(3)由题意得,该二次函数图像的对称轴为直线3=x . ····································· 1分 联结PC 交直线3=x 于点M ,过点M 作AC MN ⊥,垂足为N (图7-1) . 将直线3=x 与BC 的交点记为H ,易得3=CH ,4=AH ,5=AC .∴53sin ==∠CA CH CAH ········································································ 1分 故可设k MN 3=,则k AM 5=,k AM 4=.又∵21tan =∠PCA ,则k CN 6=.由题意得方程:564=+k k .解得21=k ,25=AM ,23254=-=MH ·········· 1分A B CDEF图5ABCD 图6FE∴523)23(322=+=CM.∴55sin==∠CMMHPCB. ····························1分25.(满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)解:(1)联结OA、OB(如图8-1),易得OBOA=,OBAOAB∠=∠. ····················1分∵四边形ABCD是平行四边形,∴AB∥CD,BCAD=.∵BCBE=,BCAD=,∴BEAD=. ······················································1分又∵AB∥CD,∴四边形ABED是等腰梯形.∴EBADAB∠=∠. ·····················1分又∵OBAOAB∠=∠,∴OBAEBAOABDAB∠-∠=∠-∠.即O B EO A D∠=∠. ··················································································1分在△AOD和△BOE中,∵OBOA=,OBEOAD∠=∠,BEAD=,∴△AOD≌△BOE.∴OEOD=. ··························1分方法2:∵BEDADE∠=∠,EBODAO∠=∠,BEAD=,∴△AOD≌△BOE.……方法3:∵BEDADE∠=∠,EBODAO∠=∠,OBOA=,∴△AOD≌△BOE.……方法4:如图8-2,过点O作ABOH⊥,过点D作ABDG⊥,过点E作ABEI⊥.……方法5:如图8-3,过点O作ABOH⊥,垂足为H,联结DH、EH.……(2)方法1:如图9-1,过点O作ABOH⊥,垂足为H,过点D作ABDG⊥,垂足为G.联结OB,3=OH,4==BHAH,得1分;得到3==OHDG,得2分;在Rt△ADG 中,写出xAG-=4,yBCAD==,得1分;利用222AGDGAD+=得到2582+-=xxy,得1分,函数定义域40<<x,得1分.方法2、方法3见评分细则. (3)如图10-1,过点O作ACOM⊥,交AC于点M,交AB于点N.证明四边形ONBE 是平行四边形,得1分;利用ODOEBN==,CDAB=得到ANOC=,得1分;利用△AMN≌△CMO或COANCMAM=得到CNAM=,进而得到OM是AC的垂直平分线,5==OAOC,得1分;利用8==ABCD,5=OC得到3=OD,得1分.方法2.如图10-,2;方法3:如图10-3;方法4(利用圆周角,略).图8-1图8-3图8-2。
2017届上海市嘉定区高三数学一模试题答案及解析
2017届上海市嘉定区高三数学一模试题答案及解析一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B={2} .【分析】利用交集定义求解.【解答】解:|x﹣2|<1,即﹣1<x﹣2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}2.函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=2.【分析】根据三角函数的周期性及其求法即可求值.【解答】解:∵y=sin(ωx﹣)(ω>0),∴T==π,∴ω=2.故答案是:2.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=3.【分析】由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.【分析】令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n的值.【解答】解:令二项式中的a=b=1得到展开式中的各项系数的和4n又各项二项式系数的和为2n据题意得,解得n=6.故答案:66.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有60种.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=2.【分析】利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵ ++…+=n2+3n(n∈N*),∴n=1时,=4,解得a1=16.n≥2时,且++…+=(n﹣1)2+3(n﹣1),可得:=2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.【考点】余弦定理.【解答】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是①②.(写出所有真命题的序号)【分析】①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(﹣x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x上,比如函数y=﹣与其反函数y=x2﹣1(x≤0)的交点坐标有(﹣1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为8.【分析】A、B、C三点共线,则=λ,化简可得2a+b=1.根据+=(+)(2a+b),利用基本不等式求得它的最小值【解答】解:向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,∴=﹣=(a﹣1,1),=﹣=(﹣b﹣1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:812.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为13cm.【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【分析】S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【分析】(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).【解答】解:(1)∵,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=﹣1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos (cos1),其值域是[cos1,1],(3)正确;(4)不妨令,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选B.16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【分析】将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)min=3,于是问题转化为asinx﹣sin2x≤2恒成立.通过对sinx>0、sinx<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)min=3;当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f(y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.三、解答题(共5小题,满分76分)17.(14分)(2017•上海一模)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【分析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD 的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.【解答】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,===则V A﹣BCD=.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M(),=(2,﹣2,﹣2),=(),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.18.(14分)(2017•上海一模)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,【分析】解方程求得cosA 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b和c的值.【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,(1分)又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.(4分)解得,∴.(6分)(II)由.(8分)又.(10分)由.(12分)19.(14分)(2017•上海一模)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.【分析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由,消去y得△=0即可证明b=﹣;(2)写出点P的坐标(t,2t2),代入①直线MN的方程,用t表示出直线方程为y=4tx﹣2t2,令y=0,求出M的坐标;令y=2求出N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式求出S 的最大值.【解答】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2﹣kx﹣b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(﹣k)2﹣4×2×b=0,解得b=﹣;(2)解:设点P的横坐标为t,则P(t,2t2);①直线MN的方程为y=kx+b,即y=kx﹣过点P,∴kt﹣=2t2,解得k=4t;y=4tx﹣2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2﹣×2×[+(+)]=4﹣(t+);由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4﹣2;即S的最大值是4﹣.20.(16分)(2017•上海一模)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h(a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a≤3时,当a >3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.21.(18分)(2017•上海一模)已知无穷数列{a n}的各项都是正数,其前n 项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;﹣a n是一个定值;(1)求证:a n+2(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n 成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【分析】(1)由rS n=a n a n+1﹣1,利用迭代法得:ra n+1=a n+1(a n+2﹣a n),由此能够证明a n+2﹣a n为定值.(2)当n=1时,ra=aa2﹣1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2﹣ar ﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.【解答】(1)证明:∵rS n=a n a n+1﹣1,①∴rS n+1=a n+1a n+2﹣1,②②﹣①,得:ra n+1=a n+1(a n+2﹣a n),∵a n>0,∴a n+2﹣a n=r.(2)解:当n=1时,ra=aa2﹣1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2﹣ar﹣2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n﹣1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n﹣1=,则:3k=4×3n﹣1﹣1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.。
上海嘉定区高考数学二模试卷含答案解析
上海嘉定区高考数学二模试卷含答案解析Modified by JACK on the afternoon of December 26, 20202017年上海市嘉定区高考数学二模试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.函数y=2sin2(2x)﹣1的最小正周期是.2.设i为虚数单位,复数,则|z|= .3.设f﹣1(x)为的反函数,则f﹣1(1)= .4. = .5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是.6.设等差数列{a n}的前n项和为S n,若=,则= .7.直线(t为参数)与曲线(θ为参数)的公共点的个数是.8.已知双曲线C1与双曲线C2的焦点重合,C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,则C2的方程为.9.若,则满足f(x)>0的x的取值范围是.10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.11.设等差数列{a n}的各项都是正数,前n项和为S n,公差为d.若数列也是公差为d的等差数列,则{a n}的通项公式为a n= .12.设x∈R,用[x]表示不超过x的最大整数(如[]=2,[﹣]=﹣5),对于给定的n∈N*,定义C=,其中x∈[1,+∞),则当时,函数f(x)=C的值域是.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x2﹣3x+2=0”的逆否命题是()A.若x≠1,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=1C.若x2﹣3x+2=0,则x≠1 D.若x2﹣3x+2≠0,则x≠114.如图,在正方体ABCD﹣A1B1C1D1中,M、E是AB的三等分点,G、N是CD的三等分点,F、H分别是BC、MN的中点,则四棱锥A1﹣EFGH的左视图是()A. B. C.D.15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足,,则△ADP的面积为()A.B.C.D.16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f (ax+1)≤f(x﹣2)在上恒成立,则实数a的取值范围是()A.[﹣2,1] B.[﹣2,0] C.[﹣1,1] D.[﹣1,0]三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a﹣b=2,c=4,sinA=2sinB.(Ⅰ)求△ABC的面积;(Ⅱ)求sin(2A﹣B).18.如图,在长方体ABCD﹣A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截长方体得到一个矩形EFGH,且A1E=D1F=2,AH=DG=5.(1)求截面EFGH把该长方体分成的两部分体积之比;(2)求直线AF与平面α所成角的正弦值.19.如图,已知椭圆C:(a>b>0)过点,两个焦点为F1(﹣1,0)和F2(1,0).圆O的方程为x2+y2=a2.(1)求椭圆C的标准方程;(2)过F1且斜率为k(k>0)的动直线l与椭圆C交于A、B两点,与圆O交于P、Q两点(点A、P在x轴上方),当|AF2|,|BF2|,|AB|成等差数列时,求弦PQ的长.20.如果函数y=f(x)的定义域为R,且存在实常数a,使得对于定义域内任意x,都有f(x+a)=f(﹣x)成立,则称此函数f(x)具有“P (a)性质”.(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当﹣1≤x≤1时,g(x)=|x|,若函数y=g(x)的图象与直线y=px有2017个公共点,求实数p的值.21.给定数列{a n},若满足a1=a(a>0且a≠1),对于任意的n,m∈N*,都有a n+m=a n a m,则称数列{a n}为指数数列.(1)已知数列{a n},{b n}的通项公式分别为,,试判断{a n},{b n}是不是指数数列(需说明理由);(2)若数列{a n}满足:a1=2,a2=4,a n+2=3a n+1﹣2a n,证明:{a n}是指数数列;(3)若数列{a n}是指数数列,(t∈N*),证明:数列{a n}中任意三项都不能构成等差数列.2017年上海市嘉定区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.函数y=2sin2(2x)﹣1的最小正周期是.【考点】H1:三角函数的周期性及其求法.【分析】利用二倍角公式基本公式将函数化为y=Acos(ωx+φ)的形式,再利用周期公式求函数的最小正周期,【解答】解:函数y=2sin2(2x)﹣1,化简可得:y=1﹣cos4x﹣1=﹣cos4x;∴最小正周期T=.故答案为2.设i为虚数单位,复数,则|z|= 1 .【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数===﹣i,则|z|=1.故答案为:1.3.设f﹣1(x)为的反函数,则f﹣1(1)= 1 .【考点】4R:反函数.【分析】根据反函数的性质,原函数的值域是反函数的定义域即可求解【解答】解:的反函数,其反函数f﹣1(x),反函数的性质,反函数的定义域是原函数的值域,即.可得:x=1,∴f﹣1(x)=1.故答案为1.4. = 3 .【考点】8J:数列的极限.【分析】通过分子分母同除3n+1,利用数列极限的运算法则求解即可.【解答】解: ===3.故答案为:3.5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是30°.【考点】MI:直线与平面所成的角.【分析】根据圆锥的底面积公式和侧面积公式,结合已知可得l=2R,进而解母线与底面所成角,然后求解母线与轴所成角即可.【解答】解:设圆锥的底面半径为R,母线长为l,则:其底面积:S底面积=πR2,其侧面积:S侧面积=2πRl=πRl,∵圆锥的侧面积是其底面积的2倍,∴l=2R,故该圆锥的母线与底面所成的角θ有,cosθ==,∴θ=60°,母线与轴所成角的大小是:30°.故答案为:30°.6.设等差数列{a n}的前n项和为S n,若=,则= .【考点】85:等差数列的前n项和.【分析】=,可得3(a1+4d)=5(a1+2d),化为:a1=d.再利用等差数列的求和公式即可得出.【解答】解:∵=,∴3(a1+4d)=5(a1+2d),化为:a1=d.则==.故答案为:.7.直线(t为参数)与曲线(θ为参数)的公共点的个数是 1 .【考点】QK:圆的参数方程;QJ:直线的参数方程.【分析】根据题意,将直线的参数方程变形为普通方程,再将曲线的参数方程变形为普通方程,分析可得该曲线为圆,且圆心坐标为(3,5),半径r=,求出圆心到直线的俄距离,分析可得直线与圆相切,即可得直线与圆有1个公共点,即可得答案.【解答】解:根据题意,直线的参数方程为,则其普通方程为x+y﹣6=0,曲线的参数方程为,则其普通方程为(x﹣3)2+(y﹣5)2=2,该曲线为圆,且圆心坐标为(3,5),半径r=,圆心到直线x+y﹣6=0的距离d===r,则圆(x﹣3)2+(y﹣5)2=2与直线x+y﹣6=0相切,有1个公共点;故答案为:1.8.已知双曲线C1与双曲线C2的焦点重合,C1的方程为,若C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,则C2的方程为.【考点】KC:双曲线的简单性质.【分析】求出双曲线的焦点坐标,利用渐近线的倾斜角的关系,列出方程,然后求解即可.【解答】解:双曲线C1与双曲线C2的焦点重合,C1的方程为,焦点坐标(±2,0).双曲线C1的一条渐近线为:y=,倾斜角为30°,C2的一条渐近线的倾斜角是C1的一条渐近线的倾斜角的2倍,可得C2的渐近线y=.可得,c=2,解得a=1,b=,所求双曲线方程为:.故答案为:.9.若,则满足f(x)>0的x的取值范围是(1,+∞).【考点】7E:其他不等式的解法.【分析】由已知得到关于x的不等式,化为根式不等式,然后化为整式不等式解之.【解答】解:由f(x)>0得到即,所以,解得x>1;故x的取值范围为(1,+∞);故答案为:(1,+∞);10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.【考点】C9:相互独立事件的概率乘法公式.【分析】利用对立事件的概率公式,计算即可,【解答】解:设至少有一种新产品研发成功的事件为事件A且事件B为事件A的对立事件,则事件B为一种新产品都没有成功,因为甲乙研发新产品成功的概率分别为和.则P(B)=(1﹣)(1﹣)=,再根据对立事件的概率之间的公式可得P(A)=1﹣P(B)=,故至少有一种新产品研发成功的概率.故答案为.11.设等差数列{a n}的各项都是正数,前n项和为S n,公差为d.若数列也是公差为d的等差数列,则{a n}的通项公式为a n= .【考点】84:等差数列的通项公式.【分析】由题意可得:S n=na1+d.a n>0. = +(n﹣1)d,化简n≠1时可得:a1=(n﹣1)d2+2d﹣d.分别令n=2,3,解出即可得出.【解答】解:由题意可得:S n=na1+d.a n>0.=+(n﹣1)d,可得:S n=a1+(n﹣1)2d2+2(n﹣1)d.∴na1+d=a1+(n﹣1)2d2+2(n﹣1)d.n≠1时可得:a1=(n﹣1)d2+2d﹣d.分别令n=2,3,可得:a1=d2+2d﹣d,a1=2d2+2d﹣d.解得a1=,d=.∴a n=+(n﹣1)=.故答案为:.12.设x∈R,用[x]表示不超过x的最大整数(如[]=2,[﹣]=﹣5),对于给定的n∈N*,定义C=,其中x∈[1,+∞),则当时,函数f(x)=C的值域是.【考点】57:函数与方程的综合运用.【分析】分类讨论,根据定义化简C x n,求出C x10的表达式,再利用函数的单调性求出C x10的值域.【解答】解:当x∈[,2)时,[x]=1,∴f(x)=C=,当x∈[,2)时,f(x)是减函数,∴f(x)∈(5,);当x∈[2,3)时,[x]=2,∴f(x)=C=,当x∈[2,3)时,f(x)是减函数,∴f(x)∈(15,45];∴当时,函数f(x)=C的值域是,故答案为:.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若x=1,则x2﹣3x+2=0”的逆否命题是()A.若x≠1,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=1C.若x2﹣3x+2=0,则x≠1 D.若x2﹣3x+2≠0,则x≠1【考点】25:四种命题间的逆否关系.【分析】根据逆否命题的定义,我们易求出命题的逆否命题【解答】解:将命题的条件与结论交换,并且否定可得逆否命题:若x2﹣3x+2≠0,则x≠1故选:D14.如图,在正方体ABCD﹣A1B1C1D1中,M、E是AB的三等分点,G、N是CD的三等分点,F、H分别是BC、MN的中点,则四棱锥A1﹣EFGH的左视图是()A. B. C.D.【考点】L7:简单空间图形的三视图.【分析】确定5个顶点在面DCC1D1上的投影,即可得出结论.【解答】解:A1在面DCC1D1上的投影为点D1,E在面DCC1D1的投影为点G,F在面DCC1D1上的投影为点C,H在面DCC1D1上的投影为点N,因此侧视图为选项C的图形.故选C15.已知△ABC是边长为4的等边三角形,D、P是△ABC内部两点,且满足,,则△ADP的面积为()A.B.C.D.【考点】9V:向量在几何中的应用.【分析】以A为原点,以BC的垂直平分线为y轴,建立直角坐标系.由于等边三角形△的边长为4,可得B,C的坐标,再利用向量的坐标运算和数乘运算可得,,利用△APD的面积公式即可得出.【解答】解:以A为原点,以BC的垂直平分线为y轴,建立直角坐标系.∵等边三角形△的边长为4,∴B(﹣2,﹣2),C(2,﹣2),由足= [(﹣2,﹣2)+(2,﹣2)]=(0,﹣),=(0,﹣)+(4,0)=(,﹣),∴△ADP的面积为S=||||=××=,故选:A.16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f (ax+1)≤f(x﹣2)在上恒成立,则实数a的取值范围是()A.[﹣2,1] B.[﹣2,0] C.[﹣1,1] D.[﹣1,0]【考点】3N:奇偶性与单调性的综合.【分析】因为偶函数在对称区间上单调性相反,根据已知中f(x)是偶函数,且f(x)在(0,+∞)上是增函数,易得f(x)在(﹣∞,0)上为减函数,又由若时,不等式f(ax+1)≤f(x﹣2)恒成立,结合函数恒成立的条件,求出时f(x﹣2)的最小值,从而可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围.【解答】解:∵f(x)是偶函数,且f(x)在(0,+∞)上是增函数,∴f(x)在(﹣∞,0)上为减函数,当时,x﹣2∈[﹣,﹣1],故f(x﹣2)≥f(﹣1)=f(1),若时,不等式f(ax+1)≤f(x﹣2)恒成立,则当时,|ax+1|≤1恒成立,∴﹣1≤ax+1≤1,∴≤a≤0,∴﹣2≤a≤0,故选B.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a﹣b=2,c=4,sinA=2sinB.(Ⅰ)求△ABC的面积;(Ⅱ)求sin(2A﹣B).【考点】GL:三角函数中的恒等变换应用.【分析】解法一:(I)由已知及正弦定理可求a,b的值,由余弦定理可求cosB,从而可求sinB,即可由三角形面积公式求解.(II)由余弦定理可得cosA,从而可求sinA,sin2A,cos2A,由两角差的正弦公式即可求sin(2A﹣B)的值.解法二:(I)由已知及正弦定理可求a,b的值,又c=4,可知△ABC为等腰三角形,作BD⊥AC于D,可求BD==,即可求三角形面积.(II)由余弦定理可得cosB,即可求sinB,由(I)知A=C2A﹣B=π﹣2B.从而sin(2A﹣B)=sin(π﹣2B)=sin2B,代入即可求值.【解答】解:解法一:(I)由sinA=2sinBa=2b.又∵a﹣b=2,∴a=4,b=2.cosB===.sinB===.∴S△ABC=acsinB==.(II)cosA===.sinA===.sin2A=2sinAcosA=2×.cos2A=cos2A﹣sin2A=﹣.∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.解法二:(I)由sinA=2sinBa=2b.又∵a﹣b=2,∴a=4,b=2.又c=4,可知△ABC为等腰三角形.作BD⊥AC于D,则BD===.∴S△ABC==.(II)cosB===.sinB===.由(I)知A=C2A﹣B=π﹣2B.∴sin(2A﹣B)=sin(π﹣2B)=sin2B=2sinBcosB=2××=.18.如图,在长方体ABCD﹣A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截长方体得到一个矩形EFGH,且A1E=D1F=2,AH=DG=5.(1)求截面EFGH把该长方体分成的两部分体积之比;(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角;LF:棱柱、棱锥、棱台的体积.【分析】(1)由题意,平面α把长方体分成两个高为5的直四棱柱,转化求解体积推出结果即可.(2)解法一:作AM⊥EH,垂足为M,证明HG⊥AM,推出AM⊥平面EFGH.通过计算求出AM=4.AF,设直线AF与平面α所成角为θ,求解即可.解法二:以DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,求出平面α一个法向量,利用直线AF与平面α所成角为θ,通过空间向量的数量积求解即可.【解答】(本题满分,第1小题满分,第2小题满分8分)解:(1)由题意,平面α把长方体分成两个高为5的直四棱柱,,…,…所以,.…(2)解法一:作AM⊥EH,垂足为M,由题意,HG⊥平面ABB1A1,故HG⊥AM,所以AM⊥平面EFGH.…因为,,所以S△AEH=10,)因为EH=5,所以AM=4.…又,…设直线AF与平面α所成角为θ,则.…所以,直线AF与平面α所成角的正弦值为.…解法二:以DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(5,0,0),H(5,5,0),E(5,2,4),F(0,2,4),…故,,…设平面α一个法向量为,则即所以可取.…设直线AF与平面α所成角为θ,则.…所以,直线AF与平面α所成角的正弦值为.…19.如图,已知椭圆C:(a>b>0)过点,两个焦点为F1(﹣1,0)和F2(1,0).圆O的方程为x2+y2=a2.(1)求椭圆C的标准方程;(2)过F1且斜率为k(k>0)的动直线l与椭圆C交于A、B两点,与圆O交于P、Q两点(点A、P在x轴上方),当|AF2|,|BF2|,|AB|成等差数列时,求弦PQ的长.【考点】KH:直线与圆锥曲线的综合问题;K3:椭圆的标准方程;KL:直线与椭圆的位置关系.【分析】(1)求出c=1,设椭圆C的方程为,将点代入,解得a2=4,然后求解椭圆C的方程.(2)由椭圆定义,|AF1|+|AF2|=4,|BF1|+|BF2|=4,通过|AF2|,|BF2|,|AB|成等差数列,推出.设B(x0,y0),通过解得B,然后求解直线方程,推出弦PQ的长即可.【解答】(本题满分,第1小题满分,第2小题满分8分)解:(1)由题意,c=1,…设椭圆C的方程为,将点代入,解得a2=4(舍去),…所以,椭圆C的方程为.…(2)由椭圆定义,|AF1|+|AF2|=4,|BF1|+|BF2|=4,两式相加,得|AB|+|AF2|+|BF2|=8,因为|AF2|,|BF2|,|AB|成等差数列,所以|AB|+|AF2|=2|BF2|,于是3|BF2|=8,即.…设B(x0,y0),由解得,…(或设,则,解得,,所以).所以,,直线l的方程为,即,…圆O的方程为x2+y2=4,圆心O到直线l的距离,…此时,弦PQ的长.…20.如果函数y=f(x)的定义域为R,且存在实常数a,使得对于定义域内任意x,都有f(x+a)=f(﹣x)成立,则称此函数f(x)具有“P (a)性质”.(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当﹣1≤x≤1时,g(x)=|x|,若函数y=g(x)的图象与直线y=px有2017个公共点,求实数p的值.【考点】57:函数与方程的综合运用.【分析】(1)根据题意可知cos(x+a)=cos(﹣x)=cosx,故而a=2kπ,k∈Z;(2)由新定义可推出f(x)为偶函数,从而求出f(x)在[0,1]上的解析式,讨论m与[0,1]的关系判断f(x)的单调性得出f(x)的最值;(3)根据新定义可知g(x)为周期为2的偶函数,作出g(x)的函数图象,根据函数图象得出p的值.【解答】解:(1)假设y=cosx具有“P(a)性质”,则cos(x+a)=cos(﹣x)=cosx恒成立,∵cos(x+2kπ)=cosx,∴函数y=cosx具有“P(a)性质”,且所有a的值的集合为{a|a=2kπ,k∈Z}.(2)因为函数y=f(x)具有“P(0)性质”,所以f(x)=f(﹣x)恒成立,∴y=f(x)是偶函数.设0≤x≤1,则﹣x≤0,∴f(x)=f(﹣x)=(﹣x+m)2=(x﹣m)2.①当m≤0时,函数y=f(x)在[0,1]上递增,值域为[m2,(1﹣m)2].②当时,函数y=f(x)在[0,m]上递减,在[m,1]上递增,y min=f(m)=0,,值域为[0,(1﹣m)2].③当时,y min=f(m)=0,,值域为[0,m2].④m>1时,函数y=f(x)在[0,1]上递减,值域为[(1﹣m)2,m2].(3)∵y=g(x)既具有“P(0)性质”,即g(x)=g(﹣x),∴函数y=g(x)偶函数,又y=g(x)既具有“P(2)性质”,即g(x+2)=g(﹣x)=g(x),∴函数y=g(x)是以2为周期的函数.作出函数y=g(x)的图象如图所示:由图象可知,当p=0时,函数y=g(x)与直线y=px交于点(2k,0)(k ∈Z),即有无数个交点,不合题意.当p>0时,在区间[0,2016]上,函数y=g(x)有1008个周期,要使函数y=g(x)的图象与直线y=px有2017个交点,则直线在每个周期内都有2个交点,且第2017个交点恰好为,所以.同理,当p<0时,.综上,.21.给定数列{a n},若满足a1=a(a>0且a≠1),对于任意的n,m∈N*,都有a n+m=a n a m,则称数列{a n}为指数数列.(1)已知数列{a n},{b n}的通项公式分别为,,试判断{a n},{b n}是不是指数数列(需说明理由);(2)若数列{a n}满足:a1=2,a2=4,a n+2=3a n+1﹣2a n,证明:{a n}是指数数列;(3)若数列{a n}是指数数列,(t∈N*),证明:数列{a n}中任意三项都不能构成等差数列.【考点】8B:数列的应用.【分析】(1)利用指数数列的定义,判断即可;(2)求出{a n}的通项公式为,即可证明:{a n}是指数数列;(3)利用反证法进行证明即可.【解答】(1)解:对于数列{a n},因为a3=a1+2≠a1a2,所以{a n}不是指数数列.…对于数列{b n},对任意n,m∈N*,因为,所以{b n}是指数数列.…(2)证明:由题意,a n+2﹣a n+1=2(a n+1﹣a n),所以数列{a n+1﹣a n}是首项为a2﹣a1=2,公比为2的等比数列.…所以.所以,=,即{a n}的通项公式为(n∈N*).…所以,故{a n}是指数数列.…(3)证明:因为数列{a n}是指数数列,故对于任意的n,m∈N*,有a n+m=a n a m,令m=1,则,所以{a n}是首项为,公比为的等比数列,所以,.…假设数列{a n}中存在三项a u,a v,a w构成等差数列,不妨设u<v<w,则由2a v=a u+a w,得,所以2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u,…当t为偶数时,2(t+4)w﹣v(t+3)v﹣u是偶数,而(t+4)w﹣u是偶数,(t+3)w﹣u是奇数,故2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u不能成立;…当t为奇数时,2(t+4)w﹣v(t+3)v﹣u是偶数,而(t+4)w﹣u是奇数,(t+3)w﹣u是偶数,故2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u也不能成立.…所以,对任意t∈N*,2(t+4)w﹣v(t+3)v﹣u=(t+4)w﹣u+(t+3)w﹣u不能成立,即数列{a n}的任意三项都不成构成等差数列.…。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017届度嘉定区高三年级第二次质量调研数 学 试 卷考生注意:1.答题前,务必在答题纸上将姓名、学校、班级等信息填写清楚,并贴好条形码.2.解答试卷必须在答题纸规定的相应位置书写,超出答题纸规定位置或写在试卷、草稿纸上的答案一律不予评分.3.本试卷共有21道试题,满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 考生应在答题纸的相应位置直接填写结果.1.函数1)2(sin 22-=x y 的最小正周期是________________. 2.设i 为虚数单位,复数i2i21+-=z ,则=||z ____________. 3.设)(1x f-为12)(+=x x x f 的反函数,则=-)1(1f _____________. 4.=++++∞→nn n n n 3232lim11_______________. 5.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是______________. 6.设等差数列}{n a 的前n 项和为n S ,若3535=a a ,则=35S S___________. 7.直线⎩⎨⎧-=+=t y t x 4,2(t 为参数)与曲线⎪⎩⎪⎨⎧+=+=θθsin 25,cos 23y x (θ为参数)的公共点的个数是______________.8 .已知双曲线1C 与双曲线2C 的焦点重合,1C 的方程为1322=-y x ,若2C 的一条渐近线 的倾斜角是1C 的一条渐近线的倾斜角的2倍,则2C 的方程为__________________. 9.若2131)(--=xx x f ,则满足0)(>x f 的x 的取值范围是_______________.10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为32和53.现安排甲 组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立 ,则至少有一种 新产品研发成功的概率为______________.11.设等差数列}{n a 的各项都是正数,前n 项和为n S ,公差为d .若数列{}nS 也是公差为d 的等差数列,则}{n a 的通项公式为=n a _____________.12.设R ∈x ,用][x 表示不超过x 的最大整数(如2]32.2[=,5]76.4[-=-),对于给定的*N ∈n ,定义)1][()1()1][()1(+--+--=x x x x x n n n C xn ,其中),1[∞+∈x ,则当⎪⎭⎫⎢⎣⎡∈3,23x 时,函数xC x f 10)(=的值域是____________________.二、选择题(本大题共有4题,满分20分,每题5分) 每题有且只有一个正确选项.考 生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.命题“若1=x ,则0232=+-x x ”的逆否命题是………………………………( ).(A )若1≠x ,则0232≠+-x x (B )若0232=+-x x ,则1=x (C )若0232=+-x x ,则1≠x (D )若0232≠+-x x ,则1≠x 14.如图,在正方体1111D C B A ABCD -中,M 、E 是AB 的三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、MN 的中点,则四棱锥EFGH A -1的左视图是…………………………………………( ).(A ) (B ) (C ) (D )15.已知△ABC 是边长为4的等边三角形,D 、P 是△ABC 内部两点,且满足)(41AC AB AD +=,BC AD AP 81+=,则△ADP 的面积为…………………( ). (A )43 (B )33 (C )23 (D )3 16.已知)(x f 是偶函数,且)(x f 在),0[∞+上是增函数,若)2()1(-≤+x f ax f 在⎥⎦⎤⎢⎣⎡∈1,21x 上恒成立,则实数a 的取值范围是……………………………………( ).(A )]1,2[- (B )]0,2[- (C )]1,1[- (D )]0,1[-D A B CD 1F H EMN GA 1B 1C 1三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出 必要的步骤. 17.(本题满分14分,第1小题满分6分,第2小题满分8分)在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知2=-b a ,4=c ,B A sin 2sin =.(1)求△ABC 的面积S ;(2)求)2sin(B A -的值.18.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在长方体1111D C B A ABCD -中,8=AB ,5=BC ,41=AA ,平面α截长方体得到一个矩形EFGH ,且211==F D E A ,5==DG AH .(1)求截面EFGH 把该长方体分成的两部分体积之比;(2)求直线AF 与平面α所成角的正弦值.19.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,已知椭圆C :12222=+b y a x (0>>b a )过点⎪⎭⎫⎝⎛23,1,两个焦点为)0,1(1-F 和)0,1(2F .圆O 的方程为222a y x =+.(1)求椭圆C 的标准方程;(2)过1F 且斜率为k (0>k )的动直线l 与椭圆C 交于A 、B 两点,与圆O 交于P 、Q 两点(点A 、P 在x 轴上方),当||2AF ,||2BF ,||AB 成等差数列时,求弦PQ 的长.A BCDEF HG A 1 B 1 1D 120.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)如果函数)(x f y =的定义域为R ,且存在实常数a ,使得对于定义域内任意x ,都有)()(x f a x f -=+成立,则称此函数)(x f 具有“)(a P 性质”. (1)判断函数x y cos =是否具有“)(a P 性质”,若具有“)(a P 性质”,求出所有a 的值的集合;若不具有“)(a P 性质”,请说明理由;(2)已知函数)(x f y =具有“)0(P 性质”,且当0≤x 时,2)()(m x x f +=,求函数)(x f y =在区间]1,0[上的值域;(3)已知函数)(x g y =既具有“)0(P 性质”,又具有“)2(P 性质”,且当11≤≤-x 时,||)(x x g =,若函数)(x g y =的图像与直线px y =有2017个公共点,求实数p 的值.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定数列}{n a ,若满足a a =1(0>a 且1≠a ),对于任意的*,N ∈m n ,都有m n m n a a a ⋅=+,则称数列}{n a 为指数数列.(1)已知数列}{n a ,}{n b 的通项公式分别为123-⋅=n n a ,nn b 3=,试判断}{n a ,}{n b 是不是指数数列(需说明理由);(2)若数列}{n a 满足:21=a ,42=a ,n n n a a a 2312-=++,证明:}{n a 是指数数列;(3)若数列}{n a 是指数数列,431++=t t a (*N ∈t ),证明:数列}{n a 中任意三项都不能构成等差数列.2016学年度嘉定区高三年级第二次质量调研数学试卷参考答案与评分标准一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.2π 2.1 3.1 4.3 5.6π 6.25 7.1 8.1322=-y x 9.),1(∞+ 10.1513 11.412-n 12.(]45,15320,5 ⎥⎦⎤⎝⎛二、选择题(本大题共有4题,满分20分,每题5分) 13.D 14.C 15.A 16.B三、解答题(本大题共有5题,满分76分) 17.(本题满分14分,第1小题满分6分,第2小题满分8分)(1)因为B A sin 2sin =,所以由正弦定理得b a 2=, ……………………(1分) 又2=-b a ,故4=a ,2=b , ……………………………………………(3分)所以412cos 222=-+=bc a c b A ,因为),0(π∈A ,所以415sin =A .………(5分)所以154154221sin 21=⋅⋅⋅==A bc S .………………………………(6分) (2)因为415sin =A ,41cos =A ,所以815cos sin 22sin ==A A A ,87sin cos 2cos 22-=-=A A A ,……………(4分)815sin 21sin ==A B ,因为a b <,所以B 为锐角,所以87cos =B (或由c a =得到A B 2-=π,872cos )2cos(cos =-=-=A A B π).………………………………(5分) 所以,32157sin 2cos cos 2sin )2sin(=-=-B A B A B A . ………………………(8分)18.(本题满分14分,第1小题满分6分,第2小题满分8分) (1)由题意,平面α把长方体分成两个高为5的直四棱柱,7054)52(21)(211111=⋅⋅+⋅=⋅⋅+⋅=-AD A A AH E A V FG DD EH AA , ………………(2分)9054)63(21)(211111=⋅⋅+⋅=⋅⋅+⋅=-BC B B E B BH V CGFC BHEB ,…………………(4分) 所以,971111=--CGFC BHEB FG DD EH AA V V .………………………………………………………………(6分)(2)解法一:作EH AM ⊥,垂足为M ,由题意,⊥HG 平面11A ABB ,故AM HG ⊥,所以⊥AM 平面α. ………………………………………………………………(2分) 因为141=EH AA S 梯形,41=∆E AA S ,所以10=∆AEH S ,)因为5=EH ,所以4=AM . ……………………………………………………(4分) 又532121121=++=F D D A AA AF , ……………………………………………(6分)设直线AF 与平面α所成角为θ,则1554sin ==AF AM θ.………………………(7分)所以,直线AF 与平面α所成角的正弦值为1554. …………………(8分) 解法二:以DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则)0,0,5(A ,)0,5,5(H ,)4,2,5(E ,)4,2,0(F , ………………………(2分)故)0,0,5(=FE ,)4,3,0(-=HE , …………………………………(3分)设平面α一个法向量为),,(z y x n = ,则⎪⎩⎪⎨⎧=⋅=⋅,0,0HE n FE n 即⎩⎨⎧=+-=,043,05z y x所以可取)3,4,0(=n. ……………………………………………………………(5分)设直线AF 与平面α所成角为θ,则1554||||sin ==AF n AFθ. ……………………(7分) 所以,直线AF 与平面α所成角的正弦值为1554. ………………………………(8分) 19.(本题满分14分,第1小题满分6分,第2小题满分8分)(1)由题意,1=c , ………………………………………………………………(1分)设椭圆C 的方程为112222=-+a y a x ,将点⎪⎭⎫⎝⎛23,1代入, 1)1(49122=-+a a ,解得42=a (412=a 舍去), ………………………………(3分) 所以,椭圆C 的方程为13422=+y x . ………………………………………………(4分) (2)由椭圆定义,4||||21=+AF AF ,4||||21=+BF BF ,两式相加,得 8||||||22=++BF AF AB ,因为||2AF ,||2BF ,||AB 成等差数列,所以||2||||22BF AF AB =+,于是8||32=BF ,即38||2=BF . …………………(3分)设),(00y x B ,由⎪⎪⎩⎪⎪⎨⎧=+=+-,134,964)1(20202020y x y x 解得⎪⎪⎭⎫ ⎝⎛--315,34B ,…………………(5分) (或设)sin 3,cos 2(θθB ,则964sin 3)1cos 2(22=+-θθ,解得32cos -=θ,35sin -=θ,所以⎪⎪⎭⎫⎝⎛--315,34B ).所以,15=k ,直线l 的方程为)1(15+=x y ,即01515=+-y x ,……(6分)圆O 的方程为422=+y x ,圆心O 到直线l 的距离415=d , ………………(7分) 此时,弦PQ 的长2742||2=-=d PQ . …………………………………………(8分) 20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)(1)由题意,)cos()cos(x a x -=+,即x a x cos )cos(=+对于任意实数x 成立, …………………………………………(1分) 由诱导公式x k x cos )2cos(=+π,函数x y cos =具有“)(a P 性质”,且所有a 的值的集合为},2{Z ∈=k k a a π. ……………………………………………………………(4分) (2)因为函数)(x f y =具有“)0(P 性质”,所以)()(x f x f -=,即)(x f y =是偶函数. ………………………………………………………………(1分) 所以当0≥x 时,0≤-x ,22)()()()(m x m x x f x f -=+-=-=. ……………(2分) 当0≤m 时,函数)(x f y =在]1,0[上递增,值域为])1(,[22m m -. ……………(3分) 当210<<m 时,函数)(x f y =在],0[m 上递减,在]1,[m 上递增,0)(min ==m f y ,2max )1()1(m f y -==,值域为])1(,0[2m -. …………………………………(4分)同理,当121≤≤m 时,0)(min ==m f y ,2max )0(m f y ==,值域为],0[2m .…(5分)当1>m 时,函数)(x f y =在]1,0[上递减,值域为],)1[(22m m -. ……………(6分) (3)由题意)()(x g x g -=,函数)(x g y =偶函数,又)()()2(x g x g x g =-=+,所以函数)(x g y =是以2为周期的函数. …………………………………………(1分) 因为当11≤≤-x 时,||)(x x g =,所以当31≤≤x 时,121≤-≤-x ,|2|)2()(-=-=x x g x g , …………………………………………………………(2分) 一般地,当1212+≤≤-k x k (Z ∈k )时,|2|)(k x x g -=. …………………(3分) 作出函数)(x g y =的图像,可知,当0=p 时,函数)(x g y =与直线px y =交于点)0,2(k (Z ∈k ),即有无数个交点,不合题意. …………………………………(4分) 当0>p 时,在区间]2016,0[上,函数)(x g y =有1008个周期,要使函数)(x g y =的图像与直线px y =有2017个交点,则直线在每个周期内都有2个交点,且第2017个交点恰好为)1,2017(,所以20171=p .同理,当0<p 时,20171-=p .综上,20171±=p . ……………………………………………………(6分)(p 的值漏掉一个扣1分)21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) (1)对于数列}{n a ,31=a ,62=a ,123=a ,因为21213a a a a ⋅≠=+,所以}{n a 不是指数数列. ………………………………………………………………………………(2分)对于数列}{n b ,对任意*,N ∈m n ,因为m n m n m n m n b b b ⋅=⋅==++333,所以}{n b 是指数数列. ……………………………………………………………………………………(4分)(2) 由题意,)(2112n n n n a a a a -=-+++,所以数列}{1n n a a -+是首项为212=-a a ,公比为2的等比数列. ……………………………………………………………………(2分)所以nn n a a 21=-+.所以,2222)()()(21112211++++=+-++-+-=----- n n n n n n n a a a a a a a an n 2221)21(21=+--=-,即}{n a 的通项公式为n n a 2=(*N ∈n ). ………………(5分)所以m n m n mn m n a a a ⋅=⋅==++222,故}{n a 是指数数列. …………………………(6分)(3)因为数列}{n a 是指数数列,故对于任意的*,N ∈m n ,有m n m n a a a ⋅=+,令1=m ,则n n n a t t a a a ⋅++=⋅=+4311,所以}{n a 是首项为43++t t ,公比为43++t t 的等比数列,所以,nn t t a ⎪⎭⎫⎝⎛++=43. …………………………………………………………………………(2分)假设数列}{n a 中存在三项u a ,v a ,w a 构成等差数列,不妨设w v u <<,则由w u v a a a +=2,得wu v t t t t t t ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++4343432,所以u w u w u v vw t t t t ----+++=++)3()4()3()4(2, ………………………………(3分)当t 为偶数时,u v vw t t --++)3()4(2是偶数,而u w t -+)4(是偶数,u w t -+)3(是奇数,故u w u w u v vw t t t t ----+++=++)3()4()3()4(2不能成立; …………………………(5分)当t 为奇数时,u v vw t t --++)3()4(2是偶数,而u w t -+)4(是奇数,u w t -+)3(是偶数,故u w u w u v vw t t t t ----+++=++)3()4()3()4(2也不能成立.…………………………(7分)所以,对任意*N ∈t ,u w u w u v vw t t t t ----+++=++)3()4()3()4(2不能成立,即数列}{n a 的任意三项都不成构成等差数列. ……………………………………………………(8分)(另证:因为对任意*N ∈t ,u v vw t t --++)3()4(2一定是偶数,而4+t 与3+t 为一奇一偶,故uw t -+)4(与uw t -+)3(也为一奇一偶,故等式右边一定是奇数,等式不能成立.)。