杨氏弹性模量的测量
杨氏模量的测量方法

杨氏模量的测量方法
杨氏模量,也称作弹性模量或静态弹性模量,是材料弹性变形的比例系数。
它指材料
在受到拉力或压力时,单位面积的应变量与该拉力或压力的比值。
杨氏模量的测量对于材
料的研究以及弹性力学理论的理解至关重要。
下面将介绍几种测量杨氏模量的方法。
一、拉伸方法
拉伸测试是测量杨氏模量的常用方法之一。
该测试需要使用试样机,常用的有万能试
验机和压力传感器等设备。
在测试过程中,材料试样在两个夹紧装置之间受力,一端固定,另一端施以拉力。
拉伸过程中,测量应变和应力,该过程中应变为线性关系,因此可以根
据弹性线来计算杨氏模量。
二、压缩法
另一种测量杨氏模量的方法是压缩法。
该方法的基本原理是在平行靠近的两个表面之
间应用压力,在材料中引起垂直于两个表面之间的应变。
试验时,当应变在弹性范围内时,应力随着应变的逐渐增大,并且这种关系是线性的。
可以根据测得的应力和应变值,用线
性拟合来获得杨氏模量。
三、扭转法
扭转法是另一种广泛使用的测量杨氏模量的方法。
在该方法中,试样被固定在一个端点,另一个端点受到了扭矩的作用。
随着扭矩的逐渐增大,材料发生弹性变形,并且该部
分变形与应力是成比例的。
通过测量材料的应变和应力,可以计算出杨氏模量。
值得注意的是,以上三种测量方法在测试过程中,需要严格控制测试环境,确保测试
时的误差最小,从而减小结果的偏差。
在采用这些方法进行测试时,还需要对试样的准备、尺寸和形状等方面的要求进行详细的了解并正确地操作机器。
2.2_杨氏弹性模量的测量

2.2 杨氏弹性模量的测量预习题∆的数值很小,我们所做的实验中采用什么方法来测量的?1、由于L2、本实验测量杨氏弹性模量的方法是什么?3、用望远镜读数时,叉丝与刻度像之间不应相对移动。
如果发现有视差,应如何操作?4、用望远镜读数时,发现分划板上的十字叉丝很模糊,应如何操作?5、如何增大光杠杆的放大倍数以及提高光杠杆测量微小长度变化量的灵敏度?6、试推导出光杠杆测量微小长度变化的公式?7、请画出光杠杆光路图说明光杠杆的结构和工作原理。
8、你能否根据实验所测得的数据,计算出所用光杠杆的放大倍数,请写出公式。
∆所需要测量的物理量。
9、测量钢丝的杨氏弹性模量实验中计算L10、杨氏弹性模量实验测量的数据我们采用逐差法处理,使用逐差法的条件是什么?千分尺仪器误差mm 004.0=∆仪d 千分尺零点读数=0d ________mmL=________±__________m D=________±__________m R=________±__________m教师签字1、 通过实验得到钢丝伸长记录表1表1 某位同学测量杨氏模量实验的数据每块砝码的质量为(360±1)克,请用逐差法求sF ∆的值。
2、某位同学用逐差法求出()()()()[]()237261541007052141-⨯±=-+-+-+-=∆..s s s s s s s s s 米,每块砝码的质量为(360±1)克。
他计算F 的式子为23105218910360--⨯⨯⨯..,请问是否正确?说明理由。
3、光杠杆有什么优点?怎样提高光杠杆测量微小长度变化的灵敏度?4、由E 的相对误差公式分析进一步提高杨氏模量测量精度的途径是什么?。
动态法测量杨氏弹性模量

动态法测量杨氏弹性模量郑新飞杨氏模量是固体材料在弹性形变范围内正应力与相应正应变(当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S 叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量)的比值,其数值的大小与材料的结构、化学成分和加工制造方法等因素有关。
杨氏模量的测量是物理学基本测量之一,属于力学的范围。
根据不同的测量对象,测量杨式模量有很多种方法,可分为静态法、动态法、波传播法三类。
一、实验目的1、理解动态法测量杨氏模量的基本原理。
2、掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。
3、了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。
4、培养综合运用知识和使用常用实验仪器的能力。
二、实验仪器1、传感器I(激振):把电信号转变成机械振动。
2、试样棒:由悬线把机械振动传给试样,使试样受迫做共振动。
3、传感器II (拾振):机械振动又转变成电信号。
4、示波器:观察传感器II 转化的电信号大小。
三、实验原理 理论上可以得出用动态悬挂法测定金属材料的杨氏模量,为2436067.1f dm l E (1) 式中l 为棒长,d 为棒的直径,m 为棒的质量。
如果在实验中测定了试样(棒)在不同温度时的固有频率f ,即可计算出试样在不同温度时的杨氏模量E 。
四、实验内容1、测定试样的长度l 、直径d 和质量m 。
每个物理量各测六次,列表记录。
2、在室温下不锈钢和铜的杨氏模量分别为211102m N ⨯和211102.1m N ⨯,先由公式(1)估算出共振频率f ,以便寻找共振点。
3、把试样棒用细钢丝挂在测试台上,试样棒的位置约距离端面l 224.0和l 776.0处,悬挂时尽量避开这两个位置。
4、把2-YM 型信号发生器的输出与2-YM 型测试台的输入相连,测试台的输出与放大器的输入相接,放大器的输出与示波器的1CH (或2CH )的输入相接。
杨氏弹性模量的测定

实验七杨氏弹性模量的测定测量材料杨氏模量的方法很多,诸如拉伸法、压入法、弯曲法和碰撞法等。
拉伸法是最常用的方法之一。
但该方法使用的载荷较大,加载速度慢,且会产生驰豫现象,影响测量结果的精确度。
另外,此法还不适用于脆性材料的测量。
本实验借助于新颖的动态杨氏模量测量仪用振动法测量材料的杨氏模量。
该方法可弥补其不足,同时还可扩大学生在物体机械振动方面的知识面,不失为一种非常有用和很有特点的测量方法。
【实验目的】1.了解振动法测量材料杨氏模量的原理;2.学会用作图外推求值法测量振动体基频共振频率和杨氏模量;3. 测量试件机械振动的本征值4.观察铝平板的振型;5.通过实验,逐步提高综合运用各种测量仪器的能力。
【实验仪器】DY-D99型多用途动态杨氏模量测量仪、YXY-3D型音频信号源、示波器(Y轴灵敏度5-10m V)、毫米刻度钢皮尺(250mm长)、0.02mm精度游标卡尺、物理天平(精度0.05克)。
DY-D99型多功能动态杨氏模量测量仪简介图3 DY-D99型多功能动态杨氏模量测量仪1电动式激振器、6电动式拾振器、2试件(圆棒)、17试件(金属铝板)、3、5刀口、26导轨标尺、9标尺支架、25试件压板、24压板固定螺钉、10接线箱、11试件选择旋钮、12输入接口、13输出接口、22声整流罩、19发声元件、18小导轨、20声激振器固定螺钉、14-16水平调节螺钉、4刻度指示板、8备用试件安放支架、7试件限位装置、23底板该仪器如图3所示。
它由棒材试件杨氏模量定量测量装置和板材试件振型演示观察装置两部分组成。
两部分用接线箱连接和转换。
前一装置包含两个换能器(电动式换能器)、导轨标尺及其支架。
其中一个电动式换能器用作激振器,在音频信号发生器输出的音频正弦信号电压的作用下,作机械振动,进而激励试件作机械振动。
另一个电动式换能器当作拾振器,将由试件传递过来的机械振动信号转变为电信号,并输到示波器观察波形。
当音频信号发生器的信号频率调到与试件的固有频率相同时,试件产生共振,示波器显示的波形幅度达到最大。
实验10 杨氏模量的测定

定螺丝8和接头套筒7可将测微目镜固定在特定的支架上,亦可装在诸如 内调焦平行光管、测角仪、生物显微镜等仪器上作可测量目镜用。目镜 焦平面的内侧装有一块量程为8mm的刻线玻璃标尺3,其分度值为1mm, 在该尺下方0.1mm处平行地放置一块由薄玻璃片制成的活动分划板4, 上面刻有斜十字准线和一平行双线。人眼贴近目镜筒观察时,即可在明 视距离处看到玻璃标尺上放大的刻度线和活动分划板上的斜十字准线和 平行双线(见图1-3)。活动分划板的框架与由读数鼓轮6带动的丝杆5通过 弹簧(图中未画出)相连。当读数鼓轮顺时针旋转时,丝杆便推动分划 板沿导轨垂直于光轴向左移动,通过目镜就观察到准线交点和平行双线 向左平移,此时连接弹簧伸长;当鼓轮逆时针旋转时,分划板在弹簧恢 复力的作用下,向右移动,准线交点和平行双线亦向右平移。读数鼓轮 每转动一圈,准线交点及平行双线便平移1mm。在鼓轮轮周上均匀地刻 有100条线,即分成100小格,所以鼓轮每转过1小格,平行双线及斜准 线交点相应地平移0.01mm。当准线交点(或平行双线中的某一条)对准待 测物上某一标志(如长度的起始点或终点)时,该标志位置的读数等于玻 璃标尺上的整数毫米值,加上鼓轮上小数位的读数值,以mm为单位 时,应估读到小数点后3位。由于测得的结果为初读数和末读数之差, 因此,在实际测量中,为方便计,常常以平行双线中的某一条为测量准 线。
(mm) (mm) (mm) 序号 mi(g) 增砝码 减砝码
(mm)
1 100
2 300
3 500
4 700
5 900
6 1100
7 1300
8 1500
9 1700
0212实验二 杨氏弹性模量的测定实验报告(0002)

实验二杨氏弹性模量的测定杨氏弹性模量是描述材料形变能力的重要物理量,是选定机械零件材料的依据之一,是工程技术没计中常用的参数.杨氏模量的测量方法很多,本实验采用光杠杆测量金属丝的杨氏弹性模量。
测量中需综合运用多种测量长度的量具,确保一定的精确度要求,学习从误差分析的角度,选用最合适的量具,并要求用不确定度表示完整的测量结果。
用一般测量长度的工具不易精确测量长度的微小变化,也难保证其精度要求。
光杠杆是一种应用光放大原理测量被测物微小长度变化的装置,它的特点是直观、简便、精度高。
目前光杠杆原理已被广泛地应用于其他测量技术中,光杠杆装置还被许多高灵敏度的测量仪器(如灵敏电流计、冲击电流计和光点检流计等)用来显示微小角度的变化。
【实验目的】1.学会用拉伸法测定杨氏弹性模量;2.掌握光杠杆测量微小长度变化的原理和力法;3.学会用逐差法处理实验数据,学会用不确定度的计算方法,结果的正确表达;【实验仪器】杨氏模量测定仪、千分尺、游标卡尺、钢卷尺等【实验原理】在外力作用下,固体所发生的形状变化,称为形变。
形变可分为弹性形变与塑性形变两大类。
外力撤除后物体能完全恢复原状的形变,称为弹性形变,如外力撤除后物体不能完全恢复原状,而留下剩余形变,就称为塑性形变。
本实验只研究弹性形变,因此,应当控制外力的大小,以保证外力撤除后物体能恢复原状。
一根均匀的金属丝(或棒),长为L ,截面面积为S ,在受到沿长度方向的外力F 的作用时发生形变,伸长L ∆。
根据胡克定律,在弹性限度内,其应力F S 与应变L L ∆成正比,即LL E S F ∆=(1)这里的E 称为该金属丝的杨氏模量。
它只决定于材料的性质,而与其长度L 、截面面积S 无关。
它的单位为2N/m 。
设金属丝的直径为d ,则截面面积214S d π=,其杨氏模量为24FL E d Lπ=∆(2)这里F 、L 、d 可以直接测得,L ∆采用光杠杆法测量。
光杠杆和标尺是光杠杆法测量L ∆的主要仪器,光杠杆是由一块直立的平面镜装在三足支架的一端构成,其放置方法如下图所示。
杨氏模量的测量

一、引言固体材料受外力作用时必然发生形变,其内部胁强(单位面积上受力大小)和胁变(即相对形变)的比值称为杨氏弹性模量,这是衡量固体材料受力后形变大小的参数之一,是设计各种工程结构时选用材料的主要依据之一。
本实验需要掌握伸长法(读数显微镜配以CCD成象系统)和弯曲法两种测量方法,其中涉及了卷尺、千分尺、游标卡尺和读数显微镜的正确使用,并且综合了逐差法、线性拟合法来进行数据处理及不确定度的计算,是一个经典的力学物理实验。
二、实验原理1.伸长法:胡克定律指出,在弹性限度内,弹性体的应力和应变成正比。
设有一根长为L 横截面积为S的钢丝,在外力F作用下伸长了δ,则F/S=Eδ/L (1) ; 式中的比例系数E称为杨氏模量,单位为N.m-2。
设钢丝直径为d,则,将此代入上式并整理后得出E=4FL/(πd2δ) (2);上式表明,对于长度L、直径d和所加外力F相同的情况下,杨氏模量大的金属丝的伸长量δ较小,而杨氏模量小的伸长量较大。
因而,杨氏模量表达了材料抵抗外力产生拉伸(或压缩)形变的能力。
根据式(2)测杨氏模量时,伸长量δ比较小不易测准,本实验采用了读数显微镜配以CCD成象系统测量钢丝微小的伸长量。
呈像系统总的放大率为62.5倍。
2.弯曲法:在衡量歪曲时杨氏模量的表示公式为:E=(d3mg)/(4a3bΔZ); 其中d为两刀口间的距离,a为梁的厚度,b为梁的宽度,m为加挂砝码的质量,ΔZ为梁中心由于外力作用而下降的作用,g为当地的重力加速度。
实验时我们利用读数显微镜来测量梁中心下降的距离。
(关于歪曲法杨氏模量的推导附于报告最后)三、实验器材及实验过程实验器材:伸长法:千分尺、卷尺、金属丝支架(编号:20011664)、读数显微镜及CCD呈像显示系统(编号:D2*******);歪曲法:FD-HY-I杨氏模量实验仪(编号:20036985),千分尺,游标卡尺,不锈钢直尺,黄铜片,钢片等;DC12V监视器CCD MS测试样品H2H1伸长法实验图像实验过程:(由于具体的在预习报告中以写明,故在此简略些)实验1:1)调节金属丝铅直,正确调节显微物镜的目镜、物镜及摄像机镜头后在监视器屏带上看到清晰的图像。
大学物理实验讲义实验10杨氏模量的测定

实验 1 拉伸法测量杨氏模量杨氏弹性模量 (以下简称杨氏模量 )是表征固体材料性质的重要的力学参量,它反映材料弹性形变的难易程度,在机械设计及材料性能研究中有着广泛的应用。
其测量方法有静态拉伸法、悬臂梁法、简支梁法、共振法、脉冲波传输法,后两种方法测量精度较高;本实验采用静态拉伸法测量金属丝的杨氏模量,因涉及多个长度量的测量,需要研究不同测量对象如何选择不同的测量仪器。
【实验目的】1. 学习用静态拉伸法测量金属丝的杨氏模量。
2. 掌握钢卷尺、螺旋测微计和读数显微镜的使用。
3. 学习用逐差法和作图法处理数据。
4. 掌握不确定度的评定方法。
【仪器用具】杨氏模量测量仪(包括砝码、待测金属丝)、螺旋测微计、钢卷尺、读数显微镜【实验原理】1. 杨氏模量的定义本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝 )仅受轴向外力作用后F 与应变L的伸长或缩短。
按照胡克定律:在弹性限度内,弹性体的应力成正比。
SL设有一根原长为l ,横截面积为 S 的金属丝(或金属棒),在外力 F 的作用下伸长了L ,则根据胡克定律有F E( L)( 1-1)SL式中的比例系数 E 称为杨氏模量,单位为 Pa (或 N · m –2)。
实验证明,杨氏模量E 与外力 F 、金属丝的长度L 、横截面积 S 的大小无关,它只与制成金属丝的材料有关。
若金属丝的直径为d ,则 S1 d 2,代入( 1-1)式中可得 44FLE( 1-2)d 2 L( 1-2)式表明,在长度、直径和所加外力相同的情况下, 杨氏模量大的金属丝伸长量较小,杨氏模量小的金属丝伸长量较大。
因此,杨氏模量反映了材料抵抗外力引起的拉伸(或压缩)形变的能力。
实验中,测量出F、 L、 d、 L 值就可以计算出金属丝的杨氏模量 E 。
2.静态拉伸法的测量方法测量金属丝的杨氏模量的方法就是将金属丝悬挂于支架上,上端固定,下端加砝码对金属丝 F ,测出金属丝的伸长量L ,即可求出 E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属丝拉伸变形 图3.1.1 杨氏弹性模量的测量
【实验目的】
(1)用拉伸法测量金属丝的杨氏弹性模量。
(2)掌握用光杠杆测量微小长度的原理及方法。
(3)学会用逐差法处理实验数据和不确定度的计算。
【实验原理】
物体在外力的作用下发生形变,若撤走外力后形变消失,即物体恢复原状,这种形变叫做弹性形变,当外力超过某一限度,撤除外力后,物体不能恢复原状而留下剩余形变称为塑性形变,产生塑性形变的最小限度叫弹性极限;当外力
进一步增大到某一点时,物体会突然发生很大的形变,则该
点称为屈服点,超过屈服点后,该物体就会发生断裂。
在物
体的弹性范围内,产生一定的形变所需应力与应变(相对形变)之比称为弹性模量。
如果物体是柱形或条形,则(由拉力或压力所导致)沿纵向的弹性模量叫杨氏弹性模量。
如图3.1.1所示,设一粗细均匀的金属丝长度为L ,横截面面积为S ,将其上端固定,下端悬挂砝码,金属丝受砝码重力F 的作用而发生形变,伸长量为
L ,F /S 是金属丝截面上单位面积所受的作用力,叫做应力,而L /L 是金属丝单位长度的相对形变,叫做应变,由胡克定律得:在弹性形变范围内,物体所受的应力F/S 与应变△L/L 成正比,即
F L E S L
∆= (3.1.1) 其比例系数
//F S
E L L =∆
杨氏模量测量仪 图3.1.2
(3.1.2)
称为杨氏弹性模量,简称杨氏模量。
式中各量的单位均用SI 单位时,E 的单位为帕斯卡(即Pa ,1 Pa =1 N/m 2)。
杨氏模量是表征物体(材料)性质的一个参量,与物体的几何尺寸以及外力大小无关,对一定材料而言,E 是一个常数,它仅取决于材料的性质。
杨氏模量的大小标志了材料的刚性。
【实验仪器简介】
1. 杨氏模量仪
杨氏模量仪如图3.1.2所示。
三脚底座上装有两个
立柱和三个调整螺丝(调节调整螺丝可使钢丝铅直),
立柱的上端装有横梁,横梁中间小孔中有个上夹头A ,
用来夹紧金属丝L 的上端。
立柱的中部有一个可以沿立
柱上下移动的平台C ,用来承托光杠杆M 。
平台上有一
个圆孔和一条横槽,圆孔中有一个可以上下滑动的小圆
柱形的下夹头B ,用来夹紧金属丝的下端,小夹头下面
挂一砝码托盘,用于承托使金属丝拉长的砝码。
2. 镜尺组 镜尺组包括一个支架上安装的望远镜R 和标尺S 。
望远镜水平安装,标尺贴近望远镜且竖直安装,与被测长度变化方向相平行。
3. 光杠杆
如图3.1.3所示,光杠杆是将一小圆形平面反射镜M 固定在下面有三
个足尖f 1、f 2和f 3的“T ”形三脚支架上,f 1、f 2、f 3
三点构成一个等腰三角形。
图3.1.3
后足尖f 1到前足尖f 2、f 3连线的垂直距离b 称为光杠杆的杆长。
光杠杆镜尺法测量微小长度变化的原理:
如图3.1.2所示,测量时,将光杠杆两前足尖f 2、f 3放在平台上的横槽内,后足尖f 1放在小圆柱体下夹头的上面,镜面M 垂直于平台。
将望远镜对准镜面时,能从望远镜中看到标尺在镜中的反射像,并可读出与望远镜叉丝横线相重合的标尺读数。
设未增加砝码时,平面镜M 的法线与望远镜轴线一致,从望远镜中读得的标尺读数为N 0。
当增加砝码时,如图
3.1.4所示,金属丝伸长L ,光杠杆后足尖f 1随之下降L ,平面镜M 转过α角至M '位置,平面镜法线也转过 角,从N 0发出的光线被反射到标尺上某一位置(设为N 2)。
根据光的反射定律,反射角等于入射角,即
0112N ON N ON α∠=∠=(ON 1为平面镜转过 角后的法线位置)
所以 022N ON α∠=
由光的可逆性可知,从N 2发出的光经平面镜M '反射后进入望远镜而被观察到。
从图
3.1.4中的几何关系可得
光杆杆测量原理
图3.1.4
tan L
b α∆=
(3.1.5)
tan 2N
D α∆=
(3.1.6)
式中 D —— 标尺到平面镜的距离(0D ON =);
N —— 标尺两次读数的变化量,此处20||N N N ∆=-。
因L 很小,且L b ∆<<,故 很小,所以
tan L
b αα∆≈≈
(3.1.7)
又因为N D ∆<<,故2 亦很小,所以
D N ∆≈
≈αα22tan
(3.1.8) 由式(3.1.7)和式(3.1.8)消去,得
2L N b D
∆∆= 即 2b N
L D ⋅∆∆=
(3.1.9)
此式即为光杠杆测量微小伸长量的原理公式。
也可表示为
2D N L K L b ∆=⋅∆=⋅∆
(3.1.10)
式中 K (=2D/b ) —— 光杠杆的放大倍数。
本实验中,b 取0.04~0.08m ,D 取1~2m ,放大倍数可达25~100倍,因为D b >>,所以N L ∆>>∆。
L 原本是很难测准的微小长度变化,但经过光杠杆镜尺组转换为标尺上较大范围的读数变化量
N 后,变得容易得到。
其作用与杠杆的作用原理一样,是一种光学放大的方法,故这种装置称为“光杠杆”。
这种方法不但可以提高测量的准确度,而且可以实现非接触测量。
将式(3.1.9)代入式(3.1.4)中,得到杨氏弹性模量E 的测量公式
28πFLD E d b N
=∆ 式中 L —— 待测金属丝的长度(0.5~1.5 m );
D —— 标尺到平面镜的距离(1.5~2.0 m );
d —— 金属丝的直径(0.0006~0.0009 m );
b —— 光杠杆后足尖到两前足尖连线的垂直距离(0.04~0.08 m );
F —— 待测金属丝沿长度方向所受的外力(一个砝码质量1 kg );
N —— 标尺读数的变化量。
【实验内容】
1. 调节仪器
基本要求:望远镜全视场内清晰无视差、且叉丝位于标尺零刻度附近(±1cm );光杠杆足尖距选择适当、放置合理。
(1)用杨氏模量底座水准仪测量仪调节支架底座的三个螺丝,使支架垂直(钢丝铅直),并使夹持钢丝下端的夹头(小金属圆柱体)能在平台小孔中无摩擦地自由活动。
(2)将光杠杆放在平台上,两前足尖放在平台的沟槽中,后足尖放在下夹头的上表面(不得与钢丝相碰,不得放在夹子和平台之间的夹缝中,以使后足尖能随下夹头一起升降,准确地反映出钢丝的伸缩),然后用眼睛观察,调节小平面镜镜面垂直于平台。
(3)调节望远镜标尺至光杠杆平面镜的距离。
(4)调节望远镜与小平面镜大致等高(先用钢卷尺测量一下平面镜离地面的高度,然后再用钢卷尺测量并调节望远镜的高低与此大致等高)。
(5)移动望远镜,使其对准平面镜,并使望远镜上方两端的缺口准星与平面镜三点成一线。
(6)“外视”观察寻找标尺像。
沿望远镜上方用眼睛对着平面镜直接看去,找到标尺像。
如果看不到标尺像,适当调节望远镜的位置与倾斜度和平面镜的倾斜度。
(7)“内视”调节望远镜。
先转动目镜,使叉丝清晰;后调节物镜(转动右边手轮),即望远镜调焦,使标尺像清晰且无视差(注意:未加砝码时,要使叉丝水平线处于标尺“0”点附近0.01m之内)。
【思考题】
(1)光杠杆利用什么原理测量微小长度变化?如何提高其灵敏度?
(2)杨氏弹性模量的意义是什么?写出其测量公式,说明其中各量用何种仪器测量。
(3)逐差法处理数据的优点是什么?什么样的数据才能用逐差法处理?
(4)本实验中用不同的测量仪器测量多种长度量,为什么?哪些量的测量误差对结果影响大?
【预习要求】
(1)了解杨氏弹性模量仪的结构及用法。
(2)了解光杠杆的结构和调整方法。
(3)了解望远镜的结构及使用方法。
(4)预习逐差法如何记录及处理数据。
(5)预习微小误差准则。
(6)在数据纸上做好记录表格。