灵敏度分析

合集下载

灵敏度分析

灵敏度分析
回答两个问题:
①这些系数在什么范围内发生变化时,最优基不变(即最优解或最优 解结构不变)?
②系数变化超出上述范围时,如何用最简便的方法求出新的最优解?
灵敏度分析的基本原理
对于标准线性规划问题
max Z = CX
s.t. AX = b
设 为基本解, 是X基≥对应0 的目标系数向量, 是
基的逆矩阵,则原问题可表示为:
(2)检验数 CN CB B1N ,即 j Cj CBB1 pj 发生变 化,即对解的正则性有影响,而对解的可行性没有影响。 此时若解的正则性满足,则最优解不变
(3) B1b 和 CN CBB1N 同时发生变化
一、目标系数 的灵c j敏度分析
1、非基变量的目标系数 c j 的灵敏度分析
求(1)使原最优解基不变的b1 的变化范围; (2)若 b1 变为200,求新的最优解。
max Z = 3x1+ 2x2
x1+ 2x2 40 s.t. 2x1+ x2 50
x1 , x2 0
课 堂 练 习(续)
P153(4)
求(1)为使最优解不发生变化时目标函数系数
b
允许
例1.1 已知线性规划问题
max η = 30x1 + 25x 2 + 35x 3
x1 + 2x2 + x3 ≤ 800
s.t.

x
1
+
x2
+
2x 3

1000
2x1 + x 2 + x 3 ≤ 2000
x1, x 2, x 3 ≥ 0
问当x2 的系数由25提高到35时,最优解是否发生变 化?

灵敏度分析

灵敏度分析

2 1 b1 2b1 20 B b' 1 1 20 b 20 0 1 解之得:10≤b1≤20
1
即当10≤b1≤20时,最优基不变
分析使最优基保持不变的b2的范围:
2 112 24 b2 B b' 1 1 b 12 b 0 2 2
三、灵敏度分析的内容
价值系数cj的变化的分析 约束条件右端项bi变化的分析 系数矩阵A变化的分析
系数列向量Pk变化的分析
增加新约束条件的分析
增加新变量的分析
实例1
产品 资源 原料甲 原料乙 利润 (元/kg) A 1 1 5 B 1 2 8 C 1 2 6 资源拥 有量 12kg 20kg
x1 x1 x2 f 1 0 0 x2 0 1 0 x3 0 1 2 x4 2 1 2 x5 1 1 B-1b 24 -2
22 b 20
3 -104
最优单纯形表
x1 x4 -f
x1 1 0 0
x2 2 -1 -2
x3 2 -1 -4
x4 0 1 0
x5 B-1b 1 20 -1 2 -5 -100
x1 x2 -f
经迭代,得到最优单纯形表如下:
x1 1 0 -1 x2 0 1 0 x3 1 0 0 x4 2 -1 -4 x5 -1 1 -2 B-1b 4 8 -88
x3 x2 -f
3.2 增加新约束条件的分析
1、将最优解代入新的约束条件,若满足,则最优解不变。 2、若不满足,则当前最优解要发生变化;将新增约束条 件加入最优单纯形表,并变换为标准型。
k ' Ck CB B1Pk '

灵敏度分析

灵敏度分析

灵敏度分析研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。

在最优化方法中经常利用灵敏度分析来研究原始数据不准确或发生变化时最优解的稳定性。

通过灵敏度分析还可以决定哪些参数对系统或模型有较大的影响。

因此,灵敏度分析几乎在所有的运筹学方法中以及在对各种方案进行评价时都是很重要的。

目录线性规划中灵敏度分析对于线性规划问题:这里max表示求极大值,s.t.表示受约束于,X是目标函数,xj是决策变量。

通常假定aij,bi和c j都是已知常数。

但是实际上这些参数往往是一些根据估计或预测得到的数据,因而存在误差。

同时,在实际过程中,这些参数还会发生不同程度的变化。

例如,在处理产品搭配的线性规划问题中,目标函数中的c j一般同市场条件等因素有关。

当市场条件等因素发生变化时,c j也会随之而变化。

约束条件中的aij随工艺条件等因素的变化而改变,bi的值则同企业的能力等因素有关。

线性规划中灵敏度分析所要解决的问题是:当这些数据中的一个或几个发生变化时,最优解将会发生怎样的变化。

或者说,当这些数据在一个多大的范围内变化时最优解将不发生变化。

编辑本段灵敏度的应用投入产出法中灵敏度分析可以用来研究采取某一项重大经济政策后将会对国民经济的各个部门产生怎样的影响。

例如,美国政府曾经利用投入产出表研究了提高职工工资10%对国民经济各部门商品价格的影响。

研究的结果表明,在职工工资增加10%时,建筑业产品的价格将上涨7%,农产品的价格将上涨1.3%,其余各部门产品价格将上涨1.3~7%不等,生活费用将上升3.8%,职工的实际得益为6.2%。

方案评价中灵敏度分析可以用来确定评价条件发生变化时备选方案的价值是否会发生变化或变化多少。

例如,在利用评价表进行评价时,需要确定每一个分目标的权重系数和各分目标的评分数。

这中间或多或少地会存在当事人的主观意识,不同的人可能会有截然不同的价值观念。

因此就必须考虑当分配的权重系数或评分数在某一个范围内变化时,评价的结果将会产生怎样的变化。

实验结果的灵敏度分析

实验结果的灵敏度分析

实验结果的灵敏度分析实验是科学研究中不可或缺的一部分。

通过实验可以验证理论,揭示规律,为科学研究的发展提供支持。

然而,实验结果的可靠性和准确性往往是人们关注的焦点。

为了评估实验结果的稳定性和可信度,灵敏度分析是一种常用的方法。

本文将对实验结果的灵敏度分析进行探讨,旨在阐明其重要性和应用场景。

一、什么是灵敏度分析灵敏度分析是一种系统地评估实验结果对于输入参数变化的敏感程度的方法。

它能够帮助我们了解实验结果对于参数的响应程度,找出影响实验结果的主要因素,从而为进一步的研究和决策提供依据。

通常,灵敏度分析可通过多种途径进行,如参数敏感度分析、局部敏感度分析和全局敏感度分析等。

二、灵敏度分析的意义灵敏度分析对于科学研究具有重要意义。

首先,它可以帮助我们了解实验结果的稳定性。

通过灵敏度分析,我们可以观察输入参数变化对实验结果的影响程度,若实验结果对于参数变化不敏感,则说明实验结果较为稳定可靠。

其次,灵敏度分析可以揭示实验结果中的主要因素。

在实验过程中,我们常常需要面对各种参数和影响因素,通过灵敏度分析,可以确定哪些因素对实验结果具有重要影响,进而提供优化研究方向和决策依据。

此外,灵敏度分析还可以帮助我们发现异常结果和探索实验结果潜在的风险因素。

三、灵敏度分析的应用场景根据实际需求和研究目的,灵敏度分析可以应用于多个领域。

以下将针对不同领域的实验结果灵敏度分析进行简要介绍。

1. 生态学领域生态学研究中,我们常常需要评估各种生态系统的稳定性和脆弱性。

通过灵敏度分析,可以了解生态系统对于各种环境因素的响应程度,找出对生态系统稳定性具有重要影响的关键因素,为生态保护和可持续发展提供科学依据。

2. 经济学领域经济学研究往往需要分析不同经济因素对于经济系统的影响。

通过灵敏度分析,可以评估经济模型中各个参数对于经济结果的敏感程度,识别经济政策的潜在风险和利益分配的不平衡情况,为经济决策提供参考。

3. 工程领域工程设计中常常需要考虑各种参数对于产品性能和安全性能的影响。

灵敏度分析

灵敏度分析

灵敏度分析1. 简介灵敏度分析(Sensitivity Analysis),又称为参数分析,是指在数学模型或系统模型中,通过改变各种输入参数,分析其对模型输出结果的影响程度的一种方法。

灵敏度分析可以帮助我们了解模型的稳定性、可靠性以及输入因素对输出的影响程度,从而帮助我们做出科学合理的决策。

在实际应用中,很多决策问题都涉及到多个不确定的参数,这些参数对于决策结果的影响程度可能不同。

灵敏度分析能够帮助我们确定哪些参数对决策结果更为敏感,哪些参数对决策结果影响较小,从而帮助我们确定关键参数,并为决策提供支持。

2. 灵敏度分析方法2.1 单参数灵敏度分析单参数灵敏度分析是指在数学模型中,依次改变一个输入参数,而其他参数保持恒定,观察模型输出结果的变化情况。

通过改变一个参数的值,我们可以分析该参数对模型输出结果的影响程度。

常用的单参数灵敏度分析方法有:•参数敏感度指标(Parameter Sensitivity Index,PSI):PSI用于衡量输入参数的变化对输出结果的影响程度。

常见的PSI指标有:绝对敏感度、相对敏感度、弹性系数等。

•参数敏感度图(Parameter Sensitivity Plot):通过绘制参数敏感度图,可以直观地看出输入参数对输出结果的影响程度。

常见的参数敏感度图有:Tornado图、散点图等。

•分析输出结果的极值情况:通过改变参数的值,观察模型输出结果的极值情况,可以分析参数对极值情况的敏感程度。

2.2 多参数灵敏度分析多参数灵敏度分析是指同时改变多个输入参数,观察模型输出结果的变化情况。

多参数灵敏度分析可以帮助我们分析多个参数之间的相互作用,以及各个参数对输出结果的综合影响。

常用的多参数灵敏度分析方法有:•流量排序法(Flow Sort):通过将参数的取值按照大小进行排序,逐步改变参数取值的范围,观察输出结果的变化情况。

可以帮助我们确定哪些参数对输出结果的影响更大。

•剥离法(Perturbation):通过逐个改变参数的取值,观察输出结果的变化情况。

第7章灵敏度分析

第7章灵敏度分析

3.用伴随网络法求解稳态灵敏度的步骤: (1)求解原网络方程TX B ,得到原网络各支路电压和 支路电流信息。
ˆ ˆ T T X B 。其系数矩阵是原网 (2)建立伴随网络方程
络方程系数矩阵的转置。如果是非线性网络,则应是非
ˆ 线性迭代收敛后的原网络系数矩阵的转置。右端向量 B
中只需填入输出支路的贡献,是一个最多含有两个非零 元的向量。
因为导数网络方程的系数矩阵与原网络系数因为导数网络方程的系数矩阵与原网络系数矩阵相同矩阵相同所以在原网络方程求解过程中系数矩所以在原网络方程求解过程中系数矩阵的lulu分解的结果分解的结果可以在导数网络方程的求解可以在导数网络方程的求解中直接应用中直接应用故求解导数网络方程所需乘除运算故求解导数网络方程所需乘除运算量仅是向前量仅是向前向后替代所需的乘除次数向后替代所需的乘除次数比求解比求解原网络方程的运算量小得多原网络方程的运算量小得多
ˆ 随网络 N 是个线性网络。
(2)当参量 p 发生变化时,有
f f dI g dp U g p
代入(2)式,得;
ˆ dU U f dU U f dp dU 0 ˆ Ig g ˆg g g O U g p
将(3) 式代入上式得
ˆ f dp dU 0 U g O p
(3)求解伴随网络方程,得到伴随网络中各支 路电压和支路电流信息 (4)根据原网络和伴随网络方程的结果,利用 各元件灵敏度公式,计算出输出变量对网络中所 有元件参数的灵敏度值。 (5)如果还进一步求网络中另外一个输出变量 对元件参数的灵敏度,则需要重新填写伴随网络 方程的右端向量,然后重复(3)、(4)步骤。 采用伴随网络法每求解一次伴随网络方程, 只能计算出网络的一个输出变量对所有网络元件 参数的灵敏度,如果还想计算其他输出变量的灵 敏度,则需要再求解伴随网络方程。一般人们只 对网络中少数几个输出变量的灵敏度感兴趣,所 以求解伴随网络的次数不会很多。但当网络较大 时,每次所需计算的网络参数灵敏度值会很多。

灵敏度分析

灵敏度分析
该种情况必须另找新的最优解。此时,只要在原来的单纯形表(注意:是 最终单纯形表)里增加一行,用对偶单纯形法求解即可。
例2.5.5 对于例2.5.1的原问题,如果增加一道生产工序 ,要求产品满足约束条件 x1+ 3 x2 ≤ 9 ,试问应如何安排生产计划,可以使利润最大?
解:首先把表13的最优解代入新约束条件,看是否满足。显然,由于原最优解 不满足新约束,所以,必须寻找新的最优解。
解:先计算B﹣1⊿b。
0 1/4 0
B﹣1⊿b = -2 1/2 1
1/2 -1/8 0 再把结果加到表16的 b 列中。
0
4
0
0 = -8-8
0
00
cj
CB
XB
b
2
3
x1
x2
0
0
x3
x4
2
x1
4 +0
1 00
1/4
0
x5
4 -8
0 0 [-2]
1/2
3
x2
2 +0
0 1 1/2
-1/8
(cj-zj) 或 j
1/3
0
0 -M
x5
x6
-1/6 0
-1
-1/6
0
1/3
0
7/6
1
5/6
-5/6
0
-1/3 -M+3
(五)、增加一个约束条件的分析
增加一个约束条件: 增加约束条件一般意味着可行域的缩小。 情况1:基变量没有改变(即最优解满足增加的约束条件)
该种情况,最优解没变化。(方法:把基变量的值代入约束条件中,如果 满足新的约束条件,就可断定最优解没有变化。) 情况2:基变量不适应新增加的约束条件

第五章灵敏度分析

第五章灵敏度分析

第五章灵敏度分析灵敏度分析(Sensitivity Analysis)是指在决策分析中,根据改变决策变量的数值,研究对最优解产生影响的因素。

通过灵敏度分析,可以评估决策变量的变化对最优解的敏感程度,帮助决策者了解决策方案的稳定性和可靠性,并能够帮助决策者制定出合理的决策方案。

在灵敏度分析中,常用的指标包括目标函数系数的灵敏度分析、资源限制系数的灵敏度分析和松弛度分析。

首先,进行目标函数系数的灵敏度分析。

目标函数系数代表着对决策变量的偏好程度,通过改变目标函数系数的数值,可以分析对最优解的影响。

如果目标函数系数变化较大,但最优解随之变化较小,则说明最优解对该目标函数系数相对不敏感。

反之,如果目标函数系数变化较小,但最优解随之变化较大,则说明最优解对该目标函数系数相对较敏感。

其次,进行资源限制系数的灵敏度分析。

资源限制系数反映了资源约束对最优解的影响程度,通过改变资源的可用量,可以分析对最优解的影响。

如果资源限制系数变化较大,但最优解随之变化较小,则说明最优解对该资源限制系数相对不敏感。

反之,如果资源限制系数变化较小,但最优解随之变化较大,则说明最优解对该资源限制系数相对较敏感。

最后,进行松弛度分析。

松弛度是指资源使用量与其可用量之差,表示资源的闲置程度。

通过分析松弛度,可以了解决策方案的稳健性。

如果一些资源的松弛度较大,则说明该资源具有一定的闲置容量,决策方案对该资源限制相对较不敏感。

反之,如果一些资源的松弛度较小,则说明该资源的利用率较高,决策方案对该资源限制相对较敏感。

在灵敏度分析中,还可以进行多因素综合分析,研究多个因素同时改变时对最优解的影响。

通过综合分析,可以确定各个因素对最优解的贡献程度,帮助决策者优化决策方案。

总之,灵敏度分析是决策分析中重要的工具,能够评估决策方案的稳定性和可靠性,对于决策者进行决策方案选择具有重要的指导作用。

灵敏度分析应该结合具体的决策问题和决策变量的特征来进行,并且要注意分析结果的合理性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为了确定模型中主要因素,我们对该模型采用 Sobol 法进行灵敏度分析判断其全局敏感性。

Sobol 法是最具有代表性的全局敏感性分析方法,它基于模型分解思想,分别得到参数
1,2 次及更高次的敏感度。

通常 1次敏感度即可反映了参数的主要影响。

Sobol 法
Sobol 法核心是把模型分解为单个参数及参数之间相互组合的函数。

假设模型为
Y f(x)(x x-i ,x 2,...x m ), x i 服从[0,1]均匀分布,且f 2(x)可积,模型可分解为:
n
f(x) f(0) f i (X i )
f j (x) ... f i,2”..,n (X i ,X 2,...X k )
i 1 i j 则模型总的方差也可分解为单个参数和每个参数项目组合的影响:
n n n
D =刀 D i + 刀刀(D ij + D
1 ,2, , n )
i =1 i =1 j =1
i 半j 对该式归一化,并设:
可获得模型单个参数及参数之间相互作用的敏感度
S 由式(2)可得: n n n
1 = ^S i +
M^S j + + S,2, ,n
i=1 i = 1 j=1
i 有 S l,2, ,n
式中,si 称之为1次敏感度;Sij 为2次敏感度,依此类推; 为n 次敏感度,总共
2n -1

项。

第i 个参数总敏感度 STJ 定义为: S j S (i)
它表示所有包含第i 个参数的敏感度。

模型中4个输入参数分别为推力,角度, 比冲,月球引力常量。

因为月球引力常量和比 冲为物理恒定值,不会产生干扰。

所以这里我们对角度,推力进行敏感性分析。

设角度初值为150°,推力为4500N 时,做出高度变化图像如图所示。

S t ,i 2 , ,i D i 1,i 2
, ,i D
不改变力大小,调节角度为151°时,做出高度图像如图所示
1.7mUL:,
1 I ( ? f 11 11 IS £1 Hi 31 I? .HI 11 ii fF jf «L
不改变角度大小,调整力大小为7500N时,做出高度变化图像如图所示: I巧却E
:LT53tm
由图像对比可知,角度变化对模型结果影响较大,力变化对模型结果影响较小。

相关文档
最新文档