第三讲 线性规划的灵敏度分析与最优解的解释

合集下载

线性规划-灵敏度分析

线性规划-灵敏度分析

若进一步问: 1)当原材料涨价或产品价格发生变化时,原最优生产计划变否? 2)若在生产中采用了新的工艺,产品对原材料的消耗发生了变化,原最优生产 计划变否? 3)为适应市场需要,管理者可能会生产新的产品或停止生 产某种产品,原最优 生产计划变否?
二、灵敏度分析的定义 研究数学模型某些系数的变化对最优解的影响及其影响程度的分析称为灵 敏度分析(Sensitivity Analysis)或优化后分析。
1 1
B 1b 故:原最优基不变,但最优解变为: X 5 1 0 0 0 T 0 1 b 2) 设: b b 1 3 3
要使原最优基不变,就要有: B-1b≥ 0 ,
4 1 b1 B b 1 1 3 0
5)是否有更好的增加资源的方案,实际上是问:①应增加哪种资源?②花多大代价增 加这种资源? ③最佳增量是多少? ① 资源甲的影子价格 y1 = 5 > 1 = y2 资源乙的影子价格,故应首先考虑增加资源甲。 ② 单位资源增量所支付的费用应< 资源的影子价格,即:单位费用< 5 才合算。 ③ 最佳增量应满足:
三、灵敏度分析的内容
1 当线性规划模型系数中的一个或几个发生变化时,已经求得的最优解是否会 发生变化? 2 线性规划模型的系数在什么范围内变动时,原来的最优解不变?
3 当线性规划模型系数的变化时,已经引起原最优解的变化时,如何才能尽快
求出新的最优解?
四、灵敏度分析的理论依据及方法
记最优基矩阵为B,最优解: 最优值: X = B-1b z = CB B-1b 与b无关 与b、C无关 与C无关
4 1 1 / 3 1 0 即: N ' 1 0 0 c 1 ' 3 1 1 7 / 3 0 1 0时,原最优解不变 N ' c1 '5 4c1 '3 c1 '3 0

论述:线性规划的灵敏度分析

论述:线性规划的灵敏度分析

论述:线性规划的灵敏度分析论述:线性规划的灵敏度分析。

分析的基本步骤,各参数变化带来的影响以及最优基发⽣改变后相应的处理⽅法。

线性规划的灵敏度分析研究的问题是:研究线性规划模型中aij、bi、cj等参数中的⼀个或⼏个发⽣变化时,问题最优解会发⽣什么变化;研究这些参数在⼀个多⼤范围内变化时,问题的最优解不变。

研究的前提条件:1、原线性规划问题已取得了最优解;2、每次只讨论⼀种参数的变化,⽽参数之间的变化互不关联。

分析的基本步骤:1、将参数的改变通过计算反映到最终单纯形表上来2、检查原问题是否仍为可⾏解3、检查对偶问题是否仍为可⾏解4、按照单纯形表所列情况得出结论活决定继续计算的步骤。

各参数变化带来的影响:1、⾮基变量cj发⽣变化当⽬标函数中cj发⽣变化,将影响最终单纯形表中⾮基变量的检验数。

如果是⾮基变量的价值系数发⽣变化,只影响该⾮基变量的检验数。

如果是基变量的价值系数发⽣变化,将影响所有⾮基变量的检验数。

如果变化后所有的检验数仍然⼩于等于0,则最优解不变;否则,使⽤单纯形法求变化后的新最优解。

2、右端常数项bi发⽣变化当右端常数项发⽣变化时,将影响最优单纯形表中基变量的值。

如果基变量的值仍然都⼤于等于0,则线性规划问题的最优解不变,但是基变量的值将发⽣变化;如果有基变量的值⼩于0,则⽤对偶单纯形法对原最优单纯形表继续求解。

3、增加⼀个变量增加⼀个变量也就是多⽣产⼀种产品。

只需考虑该产品(变量)的检验数是否⼤于0,如果⼤于0则表⽰应该⽣产,⽤单纯形表进⾏求解;如果⼩于等于0则该产品不⽤⽣产,最优解也不发⽣变化。

4、增加⼀个约束条件增加⼀个约束条件,可能影响的只是该约束条件的松弛变量的值。

如果该松弛变量的值⼤于等于0,则线性规划最优解不变;如果该松弛变量的值⼩于0,则⽤对偶单纯形法进⾏计算。

5、aij发⽣变化改变aij只会影响检验数,如果改变后所有的检验数均⼩于等于0,则最优解不变;如果存在检验数⼤于0,则⽤单纯形法进⾏求解。

线性规划的灵敏度分析与最优解的解释

线性规划的灵敏度分析与最优解的解释
对偶价格可能只适用于 在右端值仅发生了很小的变动时的情况。随着所获得的资 源越来越多,从而右端值越来越大,其他的约束条件也可 能会约束和限制目标函数值的变化。
3.3 灵敏度分析:计算机求解
为了使用管理科学家软件,我们使用小数代替分数。Par 公司的问题用小数形式的系数表示如下:
现在,模型的最优解540个标准袋和252个高级袋。每个目 标函数系数都有一个最优范围,即目标函数系数在什么范围 内变化,模型的最优解保持不变。
3.2 图解法灵敏度分析
3.2.1 目标函数系数 认真观察图发现,只要
目标函数直线的斜率处于 直线A(和切割与印染约 束线重合)的斜率与直线 B(与成型约束线重合) 的斜率之间,极点3 (S=540,D=252)就是最 优解的点。
则直线A和直线B的斜率都已经计算出来了,我们来看 保持极点3仍然为最优解点,应满足条件:
-3/2≤目标函数的斜率≤-7/10
3.2 图解法灵敏度分析
现在让我们考虑目标直线斜率的一般形式。用CS表示标
准袋的利润,CD表示高级袋的利润,P表示目标函数值。 使用这些标识,目标函数直线可以写成:
P=CSS+CDD 把上面方程写成斜截式,得到
第三章 线性规划的灵敏度分析与最优解 的解释
引言
灵敏度分析是研究当一个线性规划问题中的系 数发生变化时,其对函数最优解的影响程度。运 用灵敏度分析,我们可以回答以下问题: 1.如果目标函数的系数发生了变化,对最优解会产 生什么影响? 2.如果改变约束条件的右端值,对最优解会产生什 么影响?
首先我们将介绍如何使用图解法进行双变量 线性规划问题的灵敏度分析,然后介绍如何使用 管理科学家软件得到灵敏度分析报告。
顺时针转动目标函数直线,使其斜率变成一个绝对值更 大的负数,从而斜率变小了。直到与B重合,我们又获得了 多重最优解——极点3和极点2之间都是最优点。因此B的斜 率是目标函数直线斜率的下限。

第3章 线性规划灵敏度分析与最优解的解释

第3章  线性规划灵敏度分析与最优解的解释

使用Excel Excel进行灵敏度分析 3.4 使用Excel进行灵敏度分析 LINGO的灵敏度分析报告 3.5 LINGO的灵敏度分析报告

x2
5 4 Q4 3 2 5x1+2x2=20 (1.5, 3.25) 4x2=13 Q3 (2,3) Q2(3,2.5) x1+2x2=8 Q1 1 2 3 4 5
1.5 X = 3.25
*
ቤተ መጻሕፍቲ ባይዱz = 19.25
*
1 0
x1
对偶价格: 对偶价格:约束条件右端项每增加一个单位引起的最优 值的改进量称为对偶价格. 值的改进量称为对偶价格.
max
z = 2 x1 + 5 x2 x1 + 2 x2 ≤ 8 5 x + 2 x ≤ 20 1 2 4 x2 ≤ 12 x1 , x2 ≥ 0
x2
5 4 3 2 1 0 Q1 1 2 3 4 5 Q4 5x1+2x2=20 Q3 (2,3) 4x2=12 Q2 (3,2.5) x1+2x2=8
线性规划的灵敏度分析与最优解的解释31灵敏度分析简介32图解法与灵敏度分析321目标函数系数322约束条件右端值204x32523直线q204x3252315325对偶价格
第3章 线性规划的灵敏度分析 与最优解的解释 3.1 灵敏度分析简介 3.2 图解法与灵敏度分析 3.2.1 目标函数系数 3.2.2 约束条件右端值
灵敏度分析: 3.3 灵敏度分析:计算机求解 Scientist) (Management Scientist)
目标函数系数的100%法则: 法则: 目标函数系数的 法则 对所有变化的目标函数系数, 对所有变化的目标函数系数,计算其占允许增加量和 允许减少量的百分比之和.如果和没有达到100%,最优 允许减少量的百分比之和.如果和没有达到 , 解就不会改变. 解就不会改变. 约束条件右端值的100%法则: 法则: 约束条件右端值的 法则 对所有变化的右端值, 对所有变化的右端值,计算其占允许增加量和允许减 少量的百分比之和.如果和没有达到100%,对偶价格就 少量的百分比之和.如果和没有达到 , 不会改变. 不会改变.

线性规划模型-灵敏度分析

线性规划模型-灵敏度分析

0.8千克B1
获利44元/千克
至多100公斤A1
制订生产计划,使每天净利润最大
• 30元可增加1桶牛奶,3元可增加1小时时间,应否投 资?现投资150元,可赚回多少? • B1,B2的获利经常有10%的波动,对计划有无影响?
钢管下料
原料下料问题 生产中通过切割、剪裁、冲压等 手段,将原材料加工成所需大小 按照工艺要求,确定下料方案, 使所用材料最省,或利润最大
整数非线性规划模型
钢管下料问题2
增加约束,缩小可行域,便于求解
每根原料钢管长19米
需求:4米50根,5米10 根,6米20根,8米15根
4 50 5 10 6 20 8 15 26 原料钢管总根数下界: 19
引 言
由于战争的需要, 美国的经济学家T. C. Koopmans (库普曼斯) 重新独立的研究运输问 题, 并很快看到了线性规划在经济学中应用的 意义. 在这之后, 线性规划也被人们广泛地用 于军事、经济等各方面。 由于Kantorovich 和 Koopmans在这方面 的突出贡献,他们一起得到1975年诺贝尔经济 学奖。 为更好地理解线性规划所描述的问题, 我们先看一个例子。
原料最多增加10 时间最多增加53
• 35元可买到1桶牛奶,每天最多买多少? 最多买10桶!
例2 奶制品的生产销售计划 在例1基础上深加工
1桶 牛奶 或 3千克A1 12小时 1千克 获利24元/千克
2小时,3元 获利16元/千克 8小时 4千克A2 1千克 获利32元/千克 0.75千克B2 50桶牛奶, 480小时 2小时,3元
35 <48, 应该买!
• 聘用临时工人付出的工资最多每小时几元? 2元!

线性规划的灵敏度分析

线性规划的灵敏度分析

资源有剩余,在 最优解中就有对 应松弛变量存在, 且其影子价为 0
影子价为 0, 资源并不一定有 剩余
4
5.2 价值系数 cj 的灵敏度分析
• cj 变动可能由于市场价格的波动,或生产成本的变动 • cj 的灵敏度分析是在保证最优解的基变量不变的情况下,分
析cj 允许的变动范围cj • cj 的变化会引起检验数的变化,有两种情况:
1300 4.25 5 5.75 4 0 0.25 1
zj-cj 3.25 0 2.75 0 0 0.25 1
c c j k

由于基变m量对应的价值系数 cj 在CB中出现,
2 基变量 zj zj (cjk c因jki )此ai它j 会影c响jk a所ij 有非cj基k a变kj (量z的j 检验zj数) 。
5.4 (技术系 数 aij 的灵敏 度分析)暂不 讲授(转5.5)
技术系数aij变化的影响比较复杂
对应基变量的 aij ,且资源bi已全部用完 对应基变量的 aij ,但资源bi未用完 对应非基变量的 aij ,且资源bi全用完或未用完
1、对应基变量的 aij ,且资源bi已全部用完 aij=0 2、对应基变量的 aij ,但资源bi未用完 aijxn+i /xj
3
z8c8 qiai8c8(5040.2 531)9 i1
50
结论:生产x8有利。 将B–1P8加入最优单纯型表中,以x8为入基变量进行迭代。 (过程学生完成)
17
5.6 新增约束 条件的分析
1、将最优解代入新的约束条件,若满足,则最优解不变 2、若不满足,则当前最优解要发生变化;将新增约束条件
(x)
b
i
i1
(C
B

第二章 线性规划的图解法(简)

第二章  线性规划的图解法(简)

第二节 图解法
在线性规划中,对一个约束条件中没使用的资源或能力的大小称 之为松弛量。记为Si。
第二节 图解法
像这样把所有的约束条件都写成等式 ,称为线性规划模型的标准化,所得结果 称为线性规划的标准形式。
第二节 图解法
同样对于≥约束条件中,可以增加一些代表
最低限约束的超过量,称之为剩余变量,把≥约
第二章 线性规划的图解法
主要内容:
§1 问题的提出 (什么是线性规划) §2 图解法 §3 图解法的灵敏度分析
重点和难点
重点: (1)线性规划问题的主要概念 (2)线性规划问题的数学模型 (3)线性规划图解法的过程 (4)阴影价格的定义和灵敏度分析 难点: 灵敏度分析
第一节 问题的提出
约束条件对偶价格小于零时,约束条件
右边常数增加一个单位,就使得最优目
标函数值减少一个其对偶价格。
第三节 图解法的灵敏度分析
对目标函数值求最小值的情况下, 当对偶价格大于零时,约束条件右边常数增加 一个单位就使其最优目标函数值减少一个其对 偶价格; 当对偶价格等于零时,约束条件右边常数增加 一个单位,并不影响其最优目标函数值; 当对偶价格小于零时,约束条件右边常数增加 一个单位,就使得其最忧目标函数值增加一个 其对偶价格。
具有上述3个特征的问题为线性规划问题。
第一节 问题的提出
我们的仸务就是要选择一组或多组方案,使目
标函数值最大或最小。从选择方案的角度说,
这是规划问题。从使目标函数值最大或最小的
角度说,就是优化问题。
线性规划数学模型的一般表示方式
max(min) f ( x) c1 x1 c2 x2 cn xn a11 x1 a12 x2 a1n xn a x a x a x 21 1 22 2 2n n s.t. a x a x a x m2 2 mn n m1 1 x1 , x2 , , xn n : 变量个数 ; m : 约束行数 ; n m : 线性规划问题的规模 c j : 价值系数 ; b j : 右端项; aij : 技术系数 (, )b1 (, )b2 (, )bm 0

运筹学:第1章 线性规划 第3节 对偶问题与灵敏度分析

运筹学:第1章 线性规划 第3节 对偶问题与灵敏度分析

s.t.
4x1 3x1
5x2 200 10x2 300
x1, x2 0
9x1 4x2 360
s.t.
34xx11
5x2 10 x
200 2 300
3x1 10x2 300
x1, x2 0
则D为
min z 360y1 200y2 300y3 300y4
9 y1 4 y2 3y3 3y4 7 s.t.4 y1 5y2 10 y3 10 y4 12
amn xn bm ym xn 0
机会成本 a1 j y1 a2 j y2 aij yi amj ym
表示减少一件产品所节省的可以增加的利润
(3)对偶松弛变量的经济解释——产品的差额成本
机会成本
利润
min w b1 y1 b2 y2 bm ym
a11 y1
st
a12
y1
a1n y1
max z CX
(P)
AX b
s
.t
.
X
0
(D)
min w Yb
s.t.
YA C Y 0
• (2)然后按照(D)、(P)式写出其对偶
例:写出下面线性规划的对偶规划模型:
max z 2x1 3x2
min w 3 y1 5y2 1y3
x1 2x2 3 y1 0
s.t.
2xx11
例如,在前面的练习中已知
max z 2.5x1 x2 的终表为
3x1 5x2 15 s.t.5x1 2x2 10
x1, x2 0
0 x3 9 2.5 x1 2
0 19 1 - 3
5
5
1
2
0
1
5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课外练习
表3-1牧草农场饲料的营养值和成本值
饲料成分
普通饲料 高营养燕麦 饲料添加剂
A B C 每磅成本(美元)
50
0.0 3.0 2.0 3.00
案例报告
一、选择的问题
为了环保不需要封面,不需要原问题的全部内容,只需 也务必标明选择案例的名字。
4
S,D,L≥0
多重最优解的情况
假设我们使D的系数正好增加1.15003美元。
增加新的约束条件
假设管理者在审核了上述的解决方案后发现,他们会放 弃所有不生产高级袋的方案,并要求高级袋的产量至少 要达到标准袋产量的30%。
D≥0.3S 或者 -0.3S+D ≥0
课外练习
牧草农场位于肯塔基州列克星敦。农场正在实验一种新 的赛马食品。赛马食品有以下三种,由普通饲料,富含 维生素的燕麦饲料和一种新的含维生素和矿物质的食品 添加剂饲料。这些高营养食品的各组成要素的成本如表 3-1所示。我们可以看到,每磅普通饲料中含0.8单位A, 1单位B和0.1单位C,一匹马一天的最少进食3单位A, 6单位B,4单位C。为了保持马的体型,总摄入量不可 以超过6磅。农场希望找到一种饲料组合,可以满足马 一天的营养需要,又可以使总成本最低。
物流管理系 薛伟霞
Par问题的数学描述
max 10S+9D
S.t.
7 S 1D 630 10
1 S 5 D 600 26
1S 2 D 708 3
1 S 1 D 135 10 4
切割与印染 缝合 成型 检查与包装
S,D≥0
灵敏度分析
研究当一个线性规划问题中的系数发生变化时, 其对目标函数最优解的影响程度。
总产量约束 时间约束
关于对偶价格的解释
小于等于型约束条件的对偶价格总是大于或等于0的,因为 增加其右端值不会使目标函数变得更坏。
大于等于型约束条件的对偶价格总是小于或等于0的,因为 增加其右端值不会对最优解有所改进。
当约束条件的右端值表示某种资源的可利用量时(沉没成 本),对偶价格通常可以解释为公司对额外支付一单位这种 资源所愿意提供的金额。
会增加,反而会减少。在最小化问题中,目标函数结果变得 更坏意味着总成本的增加。 影子价格——每增加一个单位的约束条件右端值最优解的变 化量。一般来说,对于最大化问题,影子价格和对偶价格相 同;对于最小化问题,影子价格是对偶价格的相反数。
主要内容
灵敏度分析简介 图解法灵敏度分析 灵敏度分析:计算机求解 多于两个决策变量的情况
2
CD
10
6.3 CS 13.5
6.67 CD 14.29
另一例——目标函数继续旋转
CS 3
CD
2
多系数同时改变
3 CS 7 2 CD 10
假设标准袋的利润增加到13美元,高档袋的利润减少到8美元。
6.3 CS 13.5
新的目标函数的斜率:
例:假设切割与印染部门能够获得额外的20小时时间, 同时成型部门能够获得额外的100小时时间。对偶价格 是否适用?
计算机输出的解释——
M&D公司的最小化问题
min 2A+3B s.t.
1A ≥125 产品A的需求量 1A + 1B ≥350 总产量 2A + 1B ≤600 生产时间 A,B ≥0
max S.t.
10S+9D
8.5 7 S 1D 630
10
1 S 5 D 600
2
6
1S 2 D 708 3
1 S 1 D 135
10
4
S,D≥0
切割与印染 缝合 成型 检查与包装
灵敏度分析简介(2)
问题——模型中的系数哪个更能左右最优解?
max 10S+9D
(6.67-14.29) (8.9-9.25)
S.t.
7 S 1D 630 10
1 S 5 D 600
2
6
1S 2 D 708 3
1 S 1 D 135
10
4
切割与印染 缝合 成型 检查与包装
S,D≥0
灵敏度分析简介(3)
问题——右端值变化对最优解有什么影响?
max S.t.
CS 13 1.625
CD
8
6.67 CD 14.29
右端项
假设Par公司的切割印染部门又多出了10个小时的可 工作时间。
新的约束条件: 7 S 1D 640 10
运用图解法
新的最优解
S=527.5, D=270.75。
新的目标函数值 10×527.5+9×270.7 5=7711.75美元,
7 S 1D 630 10
1 S 5 D 600
2
6
1S 2 D 708 3
1 S 1 D 135
10
4
S,D≥0
切割与印染 缝合 成型 检查与包装
Par公司管理决策上的改变
假设管理层希望生产一种轻便的、可以被球手随身携带 的球袋模型。设计部门计算得出,每个轻型袋需要0.8小 时进行切割印染,1小时缝合,1小时成型,0.25小时检 验和包装。因为这种设计是独一无二的,管理层认为在 当前销售期内每个轻便袋的利润可达12.85美元。
1.如果目标函数的系数发生变化,对最优解会 产生什么影响?
2.如果改变约束条件右边的值,对最优解会产 生什么影响?
主要内容
灵敏度分析简介 图解法灵敏度分析 灵敏度分析:计算机求解 多于两个决策变量的情况
灵敏度分析简介(1)
问题——如果我们要用LP模型去解决实际问题,模型中 的系数就不可能是一成不变的。这些系数的变化会对模 型的最优解产生什么样的影响呢?
利润增量7711.757668.00=43.75美元。
利润增加率 43.75/10=4.375美 元。
对偶价格
约束条件右端值每增加一个单位引起的最优解的增加量。 对偶价格可以用来求出当某个约束条件右端值变化一个单位
时目标函数值将会有什么变化。 对偶价格只适用于约束条件的右侧值变化比较小的情况。 任何非束缚性约束条件的对偶价格都是0。 负的对偶价格告诉我们,如果使右端值增加,目标函数值不
二、模型 三、软件求解结果 四、求解结果的最优解解释及灵敏度分析
目标函数系数S的上限是13.499 D的下限是6.6667,允许减少量:
93,允许增加量:上限-目前值 目前值-下限=9-6.6667
=13.49993-10=3.49993。标 =2.33330。高档袋的利润减少
准袋的利润增加到11.50美元, 了0.75(从9美元到8.25美元)
增加了(从10美元到11.50美元) 美元,占允许减少量的
10S+9D
7 S 1D 630 10
1 S 5 D 600
2
6
1S 2 D 708 3
1 S 1 D 135
10
4
S,D≥0
利润
切割与印染 缝合 成型 检查与包装
图解法灵敏度分析
目标函数系数变化——多系数同时改变 右端项改变
目标函数系数
问题——目标函数系数变化会对Par公司的最优 产量产生什么样的影响。
目标函数的最优范围——目标函数系数在什么范 围内变化时,模型的最优解保持不变。
目标函数系数
目标函数系数
第一步:目标函数直线斜率的范围 直线B斜率≤目标函数的斜率≤直线A的斜率
3 目标函数的斜率 7
2
10
第二步:目标函数系数的范围
P=CSS+CDD
3 CS 7
令L为轻便袋的产量
修正的Par公司问题
max 10S+9D+12.85L
S.t.
7 S 1D 0.8L 630 切割与印染
10
1 S 5 D 1L 600 缝合
2
6
1S 2 D 1L 708 成型 3
1 S 1 D 0.25L 135 检查与包装
10
灵敏度分析:计算机求解
使用管理科学家软件求解Par公司的线性规划问 题。
最优解 松弛/剩余变量
目标函数最优解
对偶价格
减少的成本—目 标函数的每个系数 应提高多少,目标 函数的变量值才能
是正数
目标系数范围
右端值范围——对偶价格适用范围的限制条件
多系数同时变化——100%法则
假设,Par公司的会计部门发现原来高档袋和标准袋的利 润计算——分别为10美元和9美元有误,正确的利润分别 应该是11.50美元和8.25美元。
允许增加量——对于目标函数的系数,在不超过最优范 围的情况下,系数可能增加的最大量;
允许减少量——在不低于最优范围下限的情况下,系数 可能减少的最大量。
目标函数系数的100%法则
对所有变化的目标函数系数,计算其占允许增加量和允许减少量 的百分比之和。如果和没有达到100%,最优解就不会改变。
管理者经常会遇到是否有必要引进新技术的问题,而一般新 技术的开发或购买都是为了节约资源。在这种情况下,对偶 价格可能对问题的解决有所帮助,它可以帮助我们了解节约 这些资源会为我们带来多大的利益,进而决定这项新技术的 价值。
多于两个决策变量的情况
Par公司原来问题的模型
max S.t.
10S+9D
1.50美元。占总允许增加量的 (0.75/2.333 30)
(1.50/3.499 93)
×100%=32.14%。
×100%=42.86%。
相关文档
最新文档