matlab、lingo程序代码23-线性规划问题及灵敏度分析
MATLAB的线性规划问题的敏感性分析

MATLAB的线性规划问题的敏感性分析一.问题的提出在现在的日常生活中,我们常会遇到这样的问题,在不同的约束条件下找出最优点值或算出最佳的数值,以提高总产量或经济效益。
那么我们就需要假设一个模型出来,作为基本模型求解。
并找出其内在的规律以方便我们的生产生活的需要。
若约束条件改变,那么总产值是否也会有很大变化呢?让我们一起来研究。
二.具体案例如下:以某农场A,B ,C 等级耕地的面积分别为1002hm,计hm,3002hm,和2002划种植水稻,大豆和玉米,要求三种农作物最低收获量分别为190000kg,130000kg和350000kg。
农场kg kg kg,。
那么,(1)如何制定种植计划才能使总产量最大?(2)如何制定种植计划才能使总产值最大?表一:不同等级种植不同农作物的单产量(单位:2kg)/hm三.问题假设x,表示不同的农作物在根据题意,可以建立线性规划模型,假设决策变量为ij第j等级耕地上种植的面积。
hm)表2 作物计划种植面积(单位:2四.模型建立与分析1.模型:min z=cX S.t. AX b ≤命令:x=linprog(c,A,b) 2.模型:min z=cX S.t. AX b ≤ Aeq.X=beq命令:x=linprog(c,A,b,Aeq,beq)注意:若没有不等式:AX b ≤存在,则令A=[],b=[].3. [x,fval]=linprog(.....)左端fval 返回解X 处的目标函数值。
4.思路分析:找出约束条件——列出目标函数——作出可行域——求出最优解——敏感性分析——回答实际问题。
5.约束方程如下:耕地面积的约束:⎪⎩⎪⎨⎧≤++≤++≤++200300100332313322212312111x x x x x x x x x最低收获量的约束:⎪⎩⎪⎨⎧-≤----≤----≤---3500001000012000140001300006000680080001900009000950011000333231232221131211x x x x x x x x x并且注意:0≥ij x)3,2,13,2,1i ==j ;( 则(1)追求总产量最大时,目标函数为:3332312322211312111000012000140006000680080009000950011000max x x x x x x x x x Z ---------=(2)追求总产值最大的目标函数为:)10001200014000(08.0)600068008000(5.1)900095001000(2.1max 333231232221131211x x x x x x x x x Z ++⨯-++⨯-++⨯-=可化简为333231232221131211800096001120090001020012000108001140013200max x x x x x x x x x Z ---------=五.模型建立与求解:1.对(1)求解,追求总产量最大时,MATLAB 程序如下:f=[-11000 -9500 -9000 -8000 -6800 -6000 -14000 -12000 -10000];A=[1 0 0 1 0 0 1 0 0 ;0 1 0 0 1 0 0 1 0;0 0 1 0 0 1 0 0 1;-11000 0 0 -9500 0 0 -9000 0 0; 0 -8000 0 0 -6800 0 0 -6000 0; 0 0 -14000 0 0 -12000 0 0-10000];b=[100 300 200 -190000 -130000 -350000];lb=[0 0 0 0 0 0 0 0 0];[xopt fxopt]=linprog(f,A,b,[],[],lb,[])Optimization terminated successfully.xopt =fxopt =-7000000键入S=-Z得到原问题的目标函数最大值为S=70000002.运行后敏感性分析后的MATLAB程序如下:从a=0开始,以步长01∆a对下列模型求解;=.0a=0;while(1.1-a)>1c=[-11000 -9500 -9000 -8000 -6800 -6000 -14000 -12000 -10000];A=[1 0 0 1 0 0 1 0 0 ;0 1 0 0 1 0 0 1 0;0 0 1 0 0 1 0 0 1;-11000 0 0 -9500 0 0 -9000 0 0; 0 -8000 0 0 -6800 0 0 -6000 0; 0 0 -14000 0 0 -12000 0 0 -10000];b=[100+a ;300+a; 200+a ;-190000+a ;-130000+a;-350000+a];Aeq=[]; beq=[];vlb=[0,0,0,0,0,0,0,0,0];vub=[];[x,val]=linprog(c,A,b,Aeq,beq,vlb,vub);ax=x'Q=-valplot(a,Q,'.'),hold ona=a+0.01;endxlabel('a'),ylabel('Q')gridOptimization terminated successfully.a =0 x = 0 0 0 0 0 0 100 300 200Q =7000000分析整理后结果对比如下:a =0 x = 0 0 0 0 0 0 100 300 200 Q = 7000000x =0 0 0 0 0 0 Q =7000360x =0 0 0 0 0 0 Q =7000720x =0 0 0 0 0 0 Q =7.0011e+006x =0 0 0 0 0 0 Q =7.0014e+006x = 0 0 0 0 0 0 Q =7.0018e+006x =0 0 0 0 0 0 100.06 Q =7.0022e+006x = 0 0 0 0 0 0 Q =7.0025e+006x =0 0 0 0 0 0 100.08 Q =7002880x =0 0 0 0 0 0 Q =7.0032e+006如果不好观测,还可以将a细分为0001∆a,程序基本不变,只需改变a.0=的步长即可,则运行后图像如下:观察图像后,最优值随a的参加变化不明显,但总在6.88e+6到6.9e+6与7e+6到7.02e+6两个区间内缓慢增长。
运用Lingo和Matlab软件求解线性规划问题比较

运用Lingo和Matlab软件求解线性规划问题比较运用Lingo和Matlab软件求解线性规划问题的比较研究摘要:本文就一个给定的线性规划模型,通过介绍优化软件lingo和科学计算软件matlab中求解线性规划问题的命令和函数,指出lingo软件在求解线性规划问题上占有一定优势。
关键词:线性规划 lingo软件 matlab软件最优解线性规划由前苏联经济学家康托洛维奇提出,它主要研究的是在线性等式(或不等式)约束条件下,使某一线性目标函数取得最大值(或最小值)的问题。
随着计算机技术的发展,借助软件可以快速对线性规划问题进行求解和分析。
目前,能够求解规划问题的数学软件比较多,常见的有优化软件lingo和科学计算软件matlab。
本文以如下线性规划为例,分别利用这二种软件来求解,并就它们在求解线性规划上的差异进行对比分析。
minz=10.8x11+10.95x12+11.1x13+11.25x14+11.1x22+11.25x23+11.4x24+11x33+11.15x34+11.3x44;s.t.x11+x12+x13+x14”“x(3,1) 0.000000x(3,2) 0.000000x(3,3) 25.00000x(3,4) 5.000000x(4,1) 0.000000x(4,2) 0.000000x(4,3) 0.000000x(4,4) 10.00000显然最优解同上,只是输出格式不同而已。
2 matlab求解线性规划2.1 matlab软件简介目前,matlab提供了四十多个工具箱,这些工具箱专门针对某些具体应用领域。
matlab优化工具箱中提供了linprog函数来求解线性规划问题。
2.2 matlab求解线性规划的命令介绍 matlab中一般使用“[ ]”、“,”或空格以及“;”来创建数组,“[ ]”中给出数组的所有元素,同行间的元素用“,”或者空格隔开,不同行之间用分号“;”隔开,并且用符号“?”置于矩阵右上角表示矩阵的转置运算。
灵敏度分析使用MATLAB编写

实验二、线性规划的灵敏度分析(一) 实验目的1. 线性规划求解的单纯形法的灵敏度分析的编程实现2.掌握使用matlab 、Lingo 、Excel 的规划求解功能求解,并利用“敏感性报告”进行分析。
(二)实验内容课本例 1 解的灵敏度分析 (1):调用单纯形程序:function[x,z,flg,sgma]=simplexfun(A,A1,b,c,m,n,n1,cb,xx) % A,b are the matric in A*x=b% c is the matrix in max z=c*x% A1 is the matric in simplex table% m is the numbers of row in A and n is the con number in A% n1 is the nubers of artificial variables,and artificial variables are default as the last % n1 variables in x.% cb is the worth coefficient matrix for basic variables% xx is the index matrix for basic variables% B1 is the invers matrix for the basic matrix in simplex table.The initial% matrix is default as the last m con in the matrix A.x=zeros(n,1);z=0;B1=A1(:,n-m+1:n); sgma1=c-(cb*B1)*A;[masg,kk]=max(sgma1);k=kk(1);flg=0;ll=0;while (masg>0)&&(ll<20)ll=ll+1;thita=1000+zeros(m,1);for i=1:mif A1(i,k)>0 thita(i)=A1(i,k)\b(i);endend [r8,c8]=find(thita>999);if sum(c8)<m[mith,rr]=min(thita);r=rr(1);aa=A1(r,k);for i=1:mif i==rb(r)=b(r)/aa;for j=1:nA1(r,j)=A1(r,j)/aa ; endendfor i=1:mif i~=rcc=A1(i,k) b(i)=b(i)-b(r)*cc;for j=1:nA1(i,j)=A1(i,j)-A1(r,j)*cc; end endendcb(r)=c(k);xx(r)=k;B1=A1(:,n-m+1:n);sgma1=c-(cb*B1)*A;[masg,kk]=max(sgma1);k=kk(1);thita=100+zeros(m,1);elseflg=3;masg=-1;x='unbound solution';z='inf';endend if flg~=3if n1==0sgma1=c-(cb*B1)*A [rc,ccc]=find(sgma1<-0.0000000001);if sum(rc)==n-mflg=1;elseflg=2;endx=zeros(n,1);for i=1:mx(xx(i))=b(i);endx=zeros (n ,1); for i=1:mx(xx(i))=b(i);endxa=x( (n_n 1+1): n,:); ra=fi nd(xa);if sum(ra)==0sgma仁c-(cb*B1)*A;[rc,ccc]=fi nd(sgma1<-0.00000001);if sum(rc)==n-m flg=1;else flg=2;endz=c*x;elseflg=4;x='nothin g';z='nothin g';endendendsgma=sgma1;ll;A=[1,2,1,0,0;4 0 0 1 0;0 4 0 0 1];A仁A;b=[8;16;12];c=[2 3 0 0 0];m=3;n=5cb=[0 0 0];xx=[3,4,5];然后调用单纯行解法simplexfun111 ;5-fU =求出值,并返回B1,b,然后输入:r=1,2,3求之。
运筹学实验报告线性规划及其灵敏度分析

.
数学与计算科学学院实验报告
实验项目名称线性规划及其灵敏度分析
所属课程名称运筹学B
实验类型综合
实验日期2014年10月24日
班级数学1201班
学号201264100128 成绩
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致.
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求.
3.实验原理:简要说明本实验项目所涉及的理论知识.
4.实验环境:实验用的软、硬件环境.
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的容.概括整个实验过程. 对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作.对于设计性和综合性实验,在上述容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明.对于创新性实验,还应注明其创新点、特色. 6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析.
7.实验结论(结果):根据实验过程中得到的结果,做出结论.
8.实验小结:本次实验心得体会、思考和建议.
9.指导教师评语及成绩:指导教师依据学生的实际报告容,给出本次实验报告的评价.。
线性规划问题及灵敏度分析

实验一 线性规划问题及灵敏度分析实验目的:了解WinQSB 软件在Windows 环境下的文件管理操作,熟悉软件界面内容,掌握操作命令。
用WinQSB 软件求解线性规划,掌握winQSB 软件写对偶规划,灵敏度分析和参数分析的操作方法。
实验每组人数及学时:组人数1人,学时数:4学时 实验环境:装有WinQSB 软件的个人电脑 实验类型:验证性 实验内容:一、 用WinQSB 软件求解线性规划的方法:操作步骤:1.将WinQSB 文件复制到本地硬盘;在WinQSB 文件夹中双击setup.exe 。
2.指定安装WinQSB 软件的目标目录(默认为C:\ WinQSB )。
3. 安装过程需输入用户名和单位名称(任意输入),安装完毕之后,WinQSB 菜单自动生成在系统程序中。
4.熟悉WinQSB 软件子菜单内容及其功能,掌握操作命令。
5.求解线性规划。
启动程序 开始→程序→WinQSB→Linear and Integer Programming 。
6.学习例题 点击File→Load Problem→lp.lpp, 点击菜单栏Solve and Analyze 或点击工具栏中的图标用单纯形法求解,观赏一下软件用单纯形法迭代步骤。
用图解法求解,显示可行域,点击菜单栏Option →Change XY Ranges and Colors,改变X1、X2的取值区域(坐标轴的比例),单击颜色区域改变背景、可行域等8种颜色,满足你的个性选择。
下面结合例题介绍WinQSB 软件求解线性规划的操作步骤及应用。
用WinQSB 软件求解下列线性规划问题:1234max657Z x x x x =+++s.t. 12341234123123431234269260852150730001020,,0,x x x x x x x x x x x x x x x x x x x x +++≤⎧⎪-+-≥⎪⎪++=⎪-≥⎨⎪-≥⎪≤≤⎪⎪≥⎩无约束解:应用WinQSB 软件求解线性规划问题不必化为标准型,如果是可以线性化的模型则先线性化,对于有界变量及无约束变量可以不用转化,只需要修改系统的变量类型即可,对于不等式约束可以在输入数据时直接输入不等式符号。
LINGO结果窗口内容解读与灵敏度分析

LINGO结果窗⼝内容解读与灵敏度分析1.结果窗⼝内容解读1. ⽬标函数值:Global option solution found.表⽰求出了全局最优解;Objective value表⽰最优⽬标值,Total solver iretion表⽰求解时共⽤了⼏次迭代2. 决策变量:Value给出最优解中各变量的值3. 变量的判别数:Reduced Cost表⽰最优单纯形表中判别数所在的⾏的变量的系数,表⽰当变量有微⼩变化时,⽬标函数的变化率。
其中基变量的reduced cost值应为零。
对于基变量相应的reduced cost值表⽰这个变量增加⼀个单位时⽬标函数值减少的量(max型问题)4. 紧约束与松约束:slack or Surplus给出松弛或剩余变量的值,其值为零的对应约束为"紧约束",表⽰在最优解下该项资源已经⽤完;其值为⾮零的对应约束为"松约束",表⽰在最优解下该项资源还有剩余5. 对偶价格(经济学:影⼦价格):DUAl PRICE(对偶价格)表⽰当对应约束有微⼩变动时⽬标函数的变化率。
输出结果中对应每⼀个"紧约束"有⼀个对偶价格。
若其数值为怕,则表⽰对应约束不等式右端项正好增加⼀个单位,⽬标函数将增加P个单位(max)模型。
显然,如果在最优解处约束条件正好取等号(也就是"紧约束",也称为有效约束或起作⽤约束),对偶价格值才可能不是0.6. 变量框(Variables):Total表⽰当前模型的全部变量数,Nonlinear显⽰其中的⾮线性变量数,Integers显⽰其中的整数变量数。
⾮线性变量是指它⾄少处于某⼀个约束条件中的⾮线性关系中。
7. 约束(Constains)框:Total表⽰当前模型扩展后的全部约束个数,Nonlinear显⽰其中的⾮线性约束个数。
⾮线性约束是该约束⾄少有⼀个⾮线性变量。
如果⼀个约束中的所有变量都是定值,那么该约束就以定值不等式表⽰,该约束的真假由变量的具体值决定,仍计⼊约束总数中。
lingo解决线性规划问题的程序(经典)

lingo解决线性规划问题的程序(经典)•线性规划问题概述•Lingo软件介绍•使用Lingo解决线性规划问题步目录骤•经典线性规划问题案例解析•Lingo在解决线性规划问题中的优势•总结与展望01线性规划问题概述定义:线性规划(Linear Programming,简称LP)是数学规划的一个分支,它研究的是在一组线性约束条件下,一个线性目标函数的最大或最小值问题。
特点目标函数和约束条件都是线性的。
可行域是凸集,即对于任意两个可行解,它们的凸组合仍然是可行解。
最优解如果存在,则一定在可行域的某个顶点上达到。
定义与特点生产计划资源分配运输问题金融投资01020304企业如何安排生产,使得在满足市场需求和资源限制的前提下,成本最低或利润最大。
如何合理分配有限的资源(如资金、人力、时间等),以达到最佳的效果。
如何安排货物的运输路线和数量,使得在满足供需关系的前提下,总运费最低。
投资者如何在一定的风险水平下,使得投资收益最大。
决策变量表示问题的未知量,通常用$x_1, x_2, ldots, x_n$表示。
目标函数表示问题的优化目标,通常是决策变量的线性函数,形如$z = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
约束条件表示问题的限制条件,通常是决策变量的线性不等式或等式,形如$a_{11}x_1 + a_{12}x_2 + ldots + a_{1n}x_n leq (=, geq) b_1$。
01$begin{aligned}02& text{max} quad z = c_1x_1 + c_2x_2 + ldots +c_nx_n03& text{s.t.} quad a_{11}x_1 + a_{12}x_2 + ldots + a_{1n}x_n leq (=, geq) b_1& quadquadquad vdots& quadquadquad a_{m1}x_1 + a_{m2}x_2 + ldots + a_{mn}x_n leq (=, geq) b_m•& \quad\quad\quad x_i \geq 0, i = 1, 2, \ldots, n线性规划问题数学模型end{aligned}$其中,“s.t.”表示“subject to”,即“满足……的条件下”。
线性规划的灵敏度分析实验报告

A( 1, 3) 1.000000 0.000000
A( 1, 4) 0.000000 0.000000
A( 1, 5) 0.000000 0.000000
A( 2, 1) 4.000000 0.000000
A( 2, 2) 0.000000 0.000000
实验项目线性规划的灵敏度分析实验目的掌握用lingolindo对线性规划问题进行灵敏度分析的方法理解解报告的容
《运筹学/线性规划》实验报告
实验室: 实验日期:
实验项目
线性规划的灵敏度分析
系 别
数学系
姓 名
学 号
班 级
指导教师
成 绩
一 实验目的
掌握用Lingo/Lindo对线性规划问题进行灵敏度分析的方法,理解解报告的内容。初步掌握对实际的线性规划问题建立数学模型,并利用计算机求解分析的一般方法。
X( 1) 2.000000 INFINITY 2.000000
X( 2) 3.000000 INFINITY 3.000000
X( 3) 0.0 1.500000 INFINITY
X( 4) 0.0 0.5000000 INFINITY
X( 5) 0.0 0.7500000 INFINITY
Righthand Side Ranges
X( 3) 0.000000 1.500000
X( 4) 0.000000 0.1250000
X( 5) 4.000000 0.000000
A( 1, 1) 1.000000 0.000000
A( 1, 2) 2.000000 0.000000
A( 1, 3) 1.000000 0.000000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划问题及灵敏度分析在LINGO软件中的实现
(龙少波李东阳罗添元)
一、问题的提出:
某公司饲养实验用的动物以出售给动物研究所,已知这些动物的生长对饲
料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需
要蛋白质60g,矿物质3g,维生素8mg,该公司能买到5种不同的饲料,每种饲
料1kg所含各种营养成分和成本如下表所示,如果每个小动物每周食用饲料不超
过52kg,才能满足动物生长需要。
A1 A2 A3 A4 A5 营养最
低
要求蛋白质(g) 0.3 2 1 0.6 1.8 60 矿物质(g) 0.1 0.05 0.02 0.2 0.05 3 维生素(mg) 0.05 0.1 0.02 0.2 0.08 8 成本(元/ kg)0.2 0.7 0.4 0.3 0.5
问题:
1.求使得总成本最低的饲料配方?
2.如果另一个动物研究对蛋白质的营养要求变为59单位,
但是要求动物的价格比现在的价格便宜0.3元,问该养殖所
值不值得接受?
3.由于市场因素的影响,X2的价格降为0.6元每千克,
问是否要改变饲料配方?
二、建立线性规划数学模型
解答:
(1)设需要饲料A1, A2, A3, A4分别为X1, X2, X3, X4kg,则建立线
性规划数学模型如下:
目标函数:MinS=0.2X1+0.7X2+0.4X3+0.3X4+0.5X5
约束条件:0.3X1+2X2+X3+0.6X4+1.8X5>=60
0.1X1+0.05X2+0.02X3+0.2X4+0.05X5>=3
005X1+0.1X2+0.02X3+0.2X4+0.08X5>=8
X1+X2+X3+X4+X5<=52
X1, X2, X3, X4, X5>=0
三、在LINGO软件中的求解
在LINGO中输入下面的命令:
Model:
Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;
0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;
0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;
0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8;
x1+x2+x3+x4+x5<52;
end
操作:选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO的Help).改正错误以后再求解,如果语法通过,LINGO用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close关闭窗口,屏幕上出现标题为“Solution Report”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.
输出结果如下:
Global optimal solution found at iteration: 4
Objective value: 22.40000
Variable Value Reduced Cost
X1 0.000000 0.7000000
X2 12.00000 0.000000
X3 0.000000 0.6166667
X4 30.00000 0.000000
X5 10.00000 0.000000
Row Slack or Surplus Dual Price
1 22.40000 -1.000000
2 0.000000 -0.5833333
3 4.100000 0.000000
4 0.000000 -4.166667
5 0.000000 0.8833333
四、结果分析:
(一) 一般分析
1.因此,每周每个动物的配料为饲料A2、A4、A5分别为12、30和10kg,合计为52KG,可使得饲养成本达到最小,最小成本为2
2.4元;
2. “Reduced Cost”表示当变量有微小变动时, 目标函数的变化率。
其中基变量的reduced cost值应为0,对于非基变量Xj, 相应的reduced cost值表示当某个变量Xj 增加一个单位时目标函数增加的量。
变量X1对应的reduced cost值为0.7,表示当非基变量x1的值从0变为1时(此时假定其他非基变量保持不变,但为了满足约束条件,基变量显然会发生变化),最优的目标函数值= 22.4+0.7 = 2
3.1。
3.“Slack or Surplus”给出松驰变量的值:可以看出,蛋白质和维生素刚达到最低标准,矿物质超过最低标准
4.1g;
4.“DUAL PRICE”(对偶价格)表示当对应约束有微小变动时, 目标函数的变化率。
输出结果中对应于每一个约束有一个对偶价格。
若其数值为p,表示对应约束中不等式右端项若增加1 个单位,目标函数将增加p个单位(max型问题)。
显然,如果在最优解处约束正好取等号(也就是“紧约束”,也称为有效约束或起作用约束),对偶价格值才可能不是0. 从“Dual Price”可以得到:
1.降低标准蛋白质1单位可使饲养成本降低0.583元,(第二个问题答案)
2.降低标准维生素1单位可使饲养成本降低4.167元,
3.降低矿物质的标准不会降低饲养成本,
4.如果动物的进食量减少,就必须选取精一些的饲料但要增加成本,大约进食量降低1kg可使得饲养成本增加0.88元.
(二)灵敏度分析
对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options…命令,选择Gengral Solver,在Dual Computation列表框中,选择Prices and Ranges选项并确定.
Ranges in which the basis is unchanged:
Objective Coefficient Ranges
Current Allowable Allowable Variable Coefficient Increase Decrease
X1 0.2000000 INFINITY 0.7000000
X2 0.7000000 INFINITY 0.1358974
X3 0.4000000 INFINITY 0.6166667
X4 0.3000000 1.400000 1.000000
X5 0.5000000 0.1247059 INFINITY
Right hand Side Ranges
Row Current Allowable Allowable
RHS Increase Decrease
2 60.00000 4.800000 4.800000
3 3.000000 4.100000 INFINITY
4 8.000000 0.3428571 0.4800000 4
5 52.00000 1.846154 1.411765
(1)系数价格变化的分析:
目标函数中X1原来的费用系数为0.2,允许增加(Allowable Increase)到无穷大、或者允许减少(Allowable Decrease)=0.7,说明当它在[0,+∞]范围变化时,最优基保持不变。
由于此时约束没有变化(只是目标函数中某个费用系数发生变化),所以最优基保持不变的意思也就是最优解不变(当然,由于目标函数中费用系数发生了变化,所以最优值会变化)。
对于X2来说,目标函数中原来的费用系数为0.7,允许增加(Allowable Increase)到无穷大、或者允许减少(Allowable Decrease)=0.136,说明当它在[0.7-0.136,+∞]=[0.564, +∞]范围变化时,最优
基保持不变。
(第三个问题答案)
(2)约束中右端项变化的分析:
第2行约束中右端项(Right Hand Side,简写为RHS)原来为60,当它在[60-4.8,60+4.8] = [55.2,64.8]范围变化时,最优基保持不变。
第3、4、5行可以类似解释。
不过由于此时约束发生变化,最优基即使不变,最优解、最优值也会发生变化。