人教版必修四 同角三角函数的基本关系教案

合集下载

高中数学 1.2.2《同角三角函数的基本关系》教案人教版必修4

高中数学 1.2.2《同角三角函数的基本关系》教案人教版必修4

同角三角函数的基本关系
教学目标:
⒈理解同角三角函数的基本关系式,会用解方程组的通法求三角函数值;
2.培养运用数形结合的思想解决有关求值问题;培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.
3.通过对同角三角函数的基本关系式的学习,揭示事物间的普遍联系规律,培养辨证唯物主义思想。

教学重点:同角三角函数的基本关系式的推导及应用(求值、化简、恒等式证明)
教学难点:关系式在解题中的灵活运用和对学生思维灵活性的培养.
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
教学方法:
本节主要涉及到两个公式,均由三角函数定义和勾股定理推出.在教学过程中,要注意引导学生理解每个公式,懂得公式的来龙去脉,并能灵活运用。

要给学生提供展示自己思路的平台,营造自主探究解决问题的环境,把鼓励带进课堂,把方法带进课堂,充分发挥学生的主体作用.
教学过程:。

人教版高中必修4(B版)1.2.3同角三角函数的基本关系教学设计

人教版高中必修4(B版)1.2.3同角三角函数的基本关系教学设计

人教版高中必修4(B版)1.2.3同角三角函数的基本关系教学设计教学目标1.理解同一个角度三角函数之间的相互关系,掌握同角三角函数的基本性质和公式;2.能够通过三角函数的相互关系和性质解决实际问题;3.培养学生对三角函数的逻辑思维能力和应用能力,提高学生的数学素养。

教学内容1.2.3 同角三角函数的基本关系1.三角函数的概念和图像;2.同一个角度的正弦、余弦、正切、余切的相互关系和性质;3.二倍角的公式及其应用;4.定义域、值域及简单的图像变换。

教学重点1.同角三角函数的基本关系和性质;2.二倍角的公式及其应用。

教学难点1.解决实际问题的能力;2.三角函数的逻辑思维能力和应用能力。

教学方法1.通过引导学生进行讨论和实验,激发学生的兴趣和活跃性;2.利用多媒体教具展示图像和动态演示,提高学生的视觉体验;3.设计实际问题,提高学生的思维能力和应用能力;4.在授课过程中,不断引导学生发现问题和解决问题的方法,培养学生的探究精神。

教学过程一、导入(10分钟)1.展示三角函数的图像,帮助学生理解三角函数的概念;2.提出问题:你知道同一个角度的正弦、余弦、正切、余切之间有什么关系吗?二、学习同角三角函数的基本关系(30分钟)1.分组讨论,探讨同角三角函数之间的相互关系;2.利用多媒体教具展示同角三角函数之间的相互关系的公式和图像变换。

三、二倍角公式的应用(40分钟)1.分组讨论,探讨二倍角公式的意义和应用;2.设计实际问题,引导学生运用二倍角公式解决问题。

四、小结(10分钟)1.回顾同角三角函数的基本关系和二倍角公式的应用;2.指导学生如何巩固和拓展知识。

课后作业1.熟练掌握同角三角函数之间的相互关系和二倍角公式的应用;2.完成课后习题,巩固和拓展知识。

教学资源1.人教版高中数学教材;2.多媒体教具。

总结同角三角函数的基本关系和二倍角公式是高中数学重要的知识点,掌握了这一知识点,不仅能够解决实际问题,还能够提高学生的数学素养和应用能力。

《同角三角函数的基本关系》教案与导学案

《同角三角函数的基本关系》教案与导学案

《同角三角函数的基本关系》教案与导学案同角三角函数的基本关系是指在一个锐角三角形中,其三个内角的三角函数之间的关系。

教案教学目标:1.了解同角三角函数的概念和基本关系。

2.熟练运用同角三角函数的基本关系,解决相关问题。

教学重点:同角三角函数的基本关系。

教学难点:熟练运用同角三角函数的基本关系,解决相关问题。

教学方法:讲授、演示、练习。

教学过程:Step 1 引入新知引导学生回顾正弦定理、余弦定理的内容,由此引入同角三角函数的概念,解释同角三角函数的意义。

Step 2 基本关系的演示通过投影仪或黑板等教具,演示同角三角函数的基本关系。

1) 演示正弦定理的推导,得到sinA=opposite/hypotenuse。

2) 演示余弦定理的推导,得到cosA=adjacent/hypotenuse。

3) 演示正切比例的推导,得到tanA=opposite/adjacent。

Step 3 列示基本关系向学生展示同角三角函数的基本关系,并要求学生背诵这些关系。

Step 4 发现规律通过解决一些具体问题,引导学生发现同角三角函数之间的一些规律和特点。

Step 5 综合运用结合实际问题,进行综合运用,让学生熟练应用同角三角函数的基本关系解决相关问题。

Step 6 归纳总结复习同角三角函数的基本关系,并帮助学生归纳总结相关知识点。

Step 7 学以致用通过一些挑战性问题,提高学生运用同角三角函数的基本关系解决问题的能力。

导学案学习目标:1.了解同角三角函数的概念和基本关系。

2.熟练运用同角三角函数的基本关系,解决相关问题。

学习重点:同角三角函数的基本关系。

学习难点:熟练运用同角三角函数的基本关系,解决相关问题。

学习方法:自主学习、思维导图。

学习过程:Step 1 学习概念自主学习同角三角函数的概念,并在思维导图中整理相关知识点。

Step 2 学习基本关系自主学习同角三角函数的基本关系,并在思维导图中整理相关公式和关系。

同角三角函数的基本关系教案

同角三角函数的基本关系教案

同角三角函数的基本关系教案教案:同角三角函数的基本关系教学目标:1.理解同角三角函数的概念和性质。

2.掌握同角三角函数之间的基本关系式。

3.能够灵活运用同角三角函数的基本关系进行计算和证明。

教学重点:教学难点:教学准备:教材、白板、彩色笔。

教学过程:Step 1:引入概念(10分钟)1.引导学生回顾正弦函数、余弦函数和正切函数的定义和性质。

2.提问:是否存在一个三角函数,它的值恰好是一个角的正弦值的倒数?反余弦的倒数?正切的相反数?引出同角三角函数的概念。

Step 2:同角三角函数的定义和性质(20分钟)1.讲解同角三角函数的定义:正割函数、余割函数、余切函数。

2.指导学生进行练习,求特定角的正割值、余割值和余切值。

3.总结同角三角函数的定义和性质,并进行板书记录。

Step 3:同角三角函数的基本关系(30分钟)1.引导学生根据同角三角函数的定义,设获得正弦函数、余弦函数和正切函数的倒数的关系式,并进行推导。

2.引导学生利用同角三角函数的定义,进一步推导同角三角函数之间的基本关系式,并进行证明。

3.提醒学生注意数学符号的运用,确保表述的准确性。

4.分步解释和板书同角三角函数的基本关系。

Step 4:经典例题演练(30分钟)1.带领学生进行同角三角函数的基本关系的例题演练,注重每一步计算过程的意义和结果的解释。

2.引导学生归纳总结同角三角函数的基本关系式,并进行笔记整理。

Step 5:综合案例分析(20分钟)1.给出一个综合案例,要求学生结合所学的同角三角函数的基本关系进行证明和计算。

2.引导学生合理安排解题思路,按照步骤进行推导和计算。

3.引导学生进行思考和讨论,根据解题过程中出现的问题和困难进行解释和总结。

4.学生互相讨论和交流解题思路和方法。

Step 6:课堂小结(10分钟)1.整理同角三角函数的基本关系的要点。

2.概述同角三角函数的应用领域和意义。

拓展延伸:1.探究其他同角三角函数之间的关系,如正割函数和余割函数的关系等。

数学《同角三角函数的基本关系》教案

数学《同角三角函数的基本关系》教案

数学《同角三角函数的基本关系》教案教案:同角三角函数的基本关系一、教学目标:1.理解同角三角函数的概念及意义。

2.掌握正弦、余弦和正切函数之间的基本关系。

3.能够在给定角度范围内计算同角三角函数的值。

二、教学重点与难点:1.理解同角三角函数的概念及意义。

2.掌握正弦、余弦和正切函数之间的基本关系。

三、教学准备:1.教材、课件、黑板、粉笔。

2.学生课前复习笔记。

四、教学过程:1.引入(10分钟)教师可通过提问的方式引导学生复习和回忆上节课所学的三角函数概念及性质,例如:“什么是三角函数?它们有什么特点?”2.概念讲解(10分钟)教师介绍同角三角函数的概念和意义,同角三角函数是以角度的大小和方向为自变量,以比值为因变量的一类函数。

其中,正弦函数、余弦函数和正切函数是最常用和基础的三角函数。

通过图示的方式向学生展示正弦函数、余弦函数和正切函数的形象及它们之间的关系。

3.基本关系的推导(15分钟)3.1正弦函数与余弦函数的基本关系:教师指导学生通过绘制各象限内角度相同的锐角三角形,并利用其定义推导出正弦函数和余弦函数的基本关系:sin^2θ + cos^2θ = 13.2正切函数与正弦函数、余弦函数的基本关系:教师指导学生通过绘制直角三角形,利用其定义推导出正切函数、正弦函数和余弦函数的基本关系:tanθ = sinθ / cosθ。

4.同角三角函数的计算及性质(25分钟)4.1计算角度对应的三角函数值:教师引导学生通过练习,掌握计算给定角度对应的正弦、余弦和正切函数值的方法和技巧。

4.2使用同角三角函数的性质:教师讲解同角三角函数的周期性和奇偶性,并指导学生根据这些性质简化计算,例如,sin(180° + θ) = -sinθ,cos(π + θ) = -cosθ,等等。

5.练习与巩固(20分钟)教师提供一系列基础练习题,让学生在课堂上进行计算和解答,以巩固所学的同角三角函数的基本关系和计算方法。

同角三角函数的基本关系教案

同角三角函数的基本关系教案

同角三角函数的基本关系教案
一、教学目标
1.掌握并掌握同角三角函数的定义;
2.熟练掌握同角三角函数的基本关系;
3.正确理解并应用同角三角函数的基本关系。

二、教学过程
(一)引入与认识
1.以问题形式引入
(1)教师摆出一个三角形,将小朋友们引入到课题中,问:请你们
凭借视力,给出三角形的内角A、B、C中,边a与边b构成的角是多少度?(答案是:度数相同)
2.概念认识
(1)介绍同角三角函数的概念:同角三角函数是指两个相同角度的
三角形上同名角的三角函数之间的函数关系。

(2)同角三角函数基本关系:
1)sinθ=cos(90°-θ);
2)cosθ=sin(90°-θ);
3)tanθ=1/tan(90°-θ);
4)cotθ=1/cot(90°-θ);
5)secθ=1/sec(90°-θ);
6)cscθ=1/csc(90°-θ);
(3)让学生理解同角三角函数的关系图象,用对称性质和角度试探
的方法将同角三角函数关系图象连接起来,学生必须从图象中感受到同角
三角函数的基本关系,以此为依据产生同角三角函数的运算习惯,以及在
分析实际问题时对角度的改变规律的判断。

(二)认识方法
1.找出两个相同角度的三角形,给出两个三角形的同名角的三角函数。

2.推导同角三角函数的基本关系。

同角三角函数的基本关系教学设计

同角三角函数的基本关系教学设计

同角三角函数的基本关系教学设计教学设计:同角三角函数的基本关系一、教学目标:1.学生能够理解同角三角函数的概念及其在数学中的意义;2.学生能够掌握正弦函数、余弦函数和正切函数的基本关系;3.学生能够熟练运用同角三角函数的基本关系解题。

二、教学重点:1.同角三角函数的概念及基本关系;2.正弦函数、余弦函数和正切函数的图像特征。

三、教学难点:1.正弦函数、余弦函数和正切函数的图像特征;2.同角三角函数的应用解题。

四、教学准备:1.教师准备:教学课件、教学素材PPT;2.学生准备:教材、笔记、计算器。

五、教学过程:Step 1:导入新课1.教师打开课件,介绍本节课的主题:同角三角函数的基本关系;2.教师和学生一起回顾三角函数的概念,回顾正弦函数、余弦函数和正切函数的定义。

Step 2:正弦函数与余弦函数的关系1.教师让学生观察并比较正弦函数与余弦函数的图像,引导学生发现它们之间的关系;2.教师引导学生思考,正弦函数与余弦函数的图像是否关于y轴对称?这两个函数的最大值和最小值又有怎样的关系?3. 教师讲解正弦函数与余弦函数的关系:sin(x) = cos(x - 90°);4.教师通过具体的数值计算和计算器演示,验证正弦函数与余弦函数的关系。

Step 3:正切函数与余弦函数的关系1.教师让学生观察并比较正切函数与余弦函数的图像,引导学生发现它们之间的关系;2.教师引导学生思考,正切函数与余弦函数的图像之间是否有什么特殊的关系?它们的零点位置有什么规律?3. 教师讲解正切函数与余弦函数的关系:tan(x) = sin(x) /cos(x);4.教师通过具体的数值计算和计算器演示,验证正切函数与余弦函数的关系。

Step 4:同角三角函数的应用解题1.教师提供一些应用题,如角度的边长比例问题、太阳高度角问题等,并引导学生运用同角三角函数的基本关系解答;2.教师讲解解题思路和步骤,帮助学生理解问题的意义和解题的方法;3.教师与学生互动,共同解答一个或多个应用题;4.学生独立或小组合作解答剩下的应用题,教师巡视指导。

《同角三角函数的基本关系》教学设计

《同角三角函数的基本关系》教学设计

《同角三角函数的基本关系》教学设计一、教学目标1.知识目标:了解同角三角函数的定义,掌握同角三角函数的基本关系。

2.技能目标:能够根据同角三角函数的定义计算出未知角的正弦、余弦和正切值,能够应用同角三角函数的基本关系解决问题。

3.情感目标:培养学生对数学知识的兴趣,提高学生的数学运算能力和问题解决能力。

二、教学重难点1.教学重点:同角三角函数的概念及其基本关系。

2.教学难点:利用同角三角函数的基本关系计算未知角的值。

三、教学准备1.教具准备:黑板、彩色粉笔、多媒体课件。

2.学具准备:尺子、直角三角板、相关教材。

3.材料准备:课堂练习题。

四、教学过程教学环节一:导入(10分钟)1.教师在黑板上写出同角三角函数的定义,并给出一个已知角度,要求学生根据定义计算出该角度的正弦、余弦和正切值。

2.学生根据题目计算,教师逐个询问学生的计算结果,并将学生的回答记录在黑板上。

3.教师根据学生的回答进行讲解和总结,引出同角三角函数的基本关系。

教学环节二:讲解(20分钟)1.教师利用多媒体课件给出同角三角函数的基本关系的图示,并对每个关系进行解释。

2.教师在黑板上讲解同角三角函数的基本关系的推导过程,并引导学生理解每个关系的几何意义。

3.学生在听讲的同时,可用尺子和直角三角板进行实验验证。

教学环节三:拓展(15分钟)1.教师给出一些例题,要求学生利用同角三角函数的基本关系计算未知角的值,并解决相关问题。

2.学生在黑板上解题,教师逐个引导学生进行讨论和解答。

3.教师根据学生的解答情况进行讲解和总结,巩固同角三角函数的基本关系及其应用。

教学环节四:练习(15分钟)1.教师发放课堂练习题,要求学生独立完成并逐题检查。

2.学生完成练习后,教师逐个核对答案,并解答学生可能存在的疑问。

3.教师根据学生的练习情况进行讲解和总结,培养学生的自主学习能力和问题解决能力。

教学环节五:归纳总结(10分钟)1.教师让学生自由发言,总结同角三角函数的基本关系及其应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2同角三角函数的基本关系(3)
教学目的:
知识目标:根据三角函数关系式进行三角式的化简和证明;
能力目标:(1)了解已知一个三角函数关系式求三角函数(式)值的方法。

(2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力;
德育目标:训练三角恒等变形的能力,进一步树立化归思想方法;
教学重点:同角三角函数的基本关系式
教学难点:如何运用公式对三角式进行化简和证明。

授课类型:新授课
教学模式:启发、诱导发现教学.
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.同角三角函数的基本关系式。

(1)倒数关系:sin csc 1αα⋅=,cos sec 1αα⋅=,tan cot 1αα⋅=.
(2)商数关系:
sin tan cos ααα=,cos cot sin ααα
=. (3)平方关系:22sin cos 1αα+=,221tan sec αα+=,221cot csc αα+=.
(练习)已知tan α43=,求cos α 2.tan αcos α= ,cot αsec α= ,(sec α+tan α)·( )=1
二、讲解新课:
例82tan α=-,试确定使等式成立的角α的集合。

=|1sin ||1sin |cos ||cos |αααα+-- =1sin 1sin |cos |ααα+-+=2sin |cos |
αα.
2tan α-=-, ∴2sin |cos |αα2sin 0cos αα
+=, 即得sin 0α=或|cos |cos 0αα=-≠. 所以,角α的集合为:{|k ααπ=或322,}22
k k k Z πππαπ+<<+∈. 例9.化简(1cot csc )(1tan sec )αααα-+-+.
解:原式=cos 1sin 1(1)(1)sin sin cos cos αααααα
-+-+ 2sin cos 1cos sin 11(sin cos )sin cos sin cos αααααααααα-+-+--=⋅=⋅112sin cos 2sin cos αααα-+⋅==⋅. 说明:化简后的简单三角函数式应尽量满足以下几点:
(1)所含三角函数的种类最少;
(2)能求值(指准确值)尽量求值;
(3)不含特殊角的三角函数值。

例10.求证:
cos 1sin 1sin cos x x x x
+=-. 证法一:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.
∴左边=2cos (1sin )cos (1sin )(1sin )(1sin )cos x x x x x x x ++=-+1sin cos x x
+==右边. ∴原式成立.
证法二:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.
又∵22
(1sin )(1sin )1sin cos cos cos x x x x x x -+=-==⋅, ∴
cos 1sin 1sin cos x x x x
+=-. 证法三:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠. cos 1sin 1sin cos x x x x
+--cos cos (1sin )(1sin )(1sin )cos x x x x x x ⋅-+-=-22cos 1sin 0(1sin )cos x x x x -+==-, ∴cos 1sin 1sin cos x x x x
+=-.
例11.求证:22sin tan cos cot 2sin cos tan cot x x x x x x x x ⋅+⋅+⋅=+.
证明:左边=2
2sin 1sin cos 2sin cos cos tan x x x x x x x
⋅+⋅+⋅ =32sin cos cos 2sin cos cos sin x x x x x x x
+⋅+⋅ 4422sin cos 2sin cos sin cos x x x x x x ++=⋅=222(sin cos )1sin cos sin cos x x x x x x
+=, 右边22sin cos sin cos 1cos sin sin cos sin cos x x x x x x x x x x +=+==. 所以,原式成立。

总结:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边(如例5的证法一);(2)证明左右两边同等于同一个式子(如例6);(3)证明与原式等价的另一个式子成立,从而推出原式成立。

例12
.已知sin cos )x x x π+=
<<,求sin ,cos x x .
解:由sin cos )x x x π+=<<等式两边平方:
222sin cos 2sin cos x x x x ++=.
∴sin cos x x =*),
即1sin cos 2sin cos 4
x x x x ⎧+=⎪⎪⎨⎪=-⎪⎩, sin ,cos x x
可看作方程20z z =
的两个根,解得121,2z z ==. 又∵0x π<<,∴sin 0x >.又由(*)式知cos 0x <
因此,1sin ,cos 2x x == 三、巩固与练习
1. 求证:
x
x x x A ctg A A A A A
A A tg A ctg cos sin 1sin 1cos )4()
(csc sin )1)(sec sin 1)(3(csc sec 1cos sin )2(sin )sin ()1(2222222222222+=--=--+==-θθθθ 小结:化简三角函数式,化简的一般要求是:(1)尽量使函数种类最少,项数最少,次数最低;(2)尽量使分母不含三角函数式;(3)根式内的三角函数式尽量开出来;(4)能求得数值的应计算出来,其次要注意在三角函数式变形时,常常将式子中的“1”作巧妙的变形,如:1=αααααα2
22222cot csc tan sec cos sin -=-=+ 2、已知方程0)13(22=++-m x x 的两根分别是θθcos sin ,, 求的值。

θ-θ
+θ-θtan 1cos cot 1sin
解:θ+θ=θ-θθ
-θ=θ-θθ
+θ-θθ=cos sin cos sin cos sin sin cos cos cos sin sin 222
2原式Θ
21
3+=∴由韦达定理知:原式 (化弦法)
3、已知2222,tan sec ,tan sec d c b a c d b d c a +=+=α+α=α-α求证:
证:由题设:⎩⎨⎧+α-=α+α=α)2(tan sec )
1(tan sec c d b d c a
2222222222tan )(sec )()2()1(d c d c b a ++α+=α++:
α+=α+222222sec )(sec )(d c b a
2222d c b a +=+∴
4、消去式子中的⎩
⎨⎧θ+θ=θ+θ=θ)2(cot tan )
1(cos sin y x : 解:由)3(21
cos sin cos sin 21)1(22-=θθ∴θθ+=x x : 由
)4(1
cos sin cos sin 1
sin cos cos sin )2(y y =θθ∴θθ=θθ+θθ=:12)4()3(2-=x y :
代入将 (平方消去法)
四、小 结:本节课学习了以下内容:
1.运用同角三角函数关系式化简、证明。

2.常用的变形措施有:大角化小,切割化弦等。

五、课后作业:
六、板书设计:。

相关文档
最新文档