广东省东莞市高一上学期期中数学试卷

合集下载

广东省东莞市四校2023-2024学年高一上学期12月期中联考数学试题(含答案解析)

广东省东莞市四校2023-2024学年高一上学期12月期中联考数学试题(含答案解析)

广东省东莞市四校2023-2024学年高一上学期12月期中联考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题e....二、多选题三、填空题四、双空题五、解答题参考答案:1.D【分析】根据元素与集合,集合与集合之间的关系判断.【详解】由已知A 中含有元素0,1,2,因此{0}A ⊆,A 、B 均错,集合{0,1,1,2}-中比集合A 多一个元素1-,因此应有{0,1,1,2}A ⊆-,C 错,由空集是任何集合子集知D 正确.故选:D.【点睛】本题考查元素与集合,集合与集合之间的关系及表示方法,属于基础题.2.C【详解】试题分析:全称命题的否定是存在性命题,所以,命题“[)30,,0x x x ∀∈+∞+≥”的否定是[)30000,,0x x x ∃∈+∞+<,选C.考点:全称命题与存在性命题.3.B【分析】按充分条件和必要条件的定义即可求解.【详解】2211011x x x <⇔-<⇔-<<,故1x <是11x -<<的必要不充分条件,故选:B 4.C【解析】根据具体函数的定义域,先分别求每一个式子满足的定义域,再求交集即可【详解】由题可知,函数定义域应满足2010x x ->⎧⎨+>⎩,解得()1,2x ∈-故选:C【点睛】本题考查具体函数的定义域的求法,属于基础题5.B【解析】结合分段函数的分段条件,分别代入计算,即可求解.【详解】∵函数()()22,03,0x x x f x f x x ⎧-≤⎪=⎨->⎪⎩,∴()()()()209630021f f f f ====-=-.故选:B.【点睛】本题主要考查了分段函数的求值问题,其中解答中结合分段函数的分段条件,分别任取12,R x x ∈且12x x <,则210x x ->()()()()()2121210f x f x f x f x f x x -=+-=-<,所以()()21f x f x <,所以()f x 在R 上为减函数.当[]3,3x ∈-时,()f x 单调递减,所以当3x =-时,()f x 有最大值为()3f -,因为()()()()32131236f f f f =+==-⨯=-,所以()()336f f -=-=,故()f x 在区间[]3,3-上的最大值为6.(3)由(2)知()f x 在区间[]1,1-上单调递减,所以()()()112f x f f ≤-=-=,因为()222f x m am <-+对所有的[]1,1x ∈-,[]1,1a ∈-恒成立,即220m am ->对任意[]1,1a ∈-恒成立,令()22g a am m =-+,则()()1010g g ⎧->⎪⎨>⎪⎩,即222020m m m m ⎧+>⎨-+>⎩,解得:2m >或2m <-.故m 的取值范围为()(),22,-∞-⋃+∞.。

2019-2020学年上学期东莞市高一期中测试数学试卷及答案解析

2019-2020学年上学期东莞市高一期中测试数学试卷及答案解析
2019-2020学年上学期东莞市高一期中测试
数学试卷
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分。考试时间120分钟。
第Ⅰ卷(选择题 共60分)
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设U为全集,B∩(∁UA)=B,则A∩B为()
A.AB.B
C.∁UBD.∅
2.已知集合A={x||x|≤a,a≥0},集合B={-2,-1,0,1,2},且A∩B={-1,0,1},则a的取值范围是()
A.(1,2)B.[1,2)
C.(1,2]D.(0,1]
3.下列函数中,定义域为(0,+∞)的是()
A.y= B.y=
C.y= D.y=
4.已知f(x)= 则f(f(3))=()
14.0.064- -(- )0+160.75+0.25 =________.
15.函数f(x)=ex2+2x的增区间为________.
16.已知函数f(x)= 若f(2-a)>f(a),则a的取值范围是________.
三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)
3.下列函数中,定义域为(0,+∞)的是()
A.y= B.y=
C.y= D.y=
[答案]A
4.已知f(x)= 则f(f(3))=()
A.4B.2
C.16D.8
[答案]C
[解析]f(f(x))=f(3+1)=f(4)=24=16.故选C.
5.下列函数是偶函数,且在(-∞,0)上单调递减的是()
A.y= B.y=1-x2
A.f(x)、g(x)均为偶函数
B.f(x)、g(x)均为奇函数

广东省东莞市四校2023-2024学年高一上学期12月期中联考数学试题及答案

广东省东莞市四校2023-2024学年高一上学期12月期中联考数学试题及答案

2023-2024学年上学期期中考试四校联考高一数学试题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔将考生号填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效考试时间:120分钟满分:150分.第I 卷(选择题共60分)一、单选题(本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,一个选项符合要求,选对得5分,错选得0分.)1.若集合{}0,1,2A =,则下列结论正确的是( ) A.{}0A ∈ B.0A ∉ C.{}0,1,1,2A −⊆ D.A ∅⊆2.命题“[)30,,0x x x ∞∀∈++≥”的否定是( )A.()3,0,0x x x ∞∀∈−+< B.()3,0,0x x x ∞∀∈−+≥C.[)30000,,0x x x ∞∃∈++< D.[)30000,,0x x x ∞∃∈++≥3.设x R ∈,则“1x <”是“21x <”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件4.函数()lg 2y x =−的定义域为( ) A.()1,2− B.(]1,2− C.[)1,2− D.[]1,2−5.设函数()()22,03,0x x x f x f x x −≤ = −>,则()9f 的值为( )A.-7B.-1C.0D.126.设0.80.70.713,,log 0.83ab c − ==,则,,a b c 的大小关系为( )A.a b c <<B.b a c <<C.b c a <<D.c a b << 7.下列可能是函数21exx y −=的图象的是( )A. B.C. D.8.已知函数()()131,22,2xa x a x f x a x −++<=≥ 满足对任意的12x x ≠,都有()()12120f x f x x x −<−成立,则实数a 的取值范围为( )A.10,2B.11,32C.1,12D.1,13二、多项选择题(本题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合要求.全部选对得5分,部分选对得2分,错选得0分.)9.以下结论正确的是( )A.不等式a b +≥恒成立B.存在a ,使得不等式12a a+≤成立 C.若(),0,a b ∞∈+,则2b a a b+≥ D.若正实数,x y 满足21x y +=,则2110x y+≥ 10.已知0,0a b c d >><<,则下列不等式中错误的是( ) A.11a b−<− B.2c cd <C.a c b d +<+D.a b d c< 11.函数()()21,(1)f x x g x x =+=+,用()M x 表示()(),f x g x 中的较大者,记为()()(){}max ,M x f x g x =,则下列说法正确的是( )A.()23M =B.()1,4x M x ∀≥≥C.()M x 有最大值D.()M x 最小值为012.已知函数()f x 是偶函数,()1f x +是奇函数,当[]2,3x ∈时,()12f x x =−−,则下列选项正确的是( )A.()f x 在()3,2−−上为减函数B.()f x 的最大值是1C.()f x 的图象关于直线2x =−对称D.()f x 在()4,3−−上()0f x <第II 卷(非选择题共90分)三、填空题(本题共4小题,每题5分,共20分)13.不等式2280x x −++>的解集是__________.14.设全集U 是实数集,{2R M x x =<−∣或2},{13}x N x x >=<<∣,则图中阴影部分所表示的集合是__________.15.已知奇函数()f x 是定义在()1,1−上的减函数,则不等式()()1130f x f x −+−<的解集为__________. 16.定义:函数()f x 在区间[],a b 上的最大值与最小值的差为()f x 在区间[],a b 上的极差,记作(),d a b . ①若()222f x x x =−+,则()1,2d =__________.②若()mf x x x=+,且()()()1,221d f f ≠−,则实数m 的取值范围是__________.四、解答题(本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效.)17.(本小题满分10分)已知集合{32},{121}A x x B x m x m =−<<=−<<+∣∣. (1)若2m =,求A B ∪;(2)若A B B ∩=,求实数m 的取值范围. 18.(本小题满分12分)已知幂函数()()2133m f x mm x +=−+为偶函数.(1)求幂函数()f x 的解析式; (2)若函数()()1f x g x x+=,根据定义证明()g x 在区间()1,∞+上单调递增.19.(本小题满分12分)已知()f x 为R 上的奇函数,当0x ≥时,()()12log 4f x x m =++. (1)求m 的值并求出()f x 在R 上的解析式; (2)若()1f a >,求a 的取值范围.20.(本小题满分12分)已知函数()()22691f x x a a x a =−++++.(1)若0a >,且关于x 的不等式()0x <的解集是{}xm x n <<∣,求11m n+的最小值; (2)设关于x 的不等式()0f x <在[]0,1上恒成立,求a 的取值范围.21.(本小题满分12分)某企业为积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一个把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x (单位:吨)最少为70吨,最多为100吨.日加工处理总成本y (单位:元)与日加工处理量x 之间的函数关系可近似地表示为214032002y x x =++,且每加工处理1吨㕑余垃圾得到的化工产品的售价为110元. (1)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨㕑余垃圾处于亏损还是盈利状态?(2)为了使该企业可持续发展,政府决定对该企业进行财政补贴,补贴方案共有两种: ①每日进行定额财政补贴,金额为2300元; ②根据日加工处理量进行财政补贴,金额为30x 元.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方案?为什么? 22.(本小题满分12分)已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,且()12f =−.(1)判断()f x 的奇偶性;(2)判断函数单调性,求()f x 在区间[]3,3−上的最大值;(3)若()222f x m am <−+对所有的][1,1,1,1x a ∈−∈− 恒成立,求实数m 的取值范围.2023-2024学年上学期期中考试四校联考高一数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案DCBABDCB二、多项选择题(本大题共4小题,每小题5分,共20分)题号 9 101112 答案BCABC BDBCD三、填空题(本大题共4小题,每小题5分,共20分)13.()2,4− 14.{12}x x <≤∣ 15.102xx<<∣ 16.1,()1,4 四、解答题(本大题共6小题,共70分)17.(本小题10分)解:(1)由题意{32},2,{15}A x x m B x x =−<<=∴=<< ∣∣, {35}A B x x ∴∪−<<∣(2),A B B B A ∩=∴⊆ ,∴当B =∅,即121m m −≥+,即2m ≤−时满足题意;当B ≠∅,即2m >−时,13212m m −≥−+≤ ,即122m −<≤综上,实数m 的取值范围为12mm≤∣. 18.(本小题12分) 解:(1)因为()()2133m f x mm x +=−+是幂函数,所以2331m m −+=,解得1m =或2m =.当1m =时,()2f x x =为偶函数,满足题意;当2m =时,()3f x x =为奇函数,不满足题意.故()2f x x =.(2)由(1)得()2f x x =,故()()11f xg x x x x+==+. 任取211x x >>,则()()()12212121212112121111,x x g x g x x x x x x x x x x x x x −−=+−−=−+=−−因为211x x >>,所以21120,1x x x x −>>,所以12110x x −>, 所以()()210g x g x −>,即()()21g x g x >, 故()g x 在区间()1,∞+上单调递增. 19.(本小题12分)解:(1)由题可知()020f m =−+=,即2m =,经检验符合题意, 则0x ≥时,()()12log 42f x x =++ 当0x <时,则()()120,log 42x f x x −>−=−++, 又()f x 为奇函数,所以()()f x f x −=−, 所以()()()12log 42,0f x f x x x =−−=−−+−< 故()f x 在R 上的解析式为()()()1212log 42,0log 42,0x x f x x x ++≥ =−−+−<. (2)(法一)若()1f a >,则()120log 421a a ≥ ++> 或()120log 421a a <−−+−>解得4a <−,所以a 的取值范围为(),4∞−−.(法二)由函数性质可知()f x 在[)0,∞+上单调递减,则()f x 在R 上单调递减.又因为()124log 821f −=−−=,所以()1f a >,即()()4f a f >−, 所以当4a <−时,()1f a >,即a 的取值范围为(),4∞−−. 20.(本题12分)解:(1)因为0a >,且关于x 的不等式()0f x <的解集是{}xm x n <<∣, 所以x m =和x n =是方程()226910x a a x a −++++=的两根, 所以269,1m n a a mn a +=++=+,所以()()()22(1)4141169414448,111a a m n a a a m n mn a a a ++++++++====+++≥+=+++当且仅当1a =时等号成立, 所以11m n+的最小值为8. (2)因为关于x 的不等式()0f x <在[]0,1上恒成立,结合二次函数的图象和性质可得()()0010f f < < ,所以()21016910a a a a +< −++++<, 解得1a <−,所以a 的取值范围为(),1∞−−. 21.(本题12分)解:(1)由题意可知,日加工处理每吨厨余垃圾的平均成本为[]320040,70,1002y x x x x=++∈又320040401202x x ++≥+=, 当且仅当32002x x=,即80x =,等号成立, 所以该企业日加工处理量为80吨时,日加工处理每吨厥余垃圾的平均成本最低. 因为110120<,所以此时该企业处理1吨厨余垃圾处于亏损状态. (2)若该企业采用第一种补贴方案,设该企业每日获利为1y 元,由题可得221111102300403200(70)155022y x x x x=+−++=−−+,因为[]70,100x ∈所以当70x =时,企业获利最大,最大利润为1550元, 若该企业采用第二种补贴方案,设该企业每日获利为2y 元,由题可得2221111030403200(100)180022y x x x x x=+−++=−−+,因为[]70,100x ∈所以当100x =时,企业获利最大,最大利润为1800元, 因为18001550>,所以选择第二种补贴方案. 22.(本题12分)解:(1)取0xy ==,则()()()0020,00f f f +=∴=, 取y x =−,则()()()()00f x x f x f x f −=+−==,()()f x f x ∴−=−对任意x R ∈恒成立,所以函数()f x 为奇函数;(2)任取12,x x R ∈且12x x <,则()()()()()212121210,0x x f x f x f x f x f x x −>−=+−=−<,()()21f x f x ∴<,故()f x 为R 上的减函数.[]3,3x ∴∈− ()()3f x f ∴<−,()()331236f f ==−×=− , ()()336f f ∴−=−=,故()f x 在区间[]3,3−上的最大值为6; (3)()f x 在[]1,1−上的减函数,()()()112f x f f ∴≤−=−=,()222f x m am <−+ 对所有的][1,1,1,1x a ∈−∈− 恒成立,2222m am ∴−+>对任意[]1,1a ∈−恒成立,即220m am −>对任意[]1,1a ∈−恒成立,令()22g a am m =−+,则()()1010g g −> >,即222020m m m m +> −+> , 解得:2m >或2m <−.∴实数m 的取值范围为()(),22,∞∞−−∪+.。

广东省东莞市2023-2024学年高一数学上学期期中试卷(含答案)

广东省东莞市2023-2024学年高一数学上学期期中试卷(含答案)

,集合 ⺙ 㖙
ᦙ , ⺙㖙
.
(1)求

(2)求
18.已知 是定义在 , 上的偶函数,且
, 时,
(1)求函数 的表达式;
(2)判断并证明函数在区间 , 上的单调性.
⺙ 䁟.
19.已知函数
⺙ 䁟 䁟.
(1)若 ⺙
,判断
(2)若对任意
,䁟 ,
的奇偶性并加以证明. 䀀 恒成立,求实数 的取值范围.
20.已知二次函数 ⺙ 䁟 䁟 ,不等式
D. , 䁟
6.设函数 ⺙
, ,则
䁟 ,ᦙ
⺙( )
A.6
B.7
C.9
D.10
7.给出幂函数:①f(x)=x;②f(x)=x2;③f(x)=x3;④f(x)= ;⑤f(x)= .其中满足条件
䁟䀀

(x1>x2>0)的函数的个数是( )
A.1 个
B.2 个
C.3 个
D.4 个
8.已知函数 ⺙
, ,䀀
满足对任意实数
题号
广东省东莞市 2023-2024 学年高一数学上学期期中试卷
姓名:__________ 班级:__________考号:__________




总分
评分
一、单选题 1.下列元素与集合的关系中,正确的是( )
A.
B.

C.
D.
2.已知集合 ⺙ 㖙 , , , ⺙ 㖙 , ,
,则 ⺙( )
A.0
ᦙ ”是“ ᦙ ᦙ ”的必要
5
【解析】【解答】由已知得
所以函数
⺙ 䁟䁟
故答案为:B.
䀀 ,解得 䀀 且 的定义域为 ,

【高一】广东省东莞市高一上学期期中考试(数学)

【高一】广东省东莞市高一上学期期中考试(数学)

【高一】广东省东莞市高一上学期期中考试(数学)试卷说明:高一最后一学期中考试试数学问题1。

多项选择题:(这道大题有10道小题,每道小题5分,共50分。

在为每道小题给出的四个选项中,只有一个符合问题的要求。

)1.如果多项式可以分解为,则的值为a.b.c.d.2。

如果方程有两个不等的实数根,那么实数的取值范围是a、B、C、D和3。

已知集合,则以下公式表示a.b.c.d.4的正确完整集合,以下四组函数表示相同的函数a.b.c.d.7。

下面的陈述是正确的:a.不等式的解集表示为B.所有偶数的集表示为C.所有自然数的集可以表示为D.方程的实数根的集表示为8。

如果集合,如果集合等于a.b.c.d.,那么a。

是一个。

它的定义字段是12。

设定,如果,那么13。

如果主函数是开的递增函数,则满足条件。

14.如果设置,则值范围为3。

解决方案:这道主要问题有六个子问题,解决方案应该写一个文本描述、证明过程或微积分步骤。

答案写在答题纸的固定区域。

本主题满分,设置(I)要求;(二)求和。

16.(本子问题的满分是关于一元二次方程的两个实根的值范围;(II)解的值表示)。

17.(本子问题的满分)(I)当时,找出函数的最大值和最小值;(二)如果它是区间上的单调函数,求出实数的取值范围,以及19之间的函数关系。

(本子题满分为14分)20。

(该子问题的满分为14分)和周数;(二)如果每件衣服的购买价格和周数之间的关系是,,,那么每件衣服的销售利润最大的那一周是什么?最大值是多少?(注:每件的销售利润=销售价格?采购价格)高一1的数学参考答案。

多项选择题(本专业10个子题,共50分)bdbccadab 2。

填空:(本专业共需要4个子问题,每个子问题5分,共20分,并在问题行上填写答案。

11121314 3.回答问题(本专业共6个子问题,共80分)16解答:(1)∵ 一元二次方程有两个实根,。

2分∵ 以及——。

4点(2)是关于一个变量的二次方程的两个实根。

广东省东莞市高一上学期数学期中考试试卷

广东省东莞市高一上学期数学期中考试试卷

广东省东莞市高一上学期数学期中考试试卷姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 24 分)1. (2 分) (2019 高一上·菏泽期中) 设集合,,若且,则 等于()A.2B.3C.4D.62. (2 分) (2018 高二下·大名期末) 已知集合 A. B.,则()C.D.3. (2 分) (2018 高三上·福建期中) 设集合则=( )A. B. C. D. 4. (2 分) (2017 高一上·长春期中) 下列函数中,是同一函数的是( )第 1 页 共 10 页A.B.与C.D.与5. (2 分) (2019 高一上·集宁月考) 设是定义域为 的偶函数,且在单调递减,则( )A.B.C.D.6. (2 分) (2017 高一上·定州期末)A.B.C.D.7. (2 分) 已知函数,则A.B.C.D.() 的大小关系是( )8. (2 分) (2018 高一上·台州月考) 已知,且为奇函数,若,则第 2 页 共 10 页() A.0 B . -3 C.1 D.3 9. (2 分) 定义在 R 上的函数 f(x)满足 f(x)=f(x+2),当 x∈[3,5]时,f(x)=2-|x-4|,则( ) A . f(sin )<f(cos ) B . f(sin1)>f(cos1)C . f(cos )<f(sin ) D . f(cos2)>f(sin2)10. (2 分) )设函数 y=f(x)在 R 上有定义,对于任一给定的正数 p,定义函数 fp(x)=,则称函数 fp(x)为 f(x)的“p 界函数”,若给定函数 f(x)=x2﹣2x﹣2,p=1,则下列结论成立的是( )A . fp[f(0)]=f[fp(0)]B . fp[f(1)]=f[fp(1)]C . fp[f(2)]=fp[fp(2)]D . f[f(﹣2)]=fp[fp(﹣2)]11. (2 分) (2016 高三上·嘉兴期末) 已知全集 U=R,集合 阴影部分所表示的集合为( ),B={x|x2﹣6x+8≤0},则图中A . {x|x≤0}第 3 页 共 10 页B . {x|2≤x≤4} C . {x|0<x≤2 或 x≥4} D . {x|0≤x<2 或 x>4} 12. (2 分) (2017·崇明模拟) 下列函数在其定义域内既是奇函数又是增函数的是( ) A . y=tanx B . y=3x C. D . y=lg|x|二、 填空题 (共 4 题;共 4 分)13.(1 分)(2019 高一上·罗庄期中) 已知函数 的定义域为,且,则________.14. (1 分) (2016 高一上·大同期中) 函数的单调增区间是________.15. (1 分) (2017 高一上·芒市期中) 已知集合 A={0,1,2},则 A 的子集的个数为________.16.(1 分)(2019 高一上·邵东期中) 地震的震级 R 与地震释放的能量 E 的关系为 R= (lgE-11.4).2011 年 3 月 11 日,日本东海岸发生了 9.级特大地震,2008 年中国汶川的地震级别为 8.0 级,那么 2011 年地震的能量 是 2008 年地震能量的________倍.三、 解答题 (共 6 题;共 60 分)17. (10 分) (2017 高一上·马山月考) 写出的所有子集.18. (10 分) (2017 高一上·长春期中) 已知函数 f(x)=x2+2ax+a2﹣1. (1) 若对任意的 x∈R 均有 f(1﹣x)=f(1+x),求实数 a 的值; (2) 当 x∈[﹣1,1]时,求 f(x)的最小值,用 g(a)表示其最小值,判断 g(a)的奇偶性.第 4 页 共 10 页19. (10 分) 已知函数 f(x)=2x﹣ . (1) 若 a=1,试用列表法作出 f(x)的大致图象; (2) 讨论 f(x)的奇偶性,并加以证明; (3) 当 a>0 时,判断 f(x)在定义域上的单调性,并用定义证明. 20. (5 分) 已知正整数指数函数 f(x)的图象经过点(3,27), (1) 求函数 f(x)的解析式; (2) 求 f(5); (3) 函数 f(x)有最值吗?若有,试求出;若无,说明原因. 21. (10 分) 已知函数 f(x)的定义域为 R,对任意实数 m、n,都有 f(m+n)=f(m)+f(n)﹣1,并且 x >0 时,恒有 f(x)>1 (1) 求证:f(x)在定义域 R 上是单调递增函数; (2) 若 f(3)=4,解不等式 f(a2+a﹣5)<2. 22. (15 分) 已知定义在(﹣1,1)上的函数 f(x)是减函数,且 f(a﹣1)>f(2a),求 a 的取值范围.第 5 页 共 10 页一、 单选题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)参考答案13-1、 14-1、 15-1、第 6 页 共 10 页16-1、三、 解答题 (共 6 题;共 60 分)17-1、 18-1、18-2、第 7 页 共 10 页19-1、19-2、第 8 页 共 10 页19-3、 20-1、 20-2、 20-3、21-1、第 9 页 共 10 页21-2、 22-1、第 10 页 共 10 页。

广东省东莞市重点中学2023-2024学年高一上学期期中考试数学试题(含答案)

广东省东莞市重点中学2023-2024学年高一上学期期中考试数学试题(含答案)

东莞市重点中学2023—2024学年第一学期高一年级中段考数学试题考生注意:本卷共四大题,22小题,满分150分,时间120分钟.不准使用计算器.一、单选题(本大题共8小题,每小题5分,共40分. 每小题各有四个选择支,仅有一个选择支 正确.请用2B 铅笔把答题卡中所选答案的标号涂黑) 1. 已知集合{}1,2,3,4A =,集合{}1,3,5B =,则AB = ( )A.{}1,3B.{}2,4C.{}1,2,3,4D.{}1,2,3,4,5 2. 命题“2,11x R x ∀∈+≥”的否定为( )A.2,11x R x ∀∈+<B.2,11x R x ∀∈+≥C.200,11x R x ∃∈+<D.200,11x R x ∃∈+≥3. 下列函数中,满足“()()()f x f y f x y =+”的单调递增函数是 ( ) A.()3f x x =B.()xf x e =C.()23xf x ⎛⎫= ⎪⎝⎭D.()lg f x x =4. 已知函数()ln 26f x x x =+-,则()f x 的零点所在的区间是( ) A.()0,1 B.()1,2C.()2,3D.()3,45. 已知函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,则()()03f f += ( ) A.3-B.1-C.1D.36. 使式子()()21log 2x x --有意义的x 的取值范围是( ) A.2x > B.2x < C.122x <<且1x ≠ D.122x << 7. 设12log 3a =,0.323b ⎛⎫= ⎪⎝⎭,132c =,则,,a b c 的大小关系是( )A.b a c <<B.c b a <<C.c a b <<D.a b c <<8. 对实数a 和b ,定义运算“◎”:a ◎,2.,2a ab b b a b -≤⎧=⎨->⎩设函数()()21f x x =-◎()25x x -,若函数()y f x m =-的图象与x 轴恰有1个公共点,则实数m 的取值范围是( )A.(]1,6-B.(]11,1,64⎛⎫-∞-- ⎪⎝⎭ C.11,4⎛⎫-+∞ ⎪⎝⎭D.[]1116,84⎡⎫--⎪⎢⎣⎭,二、多选题(本大题共4小题,每小题5分,共20分. 每小题各有四个选择支,有多个选择支正确, 请用2B 铅笔把答题卡中所选答案的标号涂黑) 9. 对于任意实数,,,a b c d ,则下列命题正确的是( ) A. 若22ac bc >,则a b >B. 若a b c d >>,,则a c b d +>+C. 若a b c d >>,,则ac bd >D. 若a b >,则11a b> 10. 已知集合{}2|320A x ax x =-+=中有且只有一个元素,则实数a 的取值可能是( ) A.98B.1C.0D.2311.下列各组函数中,两个函数是同一函数的有( )A.()f x =()g x =B.()1f x =与()1g m =C.()21f x x =-与()()()2121g x x x =+-+D.()f x =()g x = 12.已知函数()()()2222,log ,log xf x xg x x xh x x x =+=+=+的零点分别为,,a b c ,下列各式正确的是( ) A.0a b +=B.22log 0ab +=C.b c >D.22a c >三、填空题(本大题共4小题,每小题5分,共20分.请把答案填在答题卡中相应的位置上) 13. 如果幂函数()f x x α=的图象经过点22⎛⎝⎭,,则()4f = .14. 设函数()013,0x f x x x ⎧≥⎪=⎨-<⎪⎩,则()(4)f f -=__________.15. ())230.5270.011028-⎛⎫⨯-= ⎪⎝⎭__________.16. 函数()1101x y aa a -=+>≠且图象过定点()00,A x y ,且00x x y y =⎧⎨=⎩满足方程 3mx ny +=()1,0m n >>,则121m n+-最小值为__________. 四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(1)用作差法比较()()37x x ++和()()46x x ++的大小;(2)已知3log 2,35ba ==,用,a b表示3log18.(本小题满分12分)已知集合{}|13A x x =<<,集合{}|21B x m x m =<<-. (1)当1m =-时,求AB ;(2)若x A ∈是x B ∈的必要条件,求实数m 的取值范围.19. (本小题满分12分) 已知函数()()()log 2201xxa f x k a a -=+⋅>≠且是偶函数.(1)求k 的值;(2)判断函数()22xxg x k -=+⋅在[)0+∞,的单调性,并用定义证明.20.(本小题满分12分)已知不等式()220,,ax a x b a b R -++>∈.(1)若不等式的解集为{}|12x x x <>或,求a b +的值; (2)若2b =,求该不等式的解集...21.(本小题满分12分)某电子公司生产某种智能手环,其固定成本为2万元,每生产一个智能手环需增加投入100元,已知总收入R(单位:元)关于日产量x (单位:个)满足函数:21400,0400280000,400x x x R x ⎧-≤≤⎪=⎨⎪>⎩. (1)将利润()f x (单位:元)表示成日产量x 的函数;(2)当日产量x 为何值时,该电子公司每天所获利润最大,最大利润是多少?(利润+总成本=总收入).22.(本小题满分12分)函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数,给定函数()61f x x x =-+. (1)求()f x 的对称中心;(2)已知函数()g x 同时满足:①()11g x +-是奇函数;②当[]0,1x ∈时,()2g x x mx m =-+.若对任意的[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,求实数m 的取值范围.数学试题答案高一数学中段考参考答案一、选择题(共12个小题,每小题5分,共60分.每题只有一项是符合题目要求)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACBCCCDDABACBCABD二、填空题(每小题5分,满分20分.) 13. 14.13 15.252 16.92三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. 解:两个式子作差得:()()()()3746x x x x ++-++ ………….………1分()()2210211024x x x x =++-++ ………….………2分30=-< ………….………4分所以. ………….………5分(2)35b =,可得3log 5.b = ………….………6分 333331log 30log (523)21(log 5log 2log 3)2111.222a b =⨯⨯=++=++ ………….………9分 ………….………10分18. 解:(1)当1m =-时,{|22}B x x =-<<, ………….………2分 所以{|23}.A B x x ⋃=-<< ………….………4分 (2)解:由题意得B A ⊆, ………….………5分所以当B =∅时,21m m -,解得13m,满足B A ⊆; ………….………8分 当B ≠∅时,若满足B A ⊆,则21,21,13,m m m m <-⎧⎪⎨⎪-⎩该不等式组无解. ………….………11分综上,若B A ⊆,则实数m 的取值范围是1,.3⎡⎫+∞⎪⎢⎣⎭………….………12分19.解:(1)因为函数()(22)(0x x a f x log k a -=+⋅>且1)a ≠是偶函数,所以()()f x f x -=,即(22)(22)x x x x a a log k log k --+⋅=+⋅, ………….………2分 所以2222x x x x k k --+⋅=+⋅,所以(1)(22)0x x k ---=, ………….………3分 因为22x x --不一定为零,所以1k = ………….………4分 (2)由(1)得()22x x g x -=+,则()g x 在[0,)+∞上单调递增,理由如下: ………….………5分任取12,[0,),x x ∈+∞且12x x <,则()()221121()()2222x x x xg x g x ---=+-+ ………….………6分()()21212222x x x x --=-+-()122121222222x x x x x x -=-+()2121122122x x x x⎛⎫=-- ⎪⎝⎭………….………7分 ()21212121222x x x x x x ++-=-⋅, ………….………8分因为12,[0,),x x ∈+∞且12x x <,所以21220x x ->,21210x x +->, ………….………9分 所以()212121212202x x x x x x ++--⋅>, ………….………10分所以21()()0g x g x ->,即21()()g x g x >, ………….………11分 所以()g x 在[0,)+∞上单调递增. ………….………12分 20. (1)不等式2(2)0ax a x b -++>的解集为{|1x x <或2}x >, ………….………1分1x ∴=和2x =是方程2(2)0ax a x b -++=的两个根,且0a >, ………….………2分21212a a b a +⎧+=⎪⎪∴⎨⎪⨯=⎪⎩,解得1a =,2b =, ………….………3分故3a b +=; ………….………4分 (2)由题意,不等式可化为(2)(1)0ax x -->, ………….………5分当0a =时,不等式为220x -+>,解得1x <; ………….………6分 当0a ≠时,方程2(2)20ax a x -++=的两根分别为1,2a, ………….………7分 当0a <时,21a <,故21x a<<; ………….………8分当02a <<时,21a >,故1x <或2x a>; ………….………9分 当2a =时,21a =,故1x ≠; ………….………10分 当2a >时,21a <,故2x a<或1x >; ………….………11分综上可知,当0a <时,不等式的解集为2{|1}x x a<<, 当0a =时,不等式的解集为{|1}x x <;当02a <<时,不等式的解集为{|1x x <或2}x a>, 当2a =时,不等式的解集为{|1}x x ≠, 当2a >时,不等式的解集为2{|x x a<或1}.x > ………….………12分21.解:(1)根据题意,当0400x 时,2211()400200001003002000022f x x x x x x =---=-+-, ………….………2分当400x >时,()800002000010010060000f x x x =--=-+, ………….………3分 所以2130020000,(0400,)()210060000,(400,)x x x x N f x x x x N ⎧-+-∈⎪=⎨⎪-+>∈⎩; ………….………5分 (2)当0400x 时,2211()30020000(300)2500022f x x x x =-+-=--+,所以当300x =时,()25000f x 的最大值为; …….………7分 当400x >时,易知()10060000f x x =-+是减函数, ………….………8分 所以()1004006000020000f x <-⨯+=; ………….………9分 综上:当300x =时,max ()25000f x =, ………….………11分 所以,当日产量为300台时,该公司每天所获利润最大,其值为25000元. ………….………12分 22.解:(1)设()f x 的对称中心为(),a b ,由题意,得函数()y f x a b =+-为奇函数,………1分则()()f x a b f x a b -+-=-++,即()()20f x a f x a b ++-+-=, 即()()662011x a x a b x a x a +-+-+--=++-++,整理得()()()()221610a b x a b a a ⎡⎤---+-+=⎣⎦………….………2分所以()()()21610a b a b a a -=-+-+=,解得1,1a b =-=-, ………….………3分 所以函数()f x 的对称中心为()1,1--; ………….………4分(2)因为对任意的[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,所以函数()g x 的值域是函数()f x 的值域的子集, 因为函数6,1y x y x ==-+在[]1,5上都是增函数, 所以函数()61f x x x =-+在[]1,5上是增函数, 所以()f x 的值域为[]2,4-,设函数()g x 的值域为集合A , 则原问题转化为[]2,4A ⊆-, ………….………5分 因为函数()11g x +-是奇函数,所以函数()g x 关于()1,1对称, 又因为()11g =,所以函数()g x 恒过点()1,1, 当02m,即0m 时,()g x 在[]0,1上递增,则函数()g x 在(]1,2上也是增函数, 所以函数()g x 在[]0,2上递增, 又()()()0,2202g m g g m ==-=-,所以()g x 的值域为[],2m m -,即[],2A m m =-, ………….………6分 又[][],22,4A m m =-⊆-, 所以2240m m m -⎧⎪-⎨⎪⎩,解得20m -; ………….………7分当12m即2m 时,()g x 在[]0,1上递减,则函数()g x 在(]1,2上也是减函数,所以函数()g x 在[]0,2上递减,则[]2,A m m =-, 又[][]2,2,4A m m =-⊆-, 所以2224m m m ⎧⎪--⎨⎪⎩,解得24m ; ………….………9分当012m <<即02m <<时, ()g x 在0,2m ⎛⎫ ⎪⎝⎭上递减,在,12m ⎛⎫⎪⎝⎭上递增, 又因函数()g x 过对称中心()1,1, 所以函数()g x 在1,22m ⎛⎫-⎪⎝⎭上递增,在2,22m ⎛⎫- ⎪⎝⎭上递减, 故此时()()min min 2,2m g x g g ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭,()()max max 0,22m g x g g ⎧⎫⎛⎫=-⎨⎬ ⎪⎝⎭⎩⎭, 要使[]2,4A ⊆-,只需要()()()222202222404222422402g g mm mg mg mm m mg g mm=-=--⎧⎪⎛⎫⎪=-+-⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫⎪-=-=-+⎪ ⎪⎪⎝⎭⎝⎭⎪<<⎩,解得02m<<,………….………11分综上所述实数m的取值范围为[]2,4.-………….………12分。

广东省东莞市高一上学期期中数学试卷

广东省东莞市高一上学期期中数学试卷

广东省东莞市高一上学期期中数学试卷姓名:班级:成绩:、选择题(共8题;共16分)2・(2分)函数门巧=応・仗(11)的泄义域是()A・(g -1)B・(L + oc)C ・(・l,l)5L+oc)D・+ « )3・(2 分)(2017 •舒城模拟)设x二0.820. 5 , y=lo g^J512 , z=s inl.则x、y、z 的大小关系为()A・x<y<zB・y<z<xC・z<x<yD・z<y<x4・(2分)(2016髙三上•新津期中)设D是函数y=f (x)定义域内的一个区间,若存在xOGD,使f (x0)=-x0 ♦5 -a+ - 则称x0是f (x)的一个“次不动点”,也称f(X)在区间D上存在次不动点.若函数f(X)=ax2 - 3x在区间[1,4]上存在次不动点,则实数a的取值范围是()A・(-°°» 0)B・1 (0,2 )C・1[2 , +8)D・1 (-°°»2 ]5.(2 分)已知f (x)二2x+l,则f (2)二(D . 26.(2分)能够把圆0:〃十沪==16的周长和面积同时分为相等的两部分的函数称为圆0的“和谐函数”,下列函数不是圆0的“和谐函数”的是()A . f'M=4x i-^XB . /⑴“芸c /(x)=tan5D . fW =e x+r r7.(2分)下列命题中的假命题是()A . V T€^2X,1>0B ・taivv = 2C ・ TxER 1D . YMN:(X・1F>08・(2分)、若函数y= (x+1)(x-a)为偶函数,则圧()二填空题(共7题;共8分)9・(1 分)(2016 髙一上•汉中期中)若 loga2=m, loga3=n, (a>0 且 aHl )则 a2m+n= _______ 10. (1分)(2019髙一上•翁牛特旗月考)下列叙述正确的有 _________ ・①集合 =5 = -1;,贝ij jr5 = {2,3}:c 0 4j—x② 若函数①)=“5-3的左义域为R ,则实数fl<"12 :③ 函数/W = r-^ ,诋{一2,0)是奇函数;④ 函数几0= -卫十处+0在区间(2 +«)上是减函数2m ) V0恒成立,则实数m 的取值范国是15. (2分)已知函数f (X )由表给岀,则f (f (2))二 ___ •满足f (f (x )) >1的x 的值是三.解答题(共题;共分)16・(5 分)已知集合 A 二(2, 4), B 二(a, 3a ) (1)若AGB,求实数a 的取值范用: (2)若AAB^0,求实数a 的取值范用.17. (10分)(2019高三上•徳州期中)某辆汽车以x 千米/小时的速度在髙速公路上匀速行驶(考虑到髙lL_^3600j11・ (1分)12. (1分)13. (1分)14. (1分)1 1若幕函数f (x )二mxa 的图象经过点A ( ) 4^2,则苗(2016髙三上•枣阳期中)已知函数f (X )满足f (5x )二x,则f (2)二.函数f (X )=loga (3-ax )在区间(2, 6)上递增,则实数a 的取值范困是.(2015 髙二上•孟津期末)设 f (x )二x3+x, xER,当 0W ()W 兀时,f (mcos 0 ) +f (sin 0 -速公路行车安全要求60<.¥<120 )时,每小时的油耗(所需要的汽油量)为5、X f升,其中k为常数,且48<^< 100 .(1)若汽车以120千米/小时的速度行驶时,每小时的汕耗为10升,欲使每小时的油耗不超过升,求r的取值范围;(2)求该汽车行驶100千米的油耗的最小值.18.(15分)(2016高一下•赣榆期中)已知aVO,函数f (x)二acosx+也+血丫 +『1_沁丫,貝中xG[-71 71— 9一」•(1)设t二也+晌 + /1 - sim ,求t的取值范围,并把f (x)表示为t的函数g(t);(2)求函数f (x)的最大值(可以用a表示);/T K(3)若对区间[-2 , 2 ]内的任意xl, x2,总有,f (xl) -f (x2) Wl,求实数a的取值范围.19.(5分)当xG[O, 1]时,不等式ax3-x2+4x+3N0恒成立,求实数a的取值范用.20.(10分)(2019髙一上•嘉兴期中)已知函数f (x)二x-a—1, (a为常数).(1)若f(X)在xG[O, 2]上的最大值为3,求实数a的值;(2)已知g(X)二x・f (x) +a-m,若存在实数aW (-1, 2],使得函数g (x)有三个零点,求实数m的取值范围.一、选择题(共8题;共16分)2、答案:略3-1、D4-1、D5-1、A6-1、D7- 1. °8-1、°填空题(共7题;共8分)【第1空】12【第1空】②(?)【第位】1【第i空】log52【第1空】0<a<5【第1空】(返,+2)【第1空】1【第2空】1或3参考答案9-1.10-1、11-1、12-1、13-1、14-1H I3s :w D>A "(2k )二丄 f晋二(1)唳A ln B 邛a IA 」•-3O IV 4(2)吐AflBM養・目阑讯2A a A 4焙2人3a A 4 •K 402 A 4,x 'X A e2「»a ^s a s ®暦冏冊 * ca 〈4 •爭s 专'3120 岁牛 — * 十-^^H l o 、暑匸 qo • 田誉丄。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省东莞市高一上学期期中数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
2. (2分)函数的定义域是()
A .
B .
C .
D .
3. (2分)(2017·舒城模拟) 设x=0.820.5 ,,z=sin1.则x、y、z的大小关系为()
A . x<y<z
B . y<z<x
C . z<x<y
D . z<y<x
4. (2分) (2016高三上·新津期中) 设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0 ,则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x ﹣a+ 在区间[1,4]上存在次不动点,则实数a的取值范围是()
A . (﹣∞,0)
B . (0,)
C . [ ,+∞)
D . (﹣∞, ]
5. (2分)已知f(x)=2x+1,则f(2)=()
A . 5
B . 0
C . 1
D . 2
6. (2分)能够把圆O:的周长和面积同时分为相等的两部分的函数称为圆O的“和谐函数”,下列函数不是圆O的“和谐函数”的是()
A .
B .
C .
D .
7. (2分)下列命题中的假命题是()
A .
B .
C .
D .
8. (2分)、若函数y=(x+1)(x﹣a)为偶函数,则a=()
A . ﹣2
B . ﹣1
C . 1
D . 2
二、填空题 (共7题;共8分)
9. (1分) (2016高一上·汉中期中) 若loga2=m,loga3=n,(a>0且a≠1)则a2m+n=________.
10. (1分) (2019高一上·翁牛特旗月考) 下列叙述正确的有________.
①集合,,则;
②若函数的定义域为,则实数;
③函数,是奇函数;
④函数在区间上是减函数
11. (1分)若幂函数f(x)=mxa的图象经过点A(),则a= ________ .
12. (1分) (2016高三上·枣阳期中) 已知函数f(x)满足f(5x)=x,则f(2)=________.
13. (1分)函数f(x)=loga(3﹣ax)在区间(2,6)上递增,则实数a的取值范围是________.
14. (1分) (2015高二上·孟津期末) 设f(x)=x3+x,x∈R,当0≤θ≤π时,f(mcosθ)+f(sinθ﹣2m)<0恒成立,则实数m的取值范围是________.
15. (2分)已知函数f(x)由表给出,则f(f(2))=________,满足f(f(x))>1的x的值是________.
x123
f(x)231
三、解答题 (共5题;共45分)
16. (5分)已知集合A=(2,4),B=(a,3a)
(1)若A⊆B,求实数a的取值范围;
(2)若A∩B≠∅,求实数a的取值范围.
17. (10分) (2019高三上·德州期中) 某辆汽车以千米/小时的速度在高速公路上匀速行驶(考虑到高
速公路行车安全要求)时,每小时的油耗(所需要的汽油量)为升,其中为常数,且.
(1)若汽车以千米/小时的速度行驶时,每小时的油耗为升,欲使每小时的油耗不超过升,求的取值范围;
(2)求该汽车行驶千米的油耗的最小值.
18. (15分) (2016高一下·赣榆期中) 已知a<0,函数f(x)=acosx+ + ,其中x∈[﹣
, ].
(1)设t= + ,求t的取值范围,并把f(x)表示为t的函数g(t);
(2)求函数f(x)的最大值(可以用a表示);
(3)若对区间[﹣, ]内的任意x1,x2,总有|f(x1)﹣f(x2)|≤1,求实数a的取值范围.
19. (5分)当x∈[0,1]时,不等式ax3﹣x2+4x+3≥0恒成立,求实数a的取值范围.
20. (10分) (2019高一上·嘉兴期中) 已知函数f(x)=|x-a|-1,(a为常数).
(1)若f(x)在x∈[0,2]上的最大值为3,求实数a的值;
(2)已知g(x)=x·f(x)+a-m,若存在实数a∈(-1,2],使得函数g(x)有三个零点,求实数m的取值范围.
参考答案
一、选择题 (共8题;共16分)
2、答案:略
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共7题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共5题;共45分)
16-1、
17-1、
17-2、
18-1、
18-2、18-3、
19-1、20-1、
20-2、。

相关文档
最新文档