高等数学向量代数与空间解析几何总结
高等数学下册第八章 向量代数与空间解析几何

离.因为
PA 32 ( y 1)2 (z 2)2 , PB 42 ( y 2)2 (z 2)2 ,
PC 02 ( y 5)2 (z 1)2 ,
所以 32 ( y 1)2 (z 2)2 42 ( y 2)2 (z 2)2 02 ( y 5)2 (z 1)2 ,
零向量: 模为 0 的向量,
向量相等、向量平行向量共线、负向量、向量共面.
DMU
第一节 向量的线性运算与空间直角坐标系
向量线性运算的几何表达 ➢加法
平行四边形法则:
b ab
(a b) c
c
bc
三角形法则: a ab
a (b c) ab b
b a
a
运算规律 : 交换律 a b b a
结合律 ( a b ) c a (b c ) a b c
解 4u 3v 4 2a b 2c 3 a 4b c 5a 16b 11c.
例 如果平面上一个四边形的对角线互相平分试用向量证明
这是平行四边形
证 ABOBOA , DC OCOD 而 OC OA OD OB
所以
DC OA OB OB OA AB
这说明四边形 ABCD 的对边 AB CD 且 AB // CD 从而四边形
第八章
向量代数与空间解析几何
第一部分 向量代数 第二部分 空间解析几何
在三维空间中: 空间形式 — 点, 线, 面
数量关系 — 坐标, 方程(组) 基本方法 — 坐标法; 向量法
DMU
第八章 向量代数与空间解析几何
第一节 向量的线性运算与空间直角坐标系 第二节 数量积 向量积 混合积 第三节 平面及其方程 第四节 空间直线及其方程 第五节 曲面方程 第六节 空间曲线方程
高等数学-第8章空间解析几何与向量代数

b a b≤+,向量与数的乘法a ,方向与、向量与数量乘法的性质(运算律和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量(以后简称向量),即只考虑向量的大小和方向,而不论它的起点在什么地方。
当遇到与起点有关的向量时(例如,谈到某一质点的运动速向量A B ''在轴上的投影,记为投影AB 。
向量在轴上的投影性质:性质1(投影定理)=cos AB ϕ与向量AB 的夹角。
)=Prj 1a +Prj 2a 。
性质可推广到有限个向量的情形。
:向量a 在坐标轴上的投影向量向量a 在三条坐标轴上的投影由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a 量的投影具有与坐标相同的性质。
利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y a a a λλλ=由此可见,对向量进行加、2x a a a =+acos a b cos a b (,)a b =为向量之间的夹角并且0θπ≤≤。
2a =,因此我们可以把a a ∙简记为x y z z 由向量的坐标还可以计算两个向量之间的夹角, cos ab θ所以2cos xa b a ba θ∙==+两个向量垂直的充分必要条件是sin a b θ,它的方向是垂直于。
a b ⨯=sin a b b 为两边的平行四边形的面积。
如果向量a ={,,a a a },{,}b b =则a b ⨯=..........x y zi j a a b b b 两向量平行的充分必要条件为也就是说两向量共线,其对应坐标成比例。
决;在求向量,特别是求垂直向量问题时常用向量积。
注意向量的平行、垂直关系及角度。
利。
高等数学二第一章向量代数与空间解析几何

在 z 轴上, 则 x = y = 0
2.空间向量的坐标表示
(1)起点在原点的向量OM
z z
C
设点 M (x, y,z)
以 i, j, k分别表示沿x, y, z轴 正向的单位向量, 称为基本单位 向量.
ok xi xA
j
M yB y N
OM = OA + AN +NM
a,
b
(起点同).
b
(a,b)
规定:
a
a,
b正向间位于0到之间的那个夹角为
a,
b
的夹角,
记(1)为若(aa,, bb)同或向(,b,则a) (a,b) 0
(2) (3)
若 若
a , a ,
bb不反平向行,,则则(a(a,b,b))(0,
有MC
=
1 2
(a
b)
MA
又
b
= MC a = BD
=
1 2
(a
2MD
b)
D
b
A
a
有MD
=
1 2
(b
MB = MD
a)
1 2
(b
a)
1 2
(a
b)
C M
B
(四) 向量在轴上的投影
1. 点在轴上投影
设有空间一点A及轴
A
u, 过A作u轴的垂直平面,
即: (4 0)2 (1 0)2 (7 z)2
(3 0)2 (5 0)2 (2 z)2
解得:
z
[全]高等数学之向量代数与空间解析几何知识点与题型总结[下载全]
![[全]高等数学之向量代数与空间解析几何知识点与题型总结[下载全]](https://img.taocdn.com/s3/m/a18b0a7008a1284ac9504311.png)
高等数学之向量代数与空间解析几何知识点与题型总结
向量代数与空间解析几何知识点:
(1)向量代数知识点
(2)两平面夹角与两直线夹角公式
两平面夹角和两直线夹角公式(3)点到直线的距离公式
点到直线的距离
(4)常见二次曲线
常见二次曲线
题型一:求曲线上一点到某一固定平面的最近距离和最远距离例1:
【分析】:曲线上一点(x,y,z)到XOY面的距离为|z|,但把目标函数设为
f(x,y,z)=|z|,不便于计算,因而常把目标函数设为f(x,y,z)=z^2,把两个方程看成约束条件使用拉格朗人数乘法求解即可。
解:
题型二:求直线方程
建立直线方程有两个基本方法:
(1)已知直线L上的一个点P(x0,y0,z0)和直线L的方向向量s={l,m,n}就可以确定直线L;
(2)两个不平行的平面相交于一直线;
例2:求过点(-1,0,4)且平行于平面3x-4y+z=10,又与直线x+1=y-3=z/2相交的直线方程。
分析:只要求出所求直线方向向量即可,可利用所求直线与已知平面平行且与已知直线相交直接求。
解:。
《高等数学》第七章 空间解析几何与向量代数

首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p
4(3i 5 j 8k ) 3(2i 4 j 7k )
(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,
向量代数与空间解析几何

向量代数与空间解析几何在数学中,向量代数与空间解析几何是两个重要的分支。
它们分别研究了向量以及在空间中的几何问题。
本文将介绍向量代数以及空间解析几何的基本概念和应用。
一、向量代数1. 向量的定义与性质向量是带有方向和大小的量,通常用有向线段表示。
向量有很多种表示方法,如坐标表示、向量符号表示等。
向量运算包括加法、减法、数乘等,遵循相应的运算规则。
向量的性质包括共线、对称性、平行四边形法则等。
2. 向量的内积与外积向量的内积(点积)和外积(叉积)是向量代数中的重要运算。
内积表示了两个向量之间的夹角关系,具有交换律和分配律等性质。
外积表示了两个向量之间的垂直关系,其大小等于由两个向量所决定的平行四边形的面积。
3. 向量的坐标表示与线性组合向量可以通过坐标表示在坐标系中,分别用行向量和列向量表示。
向量的线性组合是指将多个向量按一定比例相加得到新的向量。
线性组合有重要的几何意义,可以表示平面或空间上的任意点。
二、空间解析几何1. 点、直线与平面空间解析几何研究了点、直线和平面在空间中的性质和相互关系。
点在空间中由坐标表示,在三维坐标系中是一个有序三元组。
直线可以通过点和方向向量表示,平面可以通过点和法向量表示。
2. 直线与平面的位置关系直线和平面有多种位置关系,包括相交、平行、重合、相交于一点等。
这些关系可以通过直线或平面的方程进行判断和计算。
同时,直线与平面之间也存在着夹角的概念,用于描述它们之间的夹角关系。
3. 空间几何体的体积与面积在空间解析几何中,体积和面积是重要的度量指标。
常见的几何体包括球、圆柱、圆锥、棱台等。
通过合适的公式和方法,可以计算出这些几何体的体积和表面积。
三、应用向量代数与空间解析几何在物理学、工程学、计算机图形学等领域中有广泛的应用。
1. 物理学中的力学分析向量代数可以用来描述物理学中的力和运动,如力的合成与分解、速度和加速度的分析等。
空间解析几何则可以用来描述物体在空间中的位置和运动轨迹。
高等数学第七章 向量代数与空间解析几何

第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
第1章 向量代数与空间解析几何内容小结

m
n
p
(3)参数方程:若设 x x0 y y0 z z0 t,
m
n
p
则直线的参数方程为
x y
x0 y0
mt nt
.
z z0 pt
2.直线与直线、直线与平面的夹角
两直线的方向向量所成的不超过 的夹角称为两直线的夹角.直线和它在平面上的投 2
运算律:
○① 交换律 a b b a ;
○② 与数乘结合律 (a) b a (b) (a b) ;
○3 分配律 (a b) c a c bc .
两向量夹角公式:设 a ax , ay , az , b bx ,by ,bz , ( a 0, b 0) ,则
曲线
f
x,
y
0
绕 y 轴旋转所形成的旋转曲面方程为 f
x2 z2 , y
0;
z0
曲线
f
x,
z
0
绕 x 轴旋转所形成的旋转曲面方程为 f
x,
y2 z2
0;
y0
曲线
f
x,
z
0
绕 z 轴旋转所形成的旋转曲面方程为 f
若点 A 的坐标为 (x1, y1, z1) ,点 B 的坐标为 (x2, y2, z2 ) ,则 AB 的分解表示为 AB axi ay j azk ,
AB 的坐标表示为 AB ax , ay , az ,
其中 ax x2 x1, ay y2 y1, az z2 z1分别为 AB 在 x, y, z 轴上的投影. i, j, k 分别为 沿 x, y, z 轴正向的单位向量,它们称为空间直角坐标系的基本单位向量.