空间解析几何与向量代数

合集下载

微积分第七章空间解析几何与向量代数

微积分第七章空间解析几何与向量代数

第七章 空间解析几何与向量代数 为了学习多元函数微积分的需要,本章首先建立空间直角坐标系,并引进在工程技术 上有着广泛应用的向量,介绍向量的一些运算.然后以向量为工具来讨论空间的平面与直线 方程,最后介绍空间曲面与空间曲线及二次曲面.第一节 空间直角坐标系一、 空间直角坐标系众所周知,实数x 与数轴上的点是一一对应的,二元数组(x ,y )与坐标平面上的点是一一对应的,从而可以用代数的方法讨论几何问题.类似地,通过建立空间直角坐标系,把空间中的点与一个三元有序数组(x ,y ,z )建立一一对应关系,用代数的方法研究空间问题.1.空间直角坐标系的建立过空间定点O 作三条互相垂直的数轴,它们都以O 为原点,并且通常取相同的长度单位.这三条数轴分别称为x 轴、y 轴、z 轴.各轴正向之间的顺序通常按下述法则确定:以右手握住z 轴,让右手的四指从x 轴的正向以π/2的角度转向y 轴的正向,这时大拇指所指的方向就是z 轴的正向.这个法则叫做右手法则(图7-1).这样就组成了空间直角坐标系.O 称为坐标原点,每两条坐标轴确定的平面称为坐标平面,简称为坐标面.x 轴与y 轴所确定的坐标面称为xOy 坐标面.类似地有yOz 坐标面、zOx 坐标面.这些坐标面把空间分成八个部分,每一部分称为一个卦限(图7-2).x 、y 、z 轴的正半轴的卦限称为第Ⅰ卦限,从第Ⅰ卦限开始,从z 轴的正向向下看,按逆时针方向,先后出现的卦限依次称为第Ⅱ、Ⅲ、Ⅳ卦限,第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限下方的空间部分依次称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限。

图7-1 图7-22.空间中点的直角坐标设M 为空间的一点,若过点M 分别作垂直于三坐标轴的平面,与三坐标轴分别相交于P ,Q ,R 三点,且这三点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z ,则点M 唯一地确定了一个有序数组(x ,y ,z ).反之,设给定一个有序数组(x ,y ,z ),且它们分别在x 轴、y 轴和z 轴上依次对应于P ,Q 和R 点,若过P ,Q 和R 点分别作平面垂直于所在坐标轴,则这三个平面确定了唯一的交点M .这样,空间的点就与一个有序数组(x ,y ,z )之间建立了一一对应关系(图7-3).有序数组(x ,y ,z )就称为点M 的坐标,记为M (x ,y ,z ),它们分别称为横坐标、纵坐标和竖坐标.显然,原点O的坐标为(0,0,0),坐标轴上的点至少有两个坐标为0,坐标面上的点至少有一个坐标为0.例如,在x轴上的点,均有y=z=0;在xOy坐标面上的点,均有z =0.图7-3 图7-4二、空间两点间的距离公式设空间两点M1(x1, y1, z1)、M2 (x2, y2, z2),求它们之间的距离d=12M M.过点M 1,M2各作三个平面分别垂直于三个坐标轴,形成如图7-4所示的长方体.易知 2222121212()d M M M Q QM M QM==+∆是直角三角形222121()M P PQ QM M PQ=++∆是直角三角形222122M P P M QM''''=++()()()222212121x x y y z z=-+-+-所以d=(7-1-1 )特别地,点M(x,y,z)与原点O(0,0,0)的距离(图7-3)d OM==例1在z轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解因所求的点M在z轴上,故设该点坐标为M(0,0,z),依题意MA MB=,即=解得z=149,所求点为M ( 0,0,149).习题7-11.在空间直角坐标系中,定出下列各点的位置:A (1,3,2),B (1,2,-1),C (-1,-2,3),D(0,-2,0),E (-3,0,1).2. 求点(a ,b ,c )关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标.3. 自点P 0(x 0, y 0, z 0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.4. 求点M (4,-3,5)到各坐标轴间的距离.5. 在y Oz 面上,求与三个已知点A (3,1,2),B (4,-2,2)和C (0,5,1)等距离的点.6. 试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.第二节 向量及其运算一、 向量的概念在物理学和工程技术中经常会碰到一些既有大小又有方向的量,如力、速度等,我们把这类量称为向量(或矢量).空间中的向量常用具有一定长度且标有方向的线段(称为有向线段)来表示。

《高等数学》第七章 空间解析几何与向量代数

《高等数学》第七章 空间解析几何与向量代数

首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p


4(3i 5 j 8k ) 3(2i 4 j 7k )


(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,

高等数学第七章 向量代数与空间解析几何

高等数学第七章 向量代数与空间解析几何

第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。

《高等数学》课件第7章 空间解析几何与向量代数

《高等数学》课件第7章 空间解析几何与向量代数
右手定则,即以右手握住z 轴,当右手的四个手指从 x轴正向以 角度转向 y 轴正向时,大拇指的指向就是z
2 轴的正向.

yOz面

xOy面
x
Ⅶ Ⅷ
z zOx面


•O
y
Ⅵ Ⅴ
二、空间两点间的距离公式
空间两点间的距离:P1( x1, y1, z1 )、P2( x2 , y2 , z2 )
z
P2
P1
ki j,
j i k, k j i , i k j.
(a ybz azby )i (azbx axbz ) j (axby a ybx )k
设 a ax i ay j az k , b bx i by j bz k , 则 ( ax i ay j az k ) (bx i by j bz k ) i j jk ki 0
(2) 结合律 ( a ) b a ( b ) ( a b )
向量积的坐标表达式

a
axi
ay j
azk,
b bxi by j bzk
ab
(a
x
i
a
y
j
az k
)
(bxi
by
j
bzk )
i i j j k k 0,
i j k,
jk i,
第 七 章 向空 量间 代解 数析 几 何 与
目录
第一节 空间直角坐标系 第二节 向量及其线性运算 第三节 向量的坐标 第四节 向量的数量积与向量积 第五节 平面及其方程 第六节 空间直线及其方程 第七节 常见曲面的方程及图形
第一节 空间直角坐标系
一、空间直角坐标系简介
三条垂直相交且具有相同长度单位的数轴,构成一 个空间直角坐标系,交点O称为坐标原点,这三条轴分别 叫做z 轴(横轴)、y 轴(纵轴)和x轴(竖轴).

高等数学第七章空间解析几何与向量代数课件.ppt

高等数学第七章空间解析几何与向量代数课件.ppt

D
b a BD
2 MB
b M
MA
1 2
(
a
b
)
MB
1 2
(
b
a
)
A
a
MC
1 2
(
a
b
)
MD
1 2
(
b
a
)
首页
上页
返回
下页
结束
C B
第9页,共33页。
三、空间直角坐标系
1. 空间直角坐标系的基本概念
过空间一定点 o ,由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
• 坐标原点

z z 轴(竖轴)

计算向量
的模 、方向余弦和方向角 .
解: M1M 2 ( 1 2, 3 2 , 0 2 ) (1, 1, 2 )
(1)2 12 ( 2)2 2
cos 1 , cos 2
2
2
2 ,
,
3
3
3
4
首页
上页
返回
下页
结束
第21页,共33页。
3. 向量在轴上的投影与投影定理
z
r
在三个坐标轴上的分向量:
cos
x r
x x2 y2 z2
z
r
o
y
x
首页
上页
返回
下页
结束
第19页,共33页。
cos x
r
cos y
r
cos rz
x x2 y2 z2
y x2 y2 z2
z x2 y2 z2
方向余弦的性质:
z
r
o
y

向量代数和空间解析几何

向量代数和空间解析几何

向量代数和空间解析几何向量代数和空间解析几何是数学中非常重要的概念,既可以处理经典几何问题,又可以用于表达数学模型。

它们在科学技术、计算机图形学、矩阵计算等方面都有着广泛的应用。

向量代数是计算机科学家和数学家在处理空间问题时最常使用的方法。

它利用向量来描述空间中的点、直线和平面。

向量代数可以用来计算空间的大小、形状、方向、坐标变换等概念。

向量代数涉及的内容主要有线性代数系统、矩阵运算、向量空间等。

它在科技计算机图形学、建模和科学仿真中被广泛使用。

空间解析几何是在几何学中一类研究空间几何结构的重要分支学科。

它被广泛应用于工程、机械、制图学等方面,是解决建筑、室内装潢、雕塑、建筑园林设计、制图学等问题的基础学科。

主要内容有平面几何和立体几何,包括平面的直线、圆弧、多边形等,立体的点、直线、面等概念。

空间解析几何主要用来解决解空间几何图形的问题,是几何学中一类重要的问题。

向量代数和空间解析几何之间有着千丝万缕的联系,它们都是分析和处理空间几何图形的重要工具。

向量代数主要用来解决空间的大小、形状、方向等问题,而空间解析几何则主要用于处理空间中的点、直线和平面等结构。

它们的结合可以清楚的表示空间的量化和定义,是建立数学模型的基础和工具。

向量代数和空间解析几何在科技、计算机图形学、建模和科学仿真方面都有着广泛的应用。

它们可以帮助我们更准确地表示和分析空间问题,为解决实际问题提供帮助,在进一步提高科学技术水平中发挥着重要的作用。

综上所述,向量代数和空间解析几何是数学中重要的概念,可以在科学技术、计算机图形学、矩阵计算等方面得到广泛应用,为解决实际问题提供帮助,在进一步提高科学技术水平中发挥着重要的作用。

它们的结合可以更为清楚地表示和分析空间几何图形,为建立数学模型提供基础。

空间解析几何与向量代数

空间解析几何与向量代数

,其方向向量
s
A1
,
B1
,
C1
A2
,
B2
,
C2
注:直线与平面垂直:直线的方向向量即为平面的法向量;
平面的法向量即为直线的方向向量。
直线与直线平行:两直线的方向行:两平面的法向量平行(也可说相同)。
求直线方程关键是求点、方向向量或两个点
例 1、过点(1,2,3)且平行于直线 x 2 y 1 z 的直线方程为
cos(a,
b)
a
b

ab
Prja
b
b
cos(a,
b)

b
向量在 a
向量上的投影)
例:已知向量 r 的模是 4,它与 u 轴的夹角是 ,则它在 u 轴上的投影是 3
a
b
a
b
0
例 1、设
a
5,
b
2,
(a,b) π ,

2a
3b
3
提示: 2a 3b 2 (2a 3b).(2a 3b)
例 2、若 a (1,0, 2), b (0,1,3) ,求(1)与 a,b 都垂直的单位向量;(2)以 a,b 为邻边的
平行四边形的面积
例 3、若 A(1, 2,3), B1, 2,5,C(0, 2,1) ,求三角形 ABC 的面积
二、平面方程
(1)点法式: A(x x0 ) B( y y0 ) C(z z0 ) 0
例 2、若 a (1, 1, m), b (2, 2,6) ,且 a // b ,则 m= , ,若 a 垂直 b ,则 m= 。
例 3、若 a 1,0, 2 b 3,0,1 ,求 a,b 的夹角。
向量积:

高等数学-第8章-空间解析几何与向量代数

高等数学-第8章-空间解析几何与向量代数

-。

b与a的差b a.向量加法的性质〔运算律〕②结合律+的模一般地不等于a的模加b的模,而有a b a ba b+≤+,即三角形两边之和大于等于第三向量与数的乘法Array、向量的定义:向量a与数m的乘积是一个向量,它的模等于m a,方向与a相同〔假设反〔假设m<0〕。

、向量与数量乘法的性质(运算律)②分配律≠,则向量b平行于a得充分必要条件是:存在唯一实数λ,使b=λa。

a0在实际问题中,有些向量与其起点有关,有些向量与其起点无关。

由于一切向量的共性是它们都有大小和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量〔以后简称向量〕,即只考虑向量的大小和方向,而不管它的起点在什么地方。

当遇到与起点有关的向量时〔例如,谈到某一质点的运动速度时,这速度就是与所考虑的那一质点的位置有关的向量〕,可在一般原则下作特别处理。

上的射影。

投影向量的定义:AB 的始点A B ''就定义AB 在轴u 上的投影向量。

向量在轴上的投影:向量A B ''在轴AB 在轴u 上的投影,记为投影AB 。

向量在轴上的投影性质:性质1〔投影定理〕AB =cos AB ϕ与向量AB 的夹角。

推论:相等矢量在同一轴上的射影相等。

性质2:Prj(12a a +)=Prj 1a +Prj 2a 。

性质2可推广到有限个向量的情形。

性质3:Prj u λa =λPrj u a 。

向量在坐标轴上的分向量与向量的坐标:向量a 在坐标轴上的投影向量,,y z i a j a k 称为向量在坐标轴上的分向量。

向量a 在三条坐标轴上的投影,y z a a 叫做向量的坐标,记为:a ={,,x y a a 由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a a ,由此可知,向量的投影具有与坐标相同的性质。

利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:a ={,x y a a ,{,,}x y zb b b b =利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y z z a b a b b a b +=+++{x a b a b -=-{,}x y a a a λλλ=由此可见,对向量进行加、减及与数相乘,只须对向量的各个坐标分别进行相应的数量运算就行了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 空间解析几何与向量代数
一、选择题
1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B
(A )、x=0.5 y=6 (B)、x=-0.5 y=6
(C)、x=1 y=-7 (D)、x=-1 y=-3
2.平面x -2z = 0的位置是 D 。

(A)、平行XOZ坐标面。

(B)、平行OY轴
(C)、垂直于OY轴 (D)、通过OY轴
3.下列平面中通过坐标原点的平面是 C 。

(A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1
4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。

(A)、1/7 (B)、-1/7 (C)、7 (D)、-7
5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。

(A)、2
π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。

(A )233211+=+=-z y x (C )1
0101z y x =-=+ (B ){
4404=--=--y x z x (D )⎪⎩⎪⎨⎧==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。

(A )、L 1⊥L 2 (B )、L 1//L 2 (C )、L 1与L 2相交但不垂直。

(D )、L 1与L 2为异面直线。

二、填空题
1. 点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。

2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。

3.过点P(4,-1,3)且平行于直线
51232-==-z y x 的直线方程 为 5
32/1134-=+=-z y x 。

三、计算题
1· 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程.
解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为
3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0.
2. 求过点(2, -3, 0)且以n =(1, -2, 3)为法线向量的平面的方程.
解 根据平面的点法式方程, 得所求平面的方程为
(x -2)-2(y +3)+3z =0,
即 x -2y +3z -8=0.
3·求过三点M 1(2, -1, 4)、M 2(-1, 3, -2)和M 3(0, 2, 3)的平面的方程.
解 我们可以用→→
3121M M M M ⨯作为平面的法线向量n .
因为→)6 ,4 ,3(21--=M M , →)1 ,3 ,2(31--=M M ,
所以 →→
k j i k j i n -+=----=⨯=9141326433121M M M M . 根据平面的点法式方程, 得所求平面的方程为
14(x -2)+9(y +1)-(z -4)=0,
即 14x +9y - z -15=0.
4· 求过点(4, -1, 3)且平行于直线5
1123-==-z y x 的直线方程. 解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为
5
31124-=+=-z y x . 5·求过两点M 1(3, -2, 1)和M 2(-1, 0, 2)的直线方程.
解 所求直线的方向向量为s =(-1, 0, 2)-(3, -2, 1)=(-4, 2, 1), 所求的直线方程为 1
12243-=+=--z y x . 6. 求与两平面 x -4z =3和2x -y -5z =1的交线平行且过点(-3, 2, 5)的直线的方程. 解 平面x -4z =3和2x -y -5z =1的交线的方向向量就是所求直线的方向向量s ,
因为 )34(
512 401 )52()4(k j i k j i k j i k i s ++-=---=--⨯-=, 所以所求直线的方程为
1
53243-=-=+z y x . 7.一个平面过两点M 1(1, 11, 1)、M 2(0, 1, -1),且垂直于平面x+y+z=0,求其方程 解:1098=-+z y x。

相关文档
最新文档