学士学位论文--年产200万吨钢的转炉炼钢车间设计钢包设计正文

合集下载

200万吨年连铸坯的电弧炉炼钢车间工艺设计毕业论文

200万吨年连铸坯的电弧炉炼钢车间工艺设计毕业论文

200万吨年连铸坯的电弧炉炼钢车间工艺设计毕业论文目录前言 (5)绪论 (6)1电弧炉炼钢 (6)1.1电弧炉炼钢发展概况及特点 (6)1.1.1电弧炉炼钢的特点 (8)1.2电弧炉设备 (8)1.2.1机械设备 (8)1.2.2电弧炉电气设 (9)1.3电弧炉炼钢工艺 (9)2 电弧炉炼钢车间的设计方案 (10)2.1电弧炉车间生产能力的计算 (10)2.1.1 电炉容量和台数的确定 (10)2.1.2 电炉车间生产技术指标 (10)2.2电炉车间设计方案 (11)2.2.1电弧炉炼钢车间设计与建设的基础材料 (11)2.2.2产品大纲 (12)2.2.3电炉炼钢车间的组成 (12)2.2.4电炉车间各跨的布置情况 (12)3电炉炉型设计和变压器的选择 (13)3.1电炉炉型设计 (13)3.1.1炉型设计 (13)3.1.2电弧炉炉型尺寸的确定 (13)3.2熔池形状和尺寸 (14)3.2.1熔化室尺寸 (15)3.2.2炉衬厚度 (16)3.2.3炉门尺寸的确定 (16)3.3偏心底出钢箱的设计 (17)3.3.1EBT电炉的炉壳 (17)3.3.2EBT电炉的炉壳 (18)3.3.3出钢口 (18)3.3.4机械装置 (18)3.3.5偏心底出钢箱的设置 (18)3.4电炉变压器容量和参数的确定 (19)3.4.1确定变压器的容量 (19)3.4.2电极直径的确定 (20)3.4.3电极心圆的尺寸 (20)3.4.4水冷挂渣炉壁的设置 (20)3.4.5水冷挂渣炉壁的参数计算 (21)4电弧炉炼钢的物料平衡和热平衡 (23)4.1物料平衡算 (23)4.1.1熔化期物料平衡 (23)4.1.2氧化期物料平衡 (31)4.2热平衡计算 (43)4.2.1计算热收入Q S (43)5电弧炉炼钢车间的工艺布置 (47)5.1原料跨 (47)5.1.1电弧炉车间原料供应的特点 (47)5.1.2原料跨的宽度 (48)5.1.3原料跨总长度的确定 (49)5.2炉子跨整体布置 (49)5.2.1炉子跨整体平台高度 (49)5.2.2炉子的变压器和控制室 (49)5.2.3电弧炉出渣和炉渣处理 (50)5.2.4炉子跨的长度、跨度、高度 (50)5.2.5精炼炉整体布置 (50)5.2.6精炼炉工艺布置 (50)5.2.7钢包回转台的布置 (51)5.2.8其他布置 (51)5.3出钢跨: (51)5.4连铸跨 (51)5.4.1整体布置 (51)5.4.2连铸机操作平台的高度、长度、宽度 (51)5.4.3连铸机总高和本跨吊车轨面标高 (52)5.4.4连铸机的总长度 (52)5.5出坯跨 (53)5.5.1备注 (53)6电弧炉炼钢工艺设计 (54)6.1废钢 (54)6.2辅助料 (55)6.2.1对辅助料的要求 (55)6.2.2供应方案 (56)6.2.3配料 (57)6.2.4装料和补料 (58)6.2.5电弧炉冶金工艺 (59)6.2.6精炼工艺 (60)6.2.7连铸操作工艺 (61)7电弧炉主要设备选择 (62)7.1校核年产量 (62)7.1.1对电极的要求: (63)7.2精炼炉设备选择 (63)7.3连铸设备选型 (63)7.3.1钢包允许的最大浇注时间 (63)7.3.2拉坯速度 (64)7.3.3连铸机的流数 (65)7.3.4弧型半径 (66)7.3.5连铸机作业率 (67)7.3.6连铸坯收得率 (67)7.3.7连铸机生产能力的计算 (67)8中间其运载设备 (68)8.1的形状和构造 (68)8.1.2主要工艺参数 (69)8.1.3中间包及运载装置 (69)8.2结晶器的性能要求及其结构要求 (70)8.2.1结晶器主要参数选择 (70)8.3结晶器的振动装置 (71)8.4二次冷却装置 (71)8.4.1二次冷却装置的基本结构 (71)8.4.2二次冷却水冷喷嘴的布置 (71)8.4.3二次冷却水量的计算 (72)8.5拉矫装置及引锭装置. (72)8.6引锭装置 (72)8.7铸坯切割装置 (72)8.8盛钢桶的选择 (72)8.9渣罐及渣罐车的选择 (75)8.9.1车间所需的渣罐数量 (75)8.9.1车间所需渣罐车数量 (75)8.10起重机的选择 (75)8.11其它辅助设备的选择 (75)9车间人员编制及主要经济技术指标 (76)9.1技术经济指标 (76)9.1.1产量指标 (76)9.1.2质量指标 (76)9.1.3作业效率指标 (76)9.1.4连铸生产技术指标 (76)9.2车间人员编制 (76)10.综述 (80)前言通过四年的学习我对冶金工程有了较深入的理解,熟悉钢铁工业的生产原理及相关操作。

设计年生产炼钢生铁200万吨的高炉车间

设计年生产炼钢生铁200万吨的高炉车间

设计年生产炼钢生铁200万吨的高炉车间设计年产炼钢生铁200万吨的高炉车间河北理工大学成人教育毕业设计(论文)任务书: :3河北理工大学成人教育毕业设计(论文)进程表指导教师签字:4毕业设计评定书-指导教师对设计的评语:成绩:指导教师:200 年月日5毕业设计评定书-评议人对设计的评语及评定的成绩:成绩:评议人:200 年月日6毕业设计评定书-目录摘要 (1)引言 (2)1绪论 (4)1.1概述 (4)1.2高炉生产主要经济技术指标 (4)1.3高炉冶炼现状及发展 (6)1.4本设计采用的新技术 (7)1.5高炉辅助设计和生产流程图 (7)2高炉本体设计 (8)2.1.总述 (8)2.2确定年工作日:347天 (9)2.3定容积: (9)2.4炉缸尺寸 (9)2.5死铁层厚度 (10)2.6炉腰直径炉腹角炉腹高度 (10)2.7炉喉直径炉喉高度 (10)2.8炉身角炉身高度炉腰高度 (11)2.9校核炉容 (11)3 厂址选择 (12)3.1考虑因素 (12)3.2 要求 (13)4 供料系统 (14)4.1焦矿槽容积的确定 (15)4.1.1贮矿槽和附矿槽的布置、容积及数目的确定 (15) 4.1.2 焦矿槽的布置、容积及数目的确定 (16)4.2槽上、槽下设备及参数的确定 (16)4.2.1槽上设备 (16)4.2.2槽下设备及参数选择 (16)4.3皮带上料机能力的确定 (17)—物料堆比重,1.6 3/m t....................... 错误!未定义书签。

4.4 高炉槽下上料系统的设计与改进 (18)5 送风系统 (20)5.1.1 高炉入炉风量 (20)5.1.2 鼓风机风量 (21)5.1.3高炉鼓风压力 (21)5.1.4 鼓风机的选择 (21)5.2.1 热风炉座数的确定 (22) 5.2.2 热风炉工艺布置 (22)5.2.3 热风炉型式的确定 (22) 5.2.4 热风炉主要尺寸的计算 (22) 5.2.5 热风炉设备 (25)5.2.6 热风炉管道及阀门 (25)6 渣铁处理系统 (28)6.1风口平台及出铁场 (29)6.2炉渣处理设备 (29)6.3铁水处理设备 (32)6.3.1 铁水罐车 (32)6.3.2 铸铁机 (33)6.3.3 铁水炉外脱硫设备 (33) 6.4铁沟流咀布置 (33)6.4.1 渣铁沟的设计 (33)6.4.2 流咀的设计 (34)6.5炉前设备的选择 (34)6.5.1 开铁口机 (34)6.5.2 堵铁口泥炮 (34)6.5.3 堵渣机 (35)6.5.4 换风口机 (35)。

毕业论文:高炉炼铁系统设计-精品【范本模板】

毕业论文:高炉炼铁系统设计-精品【范本模板】

莱芜职业技术学院毕业论文论文标题:高炉炼铁系统设计作者:凌宗峰学校名称:莱芜职业技术学院专业:冶金技术年级:07冶金技术指导教师:冯博楷日期:2010。

4。

1目录内容提要与关键词¨¨¨¨¨¨¨¨¨¨¨3手抄在论文本上,最后再根据内容补填目录,要求手写!正文¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨4参考文献¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨58摘要本设计要求建年产量为200万吨生铁的高炉系统。

高炉车间的七大系统:即高炉本体系统、上料系统、渣铁处理系统、喷吹系统、送风系统、除尘系统和冷却系统都做了较为详细的叙述。

高炉炼铁是获得生铁的主要手段,是钢铁冶金过程中最重要的环节之一,在国民经济建设中起着举足轻重的作用。

高炉是炼铁的主要设备,本着优质、高产、低耗和对环境污染小的方针,在预设计建造一座年产生铁200万吨的高炉炼铁系统,本设计说明书详细的对其进行了高炉设计,其中包括绪论、工艺计算(包括配料计算、物料平衡和热平衡)、高炉炉型设计、高炉各部位炉衬的选择、炉体冷却设备的选择、风口及出铁场的设计、原料系统、送风系统、煤气处理系统、渣铁处理系统、高炉喷吹系统等。

设计的同时还结合国内外相同炉容高炉的一些先进的生产操作经验和相关的数据,力争使该设计的高炉做到高度机械化、自动化和大型化,以期达到最佳的生产效益. 关键词:高炉;炼铁;设计;煤气处理;渣鉄处理;1绪论1。

1概述钢铁是重要的金属材料之一,被广泛应用于各个领域,钢铁生产水平是一个国家发展程度的标志。

年产200万吨炼铁高炉车间设计

年产200万吨炼铁高炉车间设计

年产200万吨炼铁高炉车间设计年产200万吨炼铁高炉车间设计摘要人类获得生铁重要手段是通过高炉炼铁,高炉炼铁是钢铁冶金中的基础环节,同时也是最重要的环节。

本设计任务是设计一个年生产能力达200万吨炼铁高炉车间。

本次设计的高炉1100m³。

高炉炉型为五段式,高炉炉衬设计依据各个部分的工作条件的不同以及炉衬破损的机理,选择相应的耐火材料。

热风炉采用的传统改进型内燃式热风炉,燃烧室为复合型断面,热风炉数量为3座,关于热风炉的设计部分还包括热风炉的各种设备以及相应的技术参数。

上料系统采用的是可不间断上料,原料破损率低的皮带运输上料,炉顶装料设备是并罐式无钟炉顶。

煤气处理系统的功能是降低高炉煤气粉尘含量,一般分为三个阶段--粗除尘、半精细除尘、精细除尘。

煤粉喷吹系统采用了单管路串罐式直接喷吹工艺,这种工艺大大提高了喷吹效率,改善冶炼条件。

本设计中还包括了其他一些环节的设计,例如渣铁处理系统。

在设计的同时,广泛参考借鉴前辈的研究数据和国内外同级别炉容的高炉的实际生产经验,从理论和实践并举的角度出发,努力使本设计的高炉在技术操作上实现自动化和机械化,并把对环境的损害降到最低。

关键词:高炉,冶金计算,热风炉,鼓风机,煤气处理,渣铁处理目录前言 (1)第一章高炉炼铁概况 (2)§1.1 高炉炼铁的发展概况 (2)§1.2 高炉及其附属设备 (2)§1.3 高炉炼铁设计的基本原则 (2)第二章高炉炼铁综合计算 (4)§2.1 原始资料 (4)§2.2 配料计算 (5)§2.3 物料平衡计算 (8)§2.4 热平衡计算 (12)第三章高炉炼铁车间设计 (17)§3.1 高炉座数及容积设计 (17)第四章高炉本体设计 (18)§4.1 炉型设计 (18)§4.2 炉衬设计 (20)§4.3 高炉冷却设备 (21)§4.4 高炉冷却系统 (23)§4.5 高炉送风管路 (23)§4.6 高炉钢结构 (23)§4.7 高炉基础 (24)第五章附属设备系统 (25)§5.1 供料系统 (25)§5.2 炉顶装料系统 (26)§5.3 送风系统 (27)§5.4 煤气处理系统 (30)§5.5 煤粉喷吹系统 (33)§5.6 渣铁处理系统 (34)第六章高炉炼铁车间平面布置 (37)§6.1 应遵循的原则 (37)§6.2 高炉炼铁车间平面布置的形式 (37)结论 (38)前言随着改革开放打开国门,我国的经济飞速发展,也促进了钢铁业的飞速发展。

年产200万吨炼钢生铁的高炉炼铁车间

年产200万吨炼钢生铁的高炉炼铁车间

毕业设计(论文)任务书冶金与能源工程学院冶金工程专业 2008 级学生:宝富毕业设计(论文)题目:根据昆钢原、燃料条件,设计一座年产炼钢生铁200万吨的高炉炼铁车间毕业设计(论文)容:1.主要技术经济指标选择与论证;2.炼铁全计算(配料计算;物料平衡与热平衡计算);3.炉座规划、炉型计算;4.炉体结构设计与主要附属设备选型;5.绘制车间平面布置图、车间纵剖面图各一;6.编制设计说明书一份。

专题(子课题)题目:专题(子课题)容:毕业设计(论文)指导教师(签字):主管教学院(部)长(签字):年月日年产200万吨炼钢生铁的高炉炼铁车间设计说明书编制人: 宝富学号: 0专业: 冶金工程年级: 2008级学院: 冶金与能源工程学院指导教师: 丁跃华指导教师职称: 教授指导教师单位: 冶金与能源工程学院提交日期:2012年6月1日Design Specificationon a Blast Furnace Iron-making Plantwith Annual Capacity of 2.0 Million Tons of Hot MetalDesigner:School Number:Specialty:Grade:Faculty: YangBaoFu 0Metallurgical Engineering2008Metallurgical Engineering and energy, KUSTSupervisor:Title:Set-up: Ding YuehuaProfessorEngineering,KUST Faculty of Metallurgical and energySubmission Date: Jun. 1, 2012目录摘要VIABSTRACTVII前言IX第一章高炉炼铁设计11.1高炉炼铁设计概述11.1.1 高炉炼铁的发展现状11.1.2 高炉炼铁生产工艺流程31.1.3 高炉与其附属设备41.2高炉炼铁设计的基本原则51.2.1 高炉炼铁设计应遵循的基本原则51.2.2 钢铁厂的组成61.3设计任务61.4高炉生产主要技术经济指标71.5设计所采用的先进技术101.6高炉炼铁厂的厂址选择12第二章高炉炼铁综合计算132.1原始资料142.2配料计算162.2.1 铁矿石用量的计算162.2.2渣量与炉渣成分的计算192.3物料平衡计算222.3.1 鼓风量的计算22G的计算262.3.2鼓风质量b2.3.3 煤气量的计算272.3.4煤气中水蒸气量的计算322.3.5考虑炉料的机械损失后的实际入炉量322.3.6编制物料平衡表332.4高炉热平衡计算342.4.1热量收入的计算342.4.2热量支出的计算37第三章高炉炼铁车间设计453.1高炉座数与容积确定453.1.1 生铁产量的确定453.1.2 高炉炼铁车间总容积的确定453.1.3 高炉座数的确定463.2高炉炼铁车间平面布置463.2.1 高炉炼铁车间平面布置应遵循的原则463.2.2 高炉炼铁车间平面布置形式473.3高炉车间劳动定员47第四章高炉本体设计494.1高炉炉型494.1.1 五段式高炉炉型494.1.2 炉型设计与计算554.2高炉炉衬594.2.1 炉衬破损机理594.2.2 高炉用耐火材料的选择634.2.3 高炉炉衬的设计与砌筑65 4.3高炉冷却设备714.3.1 冷却设备的作用714.3.2 冷却介质714.3.3 高炉冷却结构形式724.3.4 高炉给排水系统774.3.5 高炉冷却系统784.4高炉送风管路794.4.1热风围管804.4.2 送风支管804.4.3 直吹管814.4.4 风口装置824.5高炉钢结构844.5.1 高炉本体钢结构854.5.2 炉壳864.5.3 炉体框架874.6高炉基础874.6.1 高炉基础的负荷874.6.2 对高炉基础的要求88第五章附属设备系统895.1供料系统895.1.1 贮矿槽、贮焦槽与槽下运输称量895.1.2 皮带运输925.2装料设备935.2.1 并罐式无钟炉顶装料设备935.2.2 探料装置965.3送风系统975.3.1 高炉鼓风机975.3.2 热风炉1005.3.3 提高风温的途径1035.4煤粉喷吹系统1045.4.1 煤粉制备工艺1055.4.2 喷吹工艺1075.5煤气处理系统1085.5.1 重力除尘器1095.5.2 溢流文氏管1115.5.3 脱水器1115.6渣铁处理系统1125.6.1 风口平台与出铁场设计1125.6.2 炉前主要设备1145.6.3 铁水处理设备1165.6.4 炉渣处理设备116第六章能源回收利用和环境保护118 6.1高炉炉顶余压发电1186.2热风炉烟道废气余热回收119 6.3环境保护120第七章成本核算1217.1营业收入1217.2成本费用估算122结论124总结与体会125辞126参考文献126附录一(英文原文)127附录二(翻译)146摘要本论文是根据昆钢原、燃料条件,设计一座年产200万吨炼钢生铁的高炉炼铁车间。

年产200万吨合格连铸坯的转炉炼钢系统设计

年产200万吨合格连铸坯的转炉炼钢系统设计

年产200万吨合格连铸坯的转炉炼钢系统设计错误!未找到引用源。

摘要由于市场对钢材的大量需求,现代化的炼钢设备都在向着大型化的方向发展,本设计主要是模拟建立一个现代化年产200万吨的中型炼钢企业,以满足市场对钢材的需求,促进经济的稳定发展。

设计内容主要包括:转炉炉型设计、氧枪喷头设计、各种附属设备的确定等。

通过本设计从而获得有利于冶炼的参数,对现场生产起到一定的指导作用,并为现场生产提供理论依据。

关键词:炼钢;炉型设计目录摘要 (1)ABSTRACT ........................................................................... 错误!未定义书签。

第一章文献综述 . (1)1.1炼钢的基本任务 (1)1.2炼钢方法分类 (1)1.2.1平炉炼钢法 (1)1.2.2电弧炉炼钢法 (1)1.2.3转炉炼钢法 (1)1.3氧气转炉炼钢法的诞生 (2)1.3.1世界氧气顶吹转炉炼钢法发展概述 (3)1.3.2国内氧气转炉炼钢方法的发展应用概述 (4)1.4转炉炼钢技术介绍及在冶金企业中的的应用 (6)1.4.1转炉炼钢的基本任务 (6)1.4.2转炉炼钢的种类与特征 (6)1.4.3氧气顶吹转炉炼钢过程简述 (7)1.5冶炼的五大制度 (8)1.5.1装入制度 (8)1.5.2供氧制度 (9)1.5.3造渣制度 (9)1.5.4温度制度 (9)1.5.5终点控制、脱氧及出钢 (10)1.5.6现代转炉炼钢工艺流程 (10)1.6转炉新技术的介绍 (11)1.6.1顶底复合吹炼技术 (11)1.6.2溅渣护炉技术 (12)1.7现代转炉炼钢技术存在的问题 (13)第二章产品方案及品种 (14)2.1生产规模 (14)2.2产品方案 (14)2.2.1产品大纲 (14)2.2.2生产钢种 (14)2.3金属平衡表 (16)第三章转炉炉型设计 (17)3.1 转炉的座数、公称容量及生产能力的确定 (17)3.1.1转炉容量和座数的确定 (17)3.1.2计算年出钢炉数 (17)3.1.3计算车间年产钢量 (18)3.2转炉炉型的主要参数 (18)3.2.1炉型选择 (18)3.2.2炉容比 (19)3.2.3熔池尺寸的计算 (19)3.2.4炉帽尺寸的确定 (20)3.2.5炉身尺寸确定 (20)3.2.6出钢口尺寸的确定 (21)3.2.7炉衬厚度确定 (21)3.2.8炉壳厚度确定 (21)3.2.9验算高宽比 (22)第四章氧枪设计 (23)4.1氧枪喷头设计 (23)4.1.1原始数据 (23)4.1.2计算氧流量 (23)4.1.3选用喷孔 (23)4.1.4设计工况氧压 (23)4.1.5 计算喉口直径 (23)4.1.6计算d出 (24)4.1.7计算扩张段长度 (24)4.1.8 收缩段长度 (24)4.2氧枪枪身设计 (24)4.2.1原始数据 (24)4.2.2中心氧管管径确定 (25)4.2.3中层套管管径的确定 (25)4.2.4外层套管管径的确定 (25)4.2.5中层套管下沿至喷头面间隙h (26)第五章车间其它主要设备的计算和选择 (27)5.1 铁水供应系统设备 (27)5.1.1混铁炉容量和座数 (27)5.2 废钢供应系统和设备 (27)5.2.1废钢间面积 (27)5.2.2废钢槽容量 (28)5.3 盛钢桶容量和数量的选择 (28)5.4渣罐车数量的确定 (29)5.4.1渣罐车数量 (29)5.5起重机的选择及台数的确定 (30)第六章转炉车间主厂房的工艺布置和尺寸选择 (32)6.1主厂房主要尺寸的确定 (32)6.1.1原料跨间布置 (32)6.1.2炉子跨间布置 (33)6.1.3浇铸跨主要尺寸的确定 (34)6.1.4精炼跨跨度确定 (34)6.2 连铸区域的布置 (34)第七章烟尘处理系统 (36)7.1国内外转炉炼钢烟尘处理系统概况 (36)7.2转炉煤气干法(LT法)除尘技术工艺介绍 (37)7.3转炉煤气干法除尘系统主要构成及技术特点 (38)7.3.1蒸发冷却器 (38)7.3.2静电除尘器 (39)7.3.3煤气冷却器 (39)7.3.4控制系统 (39)7.4经济效益和社会效益分析 (40)7.5转炉煤气干法除尘系统发展前景 (41)参考文献 (42)结论 (43)致谢 (44)第一章文献综述1.1炼钢的基本任务炼钢的某木任务是:利用当前主要炼钢方法,在造好渣的前提下,进行脱碳、脱磷、脱硫、升温以反脱氧和合分化、去除有害气体、去除非金属夹杂等过程。

毕业设计_年产200万吨钢的转炉炼钢车间设计——钢包设计

毕业设计_年产200万吨钢的转炉炼钢车间设计——钢包设计

攀枝花学院本科毕业设计(论文)摘要攀枝花学院本科毕业设计(论文)年产200万吨钢的转炉炼钢车间设计——钢包设计攀枝花学院本科毕业设计(论文)摘要摘要根据年产200万吨钢转炉车间设计的要求和国家相关政策的规定,确定转炉的大小为220吨,进一步得到了符合实际生产的与之匹配的钢包容量大小为250吨,通过计算确定钢包上部内径和高度均为4289mm,生产过程中所需要的钢包的数量为11个。

对钢包用耐火材料进行了设计,分为2套钢包即浇注钢包和砌筑钢包。

分别对其进行分析确定了他们的绝热层和工作层的设计方法,对于浇注钢包采用整体浇注和或剥皮浇注,对砌筑钢包采用综合砌筑的方案;通过对钢包透气砖和滑动水口系统耐火材料的外形设计,确定了透气砖系统耐火材料的尺寸和滑动水口系统耐火材料的尺寸;最后根据钢包用耐火材料的使用要求,针对不同钢种和不同部位的不同要求以及耐火材料的理化性能指标,对钢包所用的耐火材料进行了优化选择。

关键词炼钢,钢包,砌筑,浇注,耐火材料攀枝花学院本科毕业设计(论文)ABSTRACTABSTRACTAccording to the annual output of 2 million tons of steel converter workshop design requirements and relevant national policies and regulations, determine the size of the converter is 220 tons, has been further conform to the actual production of matching the ladle size capacity of 250 tons, through the calculate and determine the ladle upper inner diameter and height is 4289 mm, the production process required the number of ladles for 11. Ladle refractory materials used for the design, divided into 2 sets of ladle pouring ladle and laying the ladle. Respectively to analyze it to determine their thermal barrier and layer, the design method of the work for adopts the integral casting and or peeling pouring ladle cover in casting, for the composite masonry methods in laying the ladle; Through the vent brick of ladle refractory and slide gate system design, determine the size of the system of gas supply brick and refractory materials and refractory materials the size of the slide gate system; Finally according to the requirements of the ladle refractory material used, according to different steel grade and the different requirements of different parts and the rational index of the refractory, the ladle refractory material used in the optimized choice.Key words steelmaking, ladle, laying, casting, refractory material攀枝花学院本科毕业设计(论文)目录目录摘要 (II)ABSTRACT (III)1 绪论 (1)2 转炉的座数、公称容量及生产能力的确定 (2)2.1 转炉的容量和座数的确定 (2)2.2 计算年出钢炉数 (2)2.3 车间的年产钢量的计算 (3)3 钢包尺寸及数量的确定 (4)3.1 钢包尺寸的计算 (4)3.2 钢包质量的计算 (7)3.3 钢包重心计算 (8)3.4钢包数量的计算 (9)4 钢包用耐火材料的设计 (10)4.1浇注钢包的设计方法 (10)4.1.1包壁绝热层的设计方法 (10)4.1.2钢包工作层的设计方法 (10)4.1.2.1普通不精炼钢包 (10)4.1.2.2简单炉后处理的精炼钢包 (12)4.1.3钢包浇注的工作方案 (12)4.1.3.1整体浇注钢包的方法 (12)4.1.3.2采用剥皮套浇的浇注钢包施工方法 (13)4.2砖砌钢包的设计 (14)4.2.1砖砌钢包的结构设计 (14)4.2.1.1绝热层的设计 (14)4.2.1.2永久层的设计 (14)4.2.1.3工作层的设计 (14)4.3钢包透气砖和滑动水口系统耐火材料的外形设计 (14)4.3.1透气砖系统耐火材料的尺寸设计 (14)4.3.2滑动水口系统耐火材料的尺寸设计 (16)5 钢包用耐火材料的选择 (19)攀枝花学院本科毕业设计(论文)目录5.1钢包用耐火材料的要求 (19)5.2钢包耐火材料的选用 (21)5.2.1钢包隔热层和永久层 (21)5.2.2钢包工作层 (21)5.2.3滑动水口用耐火材料 (22)结论 (23)参考文献 (24)致谢 (1)攀枝花学院本科毕业设计(论文) 1 绪论1 绪论钢包是连接转炉和连铸中间的容器,而且几乎所有钢水的炉外精炼过程都是在钢包中进行;钢包的工作状态好坏不仅影响炼钢过程钢液质量、生产节奏、炉衬寿命;也会影响后序精炼和连铸过程中的包衬寿命、钢水质量和生产节奏,特别是影响最终的钢铁产品的制造成本和内在质量。

年产200万吨钢的转炉炼钢车间设计——钢包设计设计0000

年产200万吨钢的转炉炼钢车间设计——钢包设计设计0000

年产200万吨钢的转炉炼钢车间设计——钢包设计设计0000攀枝花学院本科毕业设计(论文)年产200万吨钢的转炉炼钢车间设计——钢包设计学生姓名:蒲维学生学号: 200911103045院(系):资源与环境工程学院年级专业: 2009级冶金工程1班指导教师:芶淑云教授二〇一三年五月攀枝花学院本科毕业设计(论文)摘要摘要根据年产200万吨钢转炉车间设计的要求和国家相关政策的规定,确定转炉的大小为220吨,进一步得到了符合实际生产的与之匹配的钢包容量大小为250吨,通过计算确定钢包上部内径和高度均为4289mm,生产过程中所需要的钢包的数量为11个。

对钢包用耐火材料进行了设计,分为2套钢包即浇注钢包和砌筑钢包。

分别对其进行分析确定了他们的绝热层和工作层的设计方法,对于浇注钢包采用整体浇注和或剥皮浇注,对砌筑钢包采用综合砌筑的方案;通过对钢包透气砖和滑动水口系统耐火材料的外形设计,确定了透气砖系统耐火材料的尺寸和滑动水口系统耐火材料的尺寸;最后根据钢包用耐火材料的使用要求,针对不同钢种和不同部位的不同要求以及耐火材料的理化性能指标,对钢包所用的耐火材料进行了优化选择。

关键词炼钢,钢包,砌筑,浇注,耐火材料ABSTRACTAccording to the annual output of 2 million tons of steel converter workshop design requirements and relevant national policies and regulations, determine the size of the converter is 220 tons, has been further conform to the actual production of matching the ladle size capacity of 250 tons, through the calculate and determine the ladle upper inner diameter and height is 4289 mm, the production process required the number of ladles for 11. Ladle refractory materials used for the design, divided into 2 sets of ladle pouring ladle and laying the ladle. Respectively to analyze it to determine their thermal barrier and layer, the design method of the work for adopts the integral casting and or peeling pouring ladle cover in casting, for the composite masonry methods in laying the ladle; Through the vent brick of ladle refractory and slide gate system design, determine the size of the system of gas supply brick and refractory materials and refractory materials the size of the slide gate system; Finally according to the requirements of the ladle refractory material used, according to different steel grade and the different requirements of different parts and the rational index of the refractory, the ladle refractory material used in the optimized choice.Key words steelmaking, ladle, laying, casting, refractory material目录摘要 (I)ABSTRACT (II)1 绪论 (1)2 转炉的座数、公称容量及生产能力的确定 (3)2.1 转炉的容量和座数的确定 (3)2.2 计算年出钢炉数 (3)2.3 车间的年产钢量的计算 (4)3 钢包尺寸及数量的确定 (5)3.1 钢包尺寸的计算 (5)3.2 钢包质量的计算 (8)3.3 钢包重心计算 (9)3.4钢包数量的计算 (11)4 钢包用耐火材料的设计 (12)4.1浇注钢包的设计方法 (12)4.1.1包壁绝热层的设计方法 (12)4.1.2钢包工作层的设计方法 (12)4.1.2.1普通不精炼钢包 (12)4.1.2.2简单炉后处理的精炼钢包144.1.3钢包浇注的工作方案 (16)4.1.3.1整体浇注钢包的方法 (16)4.1.3.2采用剥皮套浇的浇注钢包施工方法 (16)4.2砖砌钢包的设计 (17)4.2.1砖砌钢包的结构设计 (17)4.2.1.1绝热层的设计 (17)4.2.1.2永久层的设计 (17)4.2.1.3工作层的设计 (17)4.3钢包透气砖和滑动水口系统耐火材料的外形设计 (18)4.3.1透气砖系统耐火材料的尺寸设计184.3.2滑动水口系统耐火材料的尺寸设计 (19)5 钢包用耐火材料的选择 (23)5.1钢包用耐火材料的要求 (23)5.2钢包耐火材料的选用 (25)5.2.1钢包隔热层和永久层 (25)5.2.2钢包工作层 (25)5.2.3滑动水口用耐火材料 (26)结论 (28)参考文献 (29)致谢 (30)1 绪论钢包是连接转炉和连铸中间的容器,而且几乎所有钢水的炉外精炼过程都是在钢包中进行;钢包的工作状态好坏不仅影响炼钢过程钢液质量、生产节奏、炉衬寿命;也会影响后序精炼和连铸过程中的包衬寿命、钢水质量和生产节奏,特别是影响最终的钢铁产品的制造成本和内在质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

攀枝花学院本科毕业设计(论文)年产200万吨钢的转炉炼钢车间设计——钢包设计学生姓名:蒲维学生学号: 200911103045院(系):资源与环境工程学院年级专业: 2009级冶金工程1班指导教师:芶淑云教授二〇一三年五月攀枝花学院本科毕业设计(论文)摘要摘要根据年产200万吨钢转炉车间设计的要求和国家相关政策的规定,确定转炉的大小为220吨,进一步得到了符合实际生产的与之匹配的钢包容量大小为250吨,通过计算确定钢包上部内径和高度均为4289mm,生产过程中所需要的钢包的数量为11个。

对钢包用耐火材料进行了设计,分为2套钢包即浇注钢包和砌筑钢包。

分别对其进行分析确定了他们的绝热层和工作层的设计方法,对于浇注钢包采用整体浇注和或剥皮浇注,对砌筑钢包采用综合砌筑的方案;通过对钢包透气砖和滑动水口系统耐火材料的外形设计,确定了透气砖系统耐火材料的尺寸和滑动水口系统耐火材料的尺寸;最后根据钢包用耐火材料的使用要求,针对不同钢种和不同部位的不同要求以及耐火材料的理化性能指标,对钢包所用的耐火材料进行了优化选择。

关键词炼钢,钢包,砌筑,浇注,耐火材料攀枝花学院本科毕业设计(论文)ABSTRACTABSTRACTAccording to the annual output of 2 million tons of steel converter workshop design requirements and relevant national policies and regulations, determine the size of the converter is 220 tons, has been further conform to the actual production of matching the ladle size capacity of 250 tons, through the calculate and determine the ladle upper inner diameter and height is 4289 mm, the production process required the number of ladles for 11. Ladle refractory materials used for the design, divided into 2 sets of ladle pouring ladle and laying the ladle. Respectively to analyze it to determine their thermal barrier and layer, the design method of the work for adopts the integral casting and or peeling pouring ladle cover in casting, for the composite masonry methods in laying the ladle; Through the vent brick of ladle refractory and slide gate system design, determine the size of the system of gas supply brick and refractory materials and refractory materials the size of the slide gate system; Finally according to the requirements of the ladle refractory material used, according to different steel grade and the different requirements of different parts and the rational index of the refractory, the ladle refractory material used in the optimized choice.Key words steelmaking, ladle, laying, casting, refractory material攀枝花学院本科毕业设计(论文)目录目录摘要 (I)ABSTRACT (II)1 绪论 (1)2 转炉的座数、公称容量及生产能力的确定 (2)2.1 转炉的容量和座数的确定 (2)2.2 计算年出钢炉数 (2)2.3 车间的年产钢量的计算 (3)3 钢包尺寸及数量的确定 (4)3.1 钢包尺寸的计算 (4)3.2 钢包质量的计算 (7)3.3 钢包重心计算 (8)3.4钢包数量的计算 (9)4 钢包用耐火材料的设计 (10)4.1浇注钢包的设计方法 (10)4.1.1包壁绝热层的设计方法 (10)4.1.2钢包工作层的设计方法 (10)4.1.2.1普通不精炼钢包 (10)4.1.2.2简单炉后处理的精炼钢包 (12)4.1.3钢包浇注的工作方案 (12)4.1.3.1整体浇注钢包的方法 (12)4.1.3.2采用剥皮套浇的浇注钢包施工方法 (13)4.2砖砌钢包的设计 (14)4.2.1砖砌钢包的结构设计 (14)4.2.1.1绝热层的设计 (14)4.2.1.2永久层的设计 (14)4.2.1.3工作层的设计 (14)4.3钢包透气砖和滑动水口系统耐火材料的外形设计 (14)4.3.1透气砖系统耐火材料的尺寸设计 (14)4.3.2滑动水口系统耐火材料的尺寸设计 (16)5 钢包用耐火材料的选择 (19)攀枝花学院本科毕业设计(论文)目录5.1钢包用耐火材料的要求 (19)5.2钢包耐火材料的选用 (21)5.2.1钢包隔热层和永久层 (21)5.2.2钢包工作层 (21)5.2.3滑动水口用耐火材料 (22)结论 (23)参考文献 (24)致谢 (25)攀枝花学院本科毕业设计(论文) 1 绪论1 绪论钢包是连接转炉和连铸中间的容器,而且几乎所有钢水的炉外精炼过程都是在钢包中进行;钢包的工作状态好坏不仅影响炼钢过程钢液质量、生产节奏、炉衬寿命;也会影响后序精炼和连铸过程中的包衬寿命、钢水质量和生产节奏,特别是影响最终的钢铁产品的制造成本和内在质量。

钢包是炼钢生产重要的生产设备,炉外精炼对钢包的结构和使用又提出了更高更新的要求。

钢包工作条件非常苛刻。

包衬受高温、钢液的静压和出钢时的巨大影响,同时受到强烈的机械侵蚀、化学侵蚀和温度的急冷急热的影响[1]。

随着转炉炼钢技术的不断改进和发展,也对各种二次精炼钢包精炼技术的应用提出了更高的要求,如各种钢(包)水的搅拌,钢水真空处理(精炼),加热功能的二次精炼方法,高碱度渣在钢包的精炼过程中的各种应用等,使钢包内衬与剧烈运动的高温钢液长时间接触、互相作用,此时,钢包所处的工作条件也相应的变得相当的复杂和苛刻。

伴随我国经济的飞速发展,钢包耐火材料在我国也得到了很好的发展。

钢包的使用寿命不仅与耐火材料消耗相关,而且还直接影响到转炉的正常生产。

尤其是提高转炉使用寿命,连铸比增加和钢液炉外精炼技术的广泛应用,钢包必须经历高温、多钢种、时间长等日益严格的使用条件,因此对钢包耐火材料的要求也在不断提高,世界各国都正在积极研究和开发各种新型耐火材料,为了提高耐火材料的质量,延长其使用寿命,降低耐火材料消耗[2]。

1950年代以来,钢包耐火材料在我们国家也在不断地向前发展,新产品不断增加,产品质量不断提高,使用效果更好,满足不断发展的需要。

根据我国钢铁行业的发展趋势,预计未来钢包耐火材料的发展将主要从以下几个方面开展工作:(1)开发寿命提高钢包耐火材料,满足高效连铸和炉外精炼;(2)开发更好的耐腐蚀性和抗剥离性能的低碳和无碳钙和镁系列钢包耐火材料,以满足冶炼洁净钢、低碳钢和超低碳钢的需要;(3)开发节能钢材合成耐火材料,如无定型耐火材料和绿色砖。

(4)发展资源节约型和环境友好的钢合成耐火材料,(5)开展各种用后残留耐火料的再次利用与研究[3]。

1攀枝花学院本科毕业设计(论文) 2 转炉座数、公称容量及生产能力的确定 22 转炉座数、公称容量及生产能力的确定2.1 转炉的容量和座数的确定转炉炼钢过程中,由于炉衬受到侵蚀而逐渐减薄,在一个炉役期内,炉容量随之增大,因此需要一个统一的衡量标准,即公称容量[4]。

氧气转炉的生产能力与作业指标的关系如下:t T n Q /1440365η⨯⨯⨯⨯=式中Q -车间生产能力,200万吨钢/年;n -车间经常吹炼座数;T -每座炉平均每炉产钢量,吨;t -每炉钢的冶炼周期,在38~48min ,这里根据炼钢厂设计原理,取45min ;η-转炉车间有效作业率,与全连铸配合取η=65%~80% [5],根据炼钢厂设计原理,这里取75%。

根据国家工信部2010年07月12日发布的《钢铁行业生产经营规范条件》,新建转炉容量应在120t 以上,依据上述关系,本设计车间转炉数为1座;每炉钢的平均出钢量为220吨。

2.2 计算年出钢炉数国内转炉的平均冶炼时间如表2.1。

表2.1 氧气转炉平均冶炼时间[4]公称容量/t平均供氧时间/min 平均冶炼时间/min 1512~14 25~28 3014~15 28~30 5015~16 30~33 100~12016~18 33~36 15018~19 36~38 20019~20 38~40 25020~21 40~42 300 21~22 42~45每一座吹炼转炉的出钢炉数N 为:985536514401440112=⨯==T T T N η攀枝花学院本科毕业设计(论文) 2 转炉座数、公称容量及生产能力的确定3式中 T 1—每炉钢的平均冶炼时间,min ,参照表2.1,取40 min ;T 2 —一年内有效作用的天数,d=365η=273 d ;1440—一天的日历时间,min ;365—一年的日历天数,天;η —转炉车间的有效作用率,取75%。

故每天出钢炉数为:N /273=9855/273=36炉;2.3 车间的年产钢量的计算在选定转炉公称容量和转炉工作制后,即可计算出车间的年产钢水量W:nNq w式中 W — 车间年产钢水量,t ;n — 车间经常吹炼炉座数;这里取1N — 每一座吹炼炉的年出钢炉数;q — 转炉公称容量,t ;得出年产钢量为2027520t攀枝花学院本科毕业设计(论文) 3 钢包尺寸数量的确定 43 钢包尺寸及数量的确定3.1 钢包尺寸的计算(1)钢包容量的计算。

相关文档
最新文档