一般项级数

合集下载

12-3——华东师范大学数学分析课件PPT

12-3——华东师范大学数学分析课件PPT

从而数列S2 m 1是递减的,而数列S2 m 是递增的.
又由条件(ii)知道
0 S2m1 S2m u2m 0 (m ), 从而{ [S2m, S2m-1] }是一个区间套. 由区间套定理, 存
在惟一的实数 S, 使得
数学分析 第十二章 数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
阿贝尔判别法和狄利 克雷判别法
lim
m
S2m1
lim
m
S2m
S.
所以数列 {Sn } 收敛, 即级数 (1) 收敛.
推论
若级数(1)满足莱布尼茨判别法的条件, 则收敛 级数(1)的余项估计式为
Rn un1 .
对于下列交错级数, 应用莱布尼茨判别法, 容易检验 它们都是收敛的:
数学分析 第十二章 数项级数
Sn
S,
所以对任何正整数 m,都有 m
S,
即级数(7)收敛, 且其和 S.
由于级数(5)也可看作级数(7)的重排, 所以也有
S , 从而得到 S. 这就证明了对正项级数定
理成立. 第二步 证明(7)绝对收敛.设级数(5)是一般项级数 且绝对收敛, 则由级数(6)收敛第一步结论, 可得
um1 um2 umr
因此由柯西准则知级数(5)也收敛. 对于级数(5)是否绝对收敛,可引用正项级数的各种 判别法对级数(6)进行考察.
数学分析 第十二章Байду номын сангаас数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
阿贝尔判别法和狄利 克雷判别法
例1 级数
n 2
n1 n!
原数列的重排. 相应地称级数 uk(n)为级数(5)的重

一般项级数

一般项级数

一般项级数
一般项级数是指在一个系统中,某个变量的变化与其他变量的变化之间的比例关系。

一般项级数通常用字母q表示,表示为q = m/n,其中m和n分别表示变量m和n的系数。

一般项级数的含义和应用非常广泛,可以用于描述物理学、经济学、工程学等领域中的系统。

例如,在物理学中,一般项级数可以用来描述电路中的电容、电阻、电感等元件之间的关系。

在经济学中,一般项级数可以用来描述市场中的供需关系和价格关系。

在工程学中,一般项级数可以用来描述机械系统中的惯性、刚性、柔性等属性之间的关系。

一般项级数的计算方法非常简单,只需要将变量的系数相除即可。

例如,如果一个系统中有两个变量A和B,它们之间的一般项级数为q = 2/3,那么A的变化与B的变化之间的比例为2/3。

总的来说,一般项级数是一种非常重要的数学概念,它在许多领域中都有广泛的应用。

项级数的概念

项级数的概念

项级数的概念项级数是数学中的一个概念,指的是一个无穷序列的和。

在项级数中,每一项都是具有固定模式的数列中的某一项,而项级数的和就是这些数列中所有的项的总和。

项级数可以表示为:S = a1 + a2 + a3 + ... + an + ...其中,a1, a2, a3, ... 是一个数列的项,n 是一项的位置。

举个例子,如果项级数为:1 + 2 + 3 + 4 + ... ,那么a1 = 1,a2 = 2,a3 = 3,... ,n 表示数列中项的编号。

项级数可以分为两类:收敛项级数和发散项级数。

当项级数的和存在且有限时,我们称其为收敛项级数;当项级数的和不存在或为无穷大时,我们称其为发散项级数。

对于收敛项级数,我们常常使用极限的概念来表示。

如果项级数S具有有限的和S,则对于任意的正数ε,存在一个正整数N,使得当n>N时,Sn - S < ε。

其中,Sn 表示项级数的前n项和。

为了更好地理解项级数的概念,我们可以看一些经典的例子。

1. 等差数列:1, 2, 3, 4, ...这是一个常见的等差数列,每一项与前一项之差都相等。

项级数可以表示为:1 + 2 + 3 + 4 + ... ,它是一个发散项级数,和无穷大。

2. 等比数列:1, 1/2, 1/4, 1/8, ...这是一个等比数列,每一项都是前一项的1/2倍。

项级数可以表示为:1 + 1/2 + 1/4 + 1/8 + ... ,它是一个收敛项级数,和为2。

3. 调和级数:1, 1/2, 1/3, 1/4, ...这是一个调和级数,每一项是倒数数列。

项级数可以表示为:1 + 1/2 + 1/3 + 1/4 + ... ,它是一个发散项级数,和无穷大。

4. 幂级数:1, 1/2, 1/4, 1/8, ...这是一个幂级数,每一项都是前一项的1/2倍。

项级数可以表示为:1 + 1/2 + 1/4 + 1/8 + ... ,它是一个收敛项级数,和为2。

一般级数的审敛法

一般级数的审敛法

1 单减, 在 (1,+) 上单增, 即 x ln x 1 故 当 n 1 时单减, n ln n
1 1 un un+1 ( n 1), n ln n ( n + 1) ln( n + 1)
所以此交错级数收敛, 故原级数是条件收敛.
定理 如果任意项级数
n 1

则任意重排得到的级数也绝对收敛,且有相同的 和数. 注:由条件收敛级数重排得到的新级数,即使收敛 也不一定收敛于原来的和数,而且条件收敛收敛 级数适当重排后,可得到发散级数,或收敛于任何 事先指定的数.如: 1 1 1 1 1 n +1 1 ( 1) 1 + + + A n 2 3 4 5 6 n 1 1 1 1 1 1 3 n+1 1 ( 1) 1+ + + + A n 3 2 5 7 4 2 n 1
lim u2 n+1 0,
n
lim s2 n s u1 .
lim s2 n+1 lim( s2 n + u2 n+1 ) s,
n n
级数收敛于和s, 且s u1 .
余项 rn (un+1 un+ 2 + L),
rn un+1 un+ 2 + L,
n 1 n 1 n 1



sin n 例 3 判别级数 2 的收敛性. n 1 n

sin n 1 1 2 2 , 而 2 收敛, n1 n n n

sin n 2 收敛, n n1
故由定理知原级数收敛.

数学分析12.3一般项级数

数学分析12.3一般项级数

第十二章 数项级数2 一般项级数一、交错级数概念:若级数各项符号正负相间,即u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数.定理12.11:(莱布尼茨判别法)若交错级数∑∞=+1n n 1n u (-1)满足:(1)数列{u n }单调递减;(2)∞n lim +→u n =0,则该级数收敛.证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知0<S 2m-1-S 2m =u 2m →0 (m →∞),从而{[S 2m ,S 2m-1]}形成一个区间套, 由区间套定理,存在唯一的一个数S ,使得∞m lim +→S 2m-1=∞m lim +→S 2m =S.∴数列{S n }收敛,即该交错级数收敛.推论:若交错级数满足莱布尼茨判别法的条件,则该收敛级数的余项估计式为|R n |≤u n+1.二、绝对收敛级数及其性质概念:若级数各项绝对值所组成的级数|u 1|+|u 2|+…+|u n |+…收敛, 则称它为绝对收敛级数. 若级数收敛,但不绝对收敛,则称该级数为条件收敛级数.定理12.12:绝对收敛级数一定收敛.证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证!例1:证明:级数∑!n a n收敛.证:∵n1n ∞n u u lim++→=1n alim ∞n ++→=0<1,∴原级数绝对收敛.性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞=1n k(n)u 也是级数∑∞=1n nu 的重排. 记v n =u k(n),即∑∞=1n k(n)u =v 1+v 2+…+v n +….定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数.证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.∵级数∑n v 是∑n u 的重排,∴对每一个v k 都等于某一ki u (1≤k ≤m).记n=max{i 1,i 2,…i m }, 则对任何m ,都存在n ,使T m ≤S n .由∞n lim +→S n =S 知,对任何正整数m 有T m ≤S, 即∑n v 收敛,其和T ≤S.又级数∑n u 也是∑n v 的重排,∴S ≤T ,推得T=S.若∑n u 为一般级数且绝对收敛,即正项级数∑n u 收敛,同理可推得 级数∑n v 收敛,∴级数∑n v 收敛. 令p n =2u u nn +,q n =2u u nn -;则当u n ≥0时,p n =u n ,q n =u n ;当u n <0时,p n =0,q n =-u n ≥0. 从而有 0≤p n ≤|u n |,0≤q n ≤|u n |,p n +q n =|u n |,p n -q n =u n . 又∑n u 收敛, ∴∑n p ,∑n q 都是正项的收敛级数,且S=∑n u =∑n p -∑n q .同理得:∑n v =∑'n p -∑'n q ,其中∑'n p ,∑'n q 分别是∑n p ,∑n q 的重排. ∴∑n v =∑'n p -∑'n q =∑n p -∑n q =S. 得证!性质2:级数的乘积:由a ∑n u =∑n au 可推得有限项和与级数的乘积:(a 1+a 2+…+a m )∑∞=1n n u =∑∑∞==1n n m1k k u a .继而可推广到无穷级数之间的乘积:设收敛级数∑n u =A, ∑nv=B.将两个级数中每一项所有可能的乘积列表如下:这些乘积u i v j按各种方法排成不同的级数,如按正方形顺序相加,得u1v1+u1v2+u2v2+u2v1+u1v3+u2v3+u3v3+u3v2+u3v1+…,如下表:或按对角线顺序相加,得u1v1+u1v2+u2v1+u1v3+u2v2+u3v1+…,如下表:定理12.14:(柯西定理) 设绝对收敛级数∑n u=A, ∑n v=B,则由它们中每一项所有可能的乘积u i v j按任意顺序排列所得到的级数∑n w绝对收敛,且其和等于AB.证:设级数∑n w,∑n u,∑n v的部分和分别为:S n =|w 1|+|w 2|+…+|w n |,A m =|u 1|+|u 2|+…+|u m |,B m =|v 1|+|v 2|+…+|v m |. 其中w k =kkj i v u (k=1,2,…,n),m=max{i 1,j 1,i 2,j 2,…,i n ,j n },则必有S n ≤A m B m .∵绝对收敛级数∑n u 与∑n v 的部分和数列{A m }和{B m }都有界, ∴{S n }有界,从而级数∑n w 绝对收敛. 利用绝对收敛级数的可重排性, 将绝对收敛级数∑n w 按正方形顺序重排如下: u 1v 1+(u 1v 2+u 2v 2+u 2v 1)+(u 1v 3+u 2v 3+u 3v 3+u 3v 2+u 3v 1)+…, 把每一括号作一项,得新级数:p 1+p 2+p 3+…+p m +…收敛, 且与∑n w 和数相同,其部分和P m =A m B m . 即有∞m lim +→P m =∞m lim +→A m B m =∞m lim +→A m ∞m lim +→B m =AB. 得证!例2:证明:级数1+2r+…+(n+1)r n +…(|r|<1)绝对收敛,并求其和.证:等比级数∑∞=0n n r =1+r+r 2+…+r n +…=r-11(|r|<1),绝对收敛. 将(∑∞=0n n r )2的所有可能的项按对角线顺序相加得:1+(r+r)+(r 2+r 2+ r 2)+…+(r n +…+r n )+… (括号内共有n+1个r n ) =1+2r+…+(n+1)r n +…=2r)-(11. ∴所求级数绝对收敛,其和为2r)-(11.二、阿贝尔判别法和狄利克雷判别法引理:(分部求和公式,也称阿贝尔变换)设εi ,v i (i=1,2,…,n)为两组实数, 若令T k =v 1+v 2+…+v k (k=1,2,…,n),则有如下分部求和公式成立:∑=n1i ii vε=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .证:以v 1=T 1, v k =(T k -T k-1) (k=2,3,…,n)分别乘以εk (k=1,2,…,n),则∑=n1i ii vε=ε1v 1+ε2v 2+…+εn v n =ε1T 1+ε2(T 2-T 1)+…+εn (T n -T n-1)=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .推论:(阿贝尔引理)若(1)ε1, ε2,…, εn 是单调数组;(2)对任一正整数k(1≤k ≤n)有|T k |=|v 1+v 2+…+v k |≤A ,记ε=kmax {|εk |},有∑=n1k k k v ε≤3εA.证:由(1)知ε1-ε2, ε2-ε3, …, εn-1-εn 同号,于是由分部求和公式及(2)有∑=n1k k kv ε=|(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n |≤A|(ε1-ε2)+(ε2-ε3)+…+(εn-1-εn )|+A|εn |=A|(ε1-εn )|+ A|εn | ≤A(|ε1|+2|εn |)≤3εA.定理12.15:(阿贝尔判别法)若{a n }为单调有界数列,且级数∑n b 收敛, 则级数∑n n b a =a 1b 1+a 2b 2+…+a n b n +…收敛.证:由级数∑n b 收敛,依柯西准则,对任给正数ε, 存在正数N, 使 当n>N 时,对一切正整数p ,都有∑++=pn 1n k kb<ε.又数列{a n }单调有界,∴存在正数M ,使|a n |≤M ,根据阿贝尔引理有∑++=pn 1n k k kb a≤3εM. ∴级数∑n n b a 收敛.注:由阿贝尔判别法知,若级数∑n u 收敛,则下述两个级数:(1)∑p nn u (p>0);(2)∑+1n u n 都收敛.定理12.16:(狄利克雷判别法)若数列{a n }单调递减,且∞n lim +→a n =0,又且级数∑n b 的部分和数列有界,则级数∑n n b a 收敛.例3:证明:若数列{a n }单调递减,且∞n lim +→a n =0,则级数∑sinnx a n 和∑cosnx a n 对任何x ∈(0,2π)都收敛.证:2sin 2x (21+∑=n 1k coskx )=sin 2x +2sin 2x cosx+2sin 2x cos2x+…+2sin 2xcosnx= sin 2x +(sin 23x-sin 2x )+…+[sin(n+21)x-sin(n-21)x]=sin(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k coskx =2x 2sinx 21n sin ⎪⎭⎫ ⎝⎛+-21=21sinnxcot 2x +2cosnx -21.又-21cot 2x -1≤21sinnxcot 2x +2cosnx -21≤21cot 2x ,即当x ∈(0,2π)时,∑cosnx 的部分和数列有界,由狄利克雷判别法知级数∑cosnx an收敛.2sin 2x (∑=n 1k sinkx -21cot 2x )=2sin 2x sinx+2sin 2x sin2x+…+2sin 2x sinnx-cos 2x= (cos 2x-cos 23x) +…+[cos(n-21)x-cos(n+21)x]-cos 2x =-cos(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k sinkx =21cot 2x -2x 2sin x 21n cos ⎪⎭⎫ ⎝⎛+=2x 2sinx 21n cos -2x cos ⎪⎭⎫ ⎝⎛+.又- csc 2x =2x sin 1-≤2x 2sin x 21n cos -2x cos ⎪⎭⎫ ⎝⎛+≤2x sin1=csc 2x ,即当x ∈(0,2π)时,∑sinnx 的部分和数列有界,由狄利克雷判别法知级数∑sinnx an收敛.注:作为例3的特例,级数∑n sinnx 和∑ncosnx对一切x ∈(0,2π)都收敛.习题1、下列级数哪些是绝对收敛,条件收敛或发散的:(1)∑!n sinnx ;(2)∑+-1n n )1(n;(3)∑+n1p n n (-1);(4)∑-n 2sin )1(n ;(5)∑⎪⎪⎭⎫ ⎝⎛+n 1n (-1)n ;(6)∑++1n 1)ln(n (-1)n ;(7)n n 13n 1002n )1(∑⎪⎭⎫ ⎝⎛++-;(8)nn x !n ∑⎪⎭⎫ ⎝⎛. 解:(1)∵!n sinnx <2n 1(n>4);又级数∑2n1收敛,∴原级数绝对收敛. (2)∵1n n)1(limn ∞n +-+→=1≠0;∴原级数发散. (3)∵当p ≤0时,n1p n ∞n n(-1)lim++→≠0;∴原级数发散;当p>1时,n1p n n(-1)+≤p n 1;又级数∑p n1(p>1)收敛,∴原级数绝对收敛. 当0<p ≤1时,令u n =n1p n1+,则n1n u u +=1n 1p n 1p 1)(n n++++=1n 1pn1)1n (n 11n++⎪⎭⎫⎝⎛+<1n 1pn 1n n 11n+⎪⎭⎫ ⎝⎛+=p1)n(n 1n 11n⎪⎭⎫ ⎝⎛++,∵np ∞n n 11lim ⎪⎭⎫ ⎝⎛++→=e p>1, 1n 1∞n n lim ++→=1,∴当n 充分大时,npn 11⎪⎭⎫ ⎝⎛+>1n 1n +,即 p n 11⎪⎭⎫ ⎝⎛+>1)n(n 1n+,从而n1n u u +<1,即u n+1<u n ,∴{u n }在n 充分大后单调减. 又∞n lim +→u n =n1p ∞n n1lim++→=0(0<p ≤1),由莱布尼兹判别法知原级数条件收敛.(4)∵n2n2sin)1(limn ∞n -+→=1, 且级数∑n2发散,∴原级数不绝对收敛. 又{n2sin }单调减,且n2sin lim ∞n +→=0,由莱布尼兹判别法知原级数条件收敛. (5)∵级数∑n(-1)n收敛,而级数∑n1发散,∴原级数发散.(6)∵1n 1)ln(n (-1)n ++>1n 1+(n ≥2),且∑+1n 1发散,∴原级数不绝对收敛.又{1n 1)ln(n ++}单调减且1n 1)ln(n lim ∞n +++→=0,∴原级数条件收敛. (7)记u n =n13n 1002n ⎪⎭⎫⎝⎛++,则n ∞n u lim +→=13n 1002n lim ∞n +++→=32,∴原级数绝对收敛. (8)记u n =n n x !n ⎪⎭⎫ ⎝⎛,则n 1n ∞n u u lim ++→=n∞n 1n n x lim ⎪⎭⎫⎝⎛++→=|e x |, ∴当-e<x<e 时,n1n ∞n u u lim++→<1,原级数绝对收敛; 当x ≥e 或x ≤-e 时,n1n ∞n u u lim++→≥1,即当n 充分大时,|u n+1|≥|u n |>0,∴n ∞n u lim +→≠0,∴原级数发散.2、应用阿贝尔判别法或狄利克雷判别法判断下列级数的收敛性:(1)nn n x 1x n (-1)+⋅∑ (x>0); (2)∑a n sinnx, x ∈(0,2π) (a>0); (3)nnxcos )1(2n∑-, x ∈(0,π).解:(1)∵当x>0时,0<n n x 1x +<n n x x =1,且n n1n 1n x 1xx 1x ++++=1n 1n x 1x x ++++; 若0<x ≤1,则1n 1n x 1x x ++++≤1;若x>1,则1n 1n x1x x ++++>1, 即数列{n n x 1x +}单调有界. 又级数∑n(-1)n收敛,由阿贝尔判别法知原级数收敛. (2)∵当a>0时,数列{a n1}单调递减,且∞n lim +→a n 1=0, 又当x ∈(0,2π)时,∑=n1k sinkx ≤csc 2x,即∑sinnx 的部分和数列有界,由狄利克雷判别法知原级数收敛. (3)∵数列{n 1}单调递减,且∞n lim+→n1=0,又当x ∈(0,π), ∑=n1k 2kkx cos (-1)=∑=+n1k k21cos2kx (-1)≤∑=n 1k k 2(-1)+∑=n1k k 2cos2kx (-1)≤21+∑=n1k cos2kx 21.又由2sinx ∑=n 1k cos2kx =4sin(2n+1)x-4sinx ,得∑=n1k cos2kx =2sinx4sinx -1)x 4sin(2n +≤sinx 2+2, 即对任意x ∈(0,π),级数nx cos )1(2n ∑-有界, 根据狄利克雷判别法知原级数收敛.3、设a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0.证明:级数∑+⋯++na a a (-1)n211-n 收敛.证:由a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0知, {na a a n21+⋯++}单调减且趋于0,由莱布尼茨判别法知原级数收敛.4、设p n =2u u nn +,q n =2u u nn -.证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的. 证:若∑n u 条件收敛,则∑n u 发散, ∴∑n p =∑+2u u nn =∑2u n +∑2u n,发散; ∑n q =∑-2u u nn =∑2u n -∑2u n,发散.5、写出下列级数的乘积:(1)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx ; (2)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!(-1)n!1. 解:(1)当|x|<1时,两个级数均绝对收敛,乘积按对角线一般项为:w n =k-n k-n n1k 1-k 1)xk -(n (-1)·kx +∑==xn-1∑=+n1k k-n 1)k -k(n (-1), 从而有w 2m =x2m-1∑=+2m1k k-2m 1)k -k(2m (-1)=[-2m+…+(-1)m (m 2+m)+2m+…+(-1)m-1(m 2+m)]=0; w 2m+1=x 2m∑+=++12m 1k 1k -2m 2)k -k(2m (-1)=x 2m[∑+=++12m 1k 1k -2m 1)k -k(2m (-1)+∑+=+12m 1k 1k -2m k (-1)]=-x 2m∑+=+12m 1k k-2m 1)k -k(2m (-1)+x2m∑+=+12m 1k 1k -2m k (-1)=- w 2m +x2m∑+=-12m 1k 1k k (-1)=x2m∑+=-12m 1k 1k k (-1)=x 2m(1-2+3-4+…-2m+2m+1)=(m+1) x 2m.∴⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx =∑∞=+0m 2m 1)x (m . (|x|<1).(2)两个级数均绝对收敛,其乘积按对角线一般项为:w 0=1, w n =k)!-(n (-1)·k!1k -n nk ∑==n!1∑=nk k -n k)!-(n k!n!(-1)=n!1)-(1n=0(n=1,2,…) ∴⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n0n n!(-1)n!1=1.注:二项式n 次幂展开式:(1-1)n=∑=nk k -n k)!-(n k!n!(-1).6、证明级数∑∞=0n n n!a 与∑∞=0n n n!b 绝对收敛,且它们的乘积等于∑∞=+0n nn!b)(a .证:n!a 1)!(n a limn 1n ∞n +++→=1n alim ∞n ++→=0,∴∑∞=0n n n!a 绝对收敛. 同理∑∞=0n nn!b 绝对收敛. 按对角线顺序,其乘积各项为:C 0=1=!0b)(a 0+, ……,C n =k)!-(n b k!a k -n n1k k ⋅∑==n!∑=n 0k k -n k k)!-(n k!n!b a =n!b)(a n +. ∴∑∞=0n n n!a ·∑∞=0n n n!b =∑∞=+0n nn!b)(a .7、重排级数∑+-n1)1(1n ,使它成为发散级数. 解:∑+-n 1)1(1n =1-21+31-41+…+n 1)1(1n +-+…=∑∞=1k 1-2k 1-∑∞=1k 2k 1,∑∞=1k 1-2k 1∵∑∞=1k 2k 1和∑∞=1k 1-2k 1是发散的正项级数,∴存在n 1,使u 1=∑=1n 1k 1-2k 1-21>1,又∑∞+=1n k 11-2k 1发散,∴存在n 2>n 1,使u 2=∑+=21n 1n k 1-2k 1-41>21,同理存在n 3>n 2,使u 3=∑+=32n 1n k 1-2k 1-61>31,…,u i+1=∑++=1i i n 1n k 1-2k 1-1)2(i 1+>1i 1+,可得原级数的一个重排∑∞=1i i u . ∵u i >i 1,且∑i 1发散,∴∑∞=1i i u 必发散.8、证明:级数∑-n)1(]n [收敛.证:记A L ={n|[n ]=L}, L=1,2,…,显然A L 中元素n 满足L 2≤n<(L+1)2,且A L 中元素个数为2L+1. 记U L =∑∈-L A n ]n [n )1(,则有u L =∑∈-LA n Ln )1(=(-1)L V L , 其中V L =∑∈L A n n 1,则V L -V L+1=∑=+2L0s 2s L 1-∑+=++1)2(L 0s 2s)1(L 1=∑=++++2Ls 22s])1s)[(L (L 1L 2-1L 2)1(L 12+++-2L 2)1(L 12+++≥∑=+++2L0s 22L]2)1[(L 1L 2-L 2)1(L 22++=222L]2)1[(L L]2)12[(L -1)L 2(L 2+++++=2222L]2)1[(L L)2-1-L 2L -L L 2(2++-+=222L]2)1[(L 1)-3L L (2++->0(当L ≥4时). ∴当L ≥4时, { V L }是单调下降数列. 当n ∈A L 时,21)(L 1+<n 1≤2L 1, ∴21)(L 1L 2++<V L ≤2L 1L 2+,可见∞L lim +→V L =0,从而∑∞=1L L u =∑∞=1L L LV (-1)收敛. 设级数∑∞=-1n ]n [n )1(的部分和为S N ,记级数∑∞=1n n u 的部分和为U M ,则S N =∑=-N1n ]n [n )1(,U M =∑=M1n n u ,任一个S N 均被包含在某相邻两个部分和U M , U M+1之间,即有|S N -U M |≤|U M+1-U M |,由级数∑∞=1n n u 收敛,知∞M lim +→U M+1-U M =0,∴∞N lim +→S N -U M =0,即极限∞N lim +→S N =∞N lim +→U M =∑∞=1n n u 存在,∴级数∑-n)1(]n [收敛.。

一般项级数

一般项级数
n 2345678 乘以常数 1 后,有
21 (1)n1 1 源自1 1 1 1 L A .2
n 2468
2
将上述两个级数相加, 得到的是(2)的重排:
1 1 1 1 1 1 L 3 A.
32574
2
我们也可以重排(2)使其发散(可参考数学分析学习
一、交错级数
若级数的各项符号正负相间, 即
u1 u2 u3 u4 L (1)n1 un L
(1)
(un 0, n 1, 2,L ), 则称为交错级数.
定理12.11 (莱布尼茨判别法) 若交错级数(1)满足:
(i) 数列{un} 单调递减;
(ii)
lim
n
un
0,
则级数(1)收敛.
证 考察交错级数(1)的部分和数列{Sn},它的奇数项 和偶数项分别为
(7)
定理12.13 设级数(5)绝对收敛, 且其和等于S, 则任
意重排后所得到的级数(7)绝对收敛且和也为S.
*证 只要对正项级数证明了定理的结论, 对绝对收
敛级数就容易证明定理是成立的.
第一步 设级数(5)是正项级数, 用Sn表示它的第 n 个 部分和. 用
m v1 v2 L vm
表示级数(7)的第m个部分和. 因为级数(7)为级数(5) 的重排, 所以每一 vk (1 k m) 应等于某一 uik (1 k m). 记
对于下列交错级数, 应用莱布尼茨判别法, 容易检验
它们都是收敛的:
1 1 1 L (1)n1 1 L ;
(2)
23
n1
1 1 1 1 L (1)n1 1 L ; (3)
3! 5! 7!
(2n 1)!
1 10
2 102

一般项级数

一般项级数

u3v3
L
L
L
L
L
L
L
L
L
对L 角线顺序L
L
u1v1 u1v2 u2v1 u1v3 u2v2 u3v1 L . (15)
数学分析 第十二章 数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
定理12.14(柯西定理)
阿贝尔判别法和狄利 克雷判别法
若级数un,vn都绝对收敛,则对(13)中 uiv j
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
阿贝尔判别法和狄利 克雷判别法
由此可以立刻推广到收敛级数 un 与有限项和的乘
n1
积,即
m
(a1 a2 L am ) un
akun ,
n1
n1 k 1
那么无穷级数之间的乘积是否也有上述性质?
设有收敛级数
un u1 u2 L un L A,
S2m (u1 u2 ) (u3 u4 ) L (u2m1 u2m ). 由条件(i), 上述两式中各个括号内的数都是非负的,
从而数列S2 m 1是递减的,而数列S2 m 是递增的.
又由条件(ii)知道
0 S2m1 S2m u2m 0 (m ), 从而{ [S2m, S2m-1] }是一个区间套. 由区间套定理, 存
u1 u2 L un L
(6)
收敛, 则称原级数(5)为绝对收敛级数.
定理12.12
绝对收敛的级数是收敛的.
数学分析 第十二章 数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收级数及其性质
阿贝尔判别法和狄利 克雷判别法

函数项级数的一般概念

函数项级数的一般概念

函数项级数的一般概念一、函数项级数的一般概念1.定义:.1 20 +++=∑∞=x x x n n 例如级数 ∑∞=++++=121)()()()(n nn x u x u x u x u {}上的函数列,称是定义在区间设 )( I x u n 上的为定义在区间 I 函数项(无穷)级数。

2.收敛点与收敛域:如果I x ∈0,数项级数∑∞=10)(n n x u 收敛,则称0x 为级数)(1x u n n ∑∞=的收敛点,否则称为发散点.函数项级数)(1x u n n ∑∞=的所有收敛点的全体称为收敛域,. )(:1⎭⎬⎫⎩⎨⎧∈=∑∞=收敛n n x u R x K3.和函数:{}为函数项级数的称记 )( , )()( 1x s x u x s n nk k n ∑==部分和数列。

).( , )(lim , 000x s x s K x n n 记为存在则设∞→∈函数项级数的和函数:., )()(1K x x u x s n n ∈=∑∞=解:由达朗贝尔判别法,)()(1x u x u n n +x n n +⋅+=111)(11∞→+→n x,111)1(<+x 当, 2 0时或即-<>x x 原级数绝对收敛.,11>+⇒x 例1. )11()1( 1的收敛域求函数项级数n n nx n+-∑∞=二、典型例题板书,111)2(>+x当,11<+⇒x , 02时即<<-x 原级数发散., 0时当=x ; )1(1收敛级数∑∞=-n nn , 2时当-=x .11发散级数∑∞=n n ).,0[)2,(+∞--∞ 故级数的收敛域为,1|1|)3(=+x 当,2 0-==⇒x x 或板书三、小结1. 函数项级数、收敛域与和函数的概念。

2. 由数项级数的收敛判别法来确定函数项级数的收敛域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3 一般项级数
由于非正项级数(一般项级数)的收敛性问题 要比正项级数复杂得多, 所以本节只对某些特 殊类型级数的收敛性问题进行讨论.
一、交错级数 二、绝对收敛级数及其性质 三、阿贝尔判别法和狄利克雷判别法
前页 后页 返回
一、交错级数
若级数的各项符号正负相间, 即
u1 u2 u3 u4 (1)n1 un
(1)
(un 0, n 1, 2, ), 则称为交错级数.
定理12.11 (莱布尼茨判别法) 若交错级数(1)满足:
(i) 数列{un} 单调递减;
(ii)
lim
n
un

0,
则级数(1)收敛.
前页 后页 返回
证 考察交错级数(1)的部分和数列{Sn},它的奇数项 和偶数项分别为
S2m1 u1 (u2 u3 ) (u2m2 u2m1 ),
各项绝对值组成的级数
u1 u2 un
(6)
收敛, 则称原级数(5)为绝对收敛级数.
定理12.12 绝对收敛的级数是收敛的.
证 由于级数(6)收敛,根据级数的柯西收敛准则,对
于任意正数 ,总存在正数 N ,使得对n N和任意正
前页 后页 返回
整数 r, 有 由于
um1 um2

n 1
n
n 1
n
前页 后页 返回


定义:若 un 收敛, 则称 un 为绝对收敛;
n1
n1



若 un 发散,而 un 收敛, 则称 un 为条件收敛.
n1
n1
n1
全体收敛的级数可分为绝对收敛级数与条件收敛级 数两大类.
前页 后页 返回
下面讨论绝对收敛级数的两个重要性质.
S2m (u1 u2 ) (u3 u4 ) (u2m1 u2m ). 由条S2m1}是递减的, 而数列{S2m }是递增的. 又由条件(ii)知道
0 S2m1 S2m u2m 0 (m ), 从而{ [S2m, S2m-1] }是一个区间套.由区间套定理,存
s2n
1 2 1
1 2 1
11 n 1 n 1
22 21 31

2 n 1

2 1
1 2


n
1 1

s2n 无上界,
lim
n
s2
n不存在,
故级数()发散.
前页 后页
返回
二、绝对收敛级数及其性质
若级数
u1 u2 un
(5)
un的和数s 它的所有正项组成的级数的和数,
n 1
减去它的所有负项的绝对值组成的级数的和数.
前页 后页 返回
例1 级数
n 2
n1 n!
2!
n
n!
的各项绝对值所组成的级数是
n
2
n
.
n!
2!
n!
应用比式判别法,对于任意实数 ,都有
(2n 1)!
1 10

2 102

3 103

4 104


(1)n1
n 10n

. (4)
前页 后页 返回
注:莱布尼茨审敛法中,"un "的条件不能去掉. 如
1 1 1 1 . ()
2 1 2 1
n 1 n 1
其通项un 0,但不满足条件"un ", 于是,部分和子列 :
uk
(
n

)
n1

v1 v2 vn ,
(7)
前页 后页 返回
定理12.13 设级数(5)绝对收敛, 且其和等于S, 则任
意重排后所得到的级数(7)绝对收敛且和也为S.
前页 后页 返回
在惟一的实数 S, 使得
lim
m
S2
m1

lim
m
S2m

S.
所以数列 {Sn } 收敛, 即级数 (1) 收敛.
推论 若级数(1)满足莱布尼茨判别法的条件, 则收敛 级数(1)的余项估计式为
Rn un1 .
前页 后页 返回
例 1 判别级数 (1)n n 的收敛性.
1). (1)n1 1;
n 1
n

2). (1)n1
1
;
n 1
(2n 1)!
3).
n1
(1)n1
n 10n
.
1 1 1 (1)n1 1 ;
(2)
23
n1
1 1 1 1 (1)n1 1 ; (3)
3! 5! 7!
1.级数的重排
我们把正整数列{1,2,…,n, …}到它自身的一一映射
f : n k(n)称为正整数列的重排, 相应地对于数列
{un } 按映射 F : un uk(n) 所得到的数列{uk(n) }称为

原数列的重排. 相应地称级数 uk(n)为级数(5)的重
n1

排.为叙述上的方便,记 vn uk(n) ,即把级数
n2 n 1
解:

x
x
1


2
(1 x) x ( x 1)2
0
(x 2)
故函数 x 单调递减, un un1 , x 1

lim
n
un

lim
n
n n 1
0.
原级数收敛.
前页 后页 返回
Ex : 验证下列级数为莱布尼茨型级数,从而皆收敛.
lim un1 lim 0,
u n n
n n 1
因此, 所考察的级数对任何实数 都绝对收敛.
前页 后页 返回
注: (1).定理12.12的作用,
一般项级数
正项级数
(2)定理12.12的逆定理不真, 例如 :
(1)n1 1 ,


(1)n1 1
umr
um1 um2 umr
um1 um2

umr
因此由柯西准则知级数(5)也收敛.
对于级数(5)是否绝对收敛,可引用正项级数的各种 判别法对级数(6)进行考察.
前页 后页 返回
(法2)
记 pn
1 2 ( un
un ), qn
1 2 ( un
un )
un pn qn , 0 pn un , 0 qn un .



un pn 且 qn
n 1
n 1
n 1


un ( pn qn )
n 1
n 1

推论 :当 un 时, n 1

相关文档
最新文档