数项级数练习题及答案
级数习题 有答案

题型一 正项级数敛散性的判定判定下列级数的敛散性.1) );0(11>⎪⎭⎫ ⎝⎛+∑∞=a n na nn 2) )0(!1>∑∞=a nn a n n n3) ;)cos1(1∑∞=-n n π4) ;)11ln()1(1∑∞=+-+n p n n n解 1)a n nau n n n n =+=∞→∞→1limlim ,则(1)当10<<a 时,原级数收敛; (2)当1>a 时,原级数发散; (3)当1=a 时,01)1(lim lim ≠=+=∞→∞→en n u n n n n ,原级数发散。
2) e an n a n a n n n a u u n n n n n n n n n n =+=⋅++=∞→++∞→+∞→)1(lim !)1()!1(lim lim 111 (1)当e a <<0时,原级数收敛; (2)当e a >时,原级数发散; (3)当e a =时,1)11(lim lim1=+=∞→+∞→nn n n n ne u u ,但n n )11(+是单调增趋于e 的,则1)11(1>+=+nnn neu u ,即n u 单调增,又0>n u ,则0lim ≠∞→n n u ,原级数发散。
3)由于)(21~cos 12∞→-n n n ππ,而∑∞=121n n收敛,则原级数收敛. 4)由于)(1~)11ln(∞→+n nn ,而 p pp n n n n ]111[)1(2-+=-+,nn 21~111-+则原级数与级数∑∞=+12121n pp n同敛散,故原级数在0>p 时收敛,在0≤p 时发散。
判定下列级数敛散性. 1) ∑⎰∞=+1102d 1n n x x x 2) ∑∞=+⎪⎪⎭⎫ ⎝⎛-11112n n n 3) ∑∞=⎪⎭⎫ ⎝⎛+-1)11ln(1n n n解 1)由于⎰⎰=≤+<n n ndx x dx xx 10231213210, 而∑∞=1231n n收敛,则原级数收敛.2)由于232221ln 11ln 1ln ~11212n nn n n n n e n nnn=<<+-=-++,故原级数收敛. 3)方法1° 由不等式)0(,)1ln(1><+<+x x x x x知 21)1(11111111)11ln(10n n n n n n n nn n <+=+-=+-<+-<.而∑∞=121n n 收敛,则原级数收敛.设∑∞=1n n u 为正项级数,下列结论正确的是(A) 若∞→n lim 0=n nu ,则∑∞=1n n u 收敛;(B) 若存在非零常数λ,使∞→n lim λ=n nu ,则∑∞=1n n u 发散.(C) 若∑∞=1n n u 收敛,则∞→n lim 02=n u n .(D) 若∑∞=1n n u 发散,则存在非零常数λ,使得∞→n lim λ=n nu .解法1 直接法. 由0lim ≠=∞→λn n na 知,01lim ≠=∞→λna nn ,由比较法的极限形式知,级数∑∞=1n n a 与∑∞=11n n 同敛散,则∑∞=1n n a 发散,故应选(B ).解法2排除法. 考虑n n a n ln 1=,级数∑∞=2ln 1n nn 发散.但0ln 1limlim ==∞→∞→nna n n n ,则(A )和(D )都不正确.考虑21n a n =,显然级数∑∞=1n n a 收敛,但01lim 2≠=∞→n n a n ,则(C )不正确.故应选(B ).题型二 交错级数敛散性判定判定下列级数的敛散性 (1) ∑∞=-1ln )1(n n nn(2) ∑∞=+122)sin(n a n π解 (1)本题中的级数为交错级数,且nn u n ln =,考虑函数xx x f ln )(=.由于 )0(2ln 1)(>-='x xxx xx f)(,02ln 22e x xx x ><-=又 xx xx x x 211limln lim+∞→+∞→=02lim==+∞→xx ,故nn u n ln =单调减且趋于零,由莱不尼兹准则知原级数收敛.2)由于)sin()1()](sin[)sin(222222ππππππn a n n a n n a n n -+-=-++=+ na n a n++-=222sin)1(π此时na n a ++222sin π单调减且0sinlim 222=++∞→na n a n π.由莱不尼兹准则知原级数收敛.设正项数列}{n a 单调减少,且∑∞=-1)1(n n n a 发散,试问级数∑∞=⎪⎪⎭⎫⎝⎛+111n nn a 是否收敛?为什么?解 由于n a 单调减,且0>n a ,即下有界,则n n a ∞→lim 存在,设a a n n =∞→lim ,则0≥a ,若0=a ,由莱不尼兹准则知级数∑∞=-1)1(n n n a 收敛,这与题设矛盾,因此0>a ,此时,对正项级数∑∞=+1)11(n nn a 用根值法,得 11111lim <+=+=∞→a a u n n n n , 则级数∑∞=+1)1(1n nna 收敛.题型三 任意项级数敛散性判定判定∑∞=12)!sin(2tann nn n π的敛散性.解 因nnn n n 2tan|)!sin(2tan|22ππ≤,又nn2~2tanππ,则级数n n n 2tan 12π∑∞=与∑∞=122n n n π同敛散.对级数∑∞=122n n n 用根值法得 1212)(limlim 2<==∞→∞→n n n n n n u . 则∑∞=122n n n 收敛,则原级数绝对收敛,故原级数收敛. 讨论∑∞=11n pn n a 是绝对收敛,条件收敛还是发散? 解 先考绝对值级数∑∞=11n pn na . 由于 an a n a pn p n n 1||)1(1lim1=++∞→,1)当1>a 时,原级数绝对收敛. 2)当10<<a 时,原级数发散。
数列与级数练习题及解析

数列与级数练习题及解析一、选择题1. 设数列{an}满足an = n2 + 3n + 2,则该数列的公差为:A. 1B. 2C. 3D. 4解析:根据公式an = a1 + (n-1)d,可以得到n2 + 3n + 2 = a1 + (n-1)d。
对比系数可得a1 = 2,d = 3。
所以选择C。
2. 已知数列{an}的通项公式an = 2n3 + 5n,则数列前4项的和Sn为:A. 72B. 85C. 104D. 119解析:将通项公式代入求和公式Sn = n(a1 + an)/2,得Sn = n(2 +2n2 + 5)/2 = 2n2 + 5n。
将n分别取1、2、3、4代入,得S1 = 7,S2 = 24,S3 = 51,S4 = 88。
所以选择D。
3. 已知数列{an}的前n项和Sn = n3 + 2n2 + n,则该数列的通项公式为:A. an = n3 + 2n2 + nB. an = 3n + 2C. an = n2 + n + 1D. an = 2n2 + 4n + 2解析:对已知的Sn进行分解,得Sn = n(n+1)(n+1)/2 + n(n+1)/2 + n= n(n+1)[(n+1)/2 + 1/2 + 1] = n(n+1)(n+2)/2。
所以选择A。
二、填空题1. 设数列{an}满足an = 2n2 - 3n,则该数列的前6项的和S6为_______。
解析:将数列的通项公式代入求和公式,得S6 = 2(1^2) - 3(1) +2(2^2) - 3(2) + 2(3^2) - 3(3) + 2(4^2) - 3(4) + 2(5^2) - 3(5) + 2(6^2) - 3(6) = 310。
2. 设数列{an}满足a1 = 1,an = an-1 + 2n - 1,则该数列的前5项分别为_______。
解析:根据递推关系式,可以得到a2 = a1 + 2(2) - 1 = 4,a3 = a2 +2(3) - 1 = 10,a4 = a3 + 2(4) - 1 = 18,a5 = a4 + 2(5) - 1 = 28。
数项级数的敛散性的练习题及解析

数项级数的敛散性的练习题及解析一、单项选择题(每小题4分,共24分) 1.若lim 0n n U →∞=则常数项级数1nn U∞=∑( D )A .发散 B.条件收敛 C .绝对收敛 D .不一定收敛解:1lim 0n n →∞=,但11n n ∞=∑发散;21lim 0n n →∞=,但211n n∞=∑收敛 选D2.设1nn U∞=∑收敛,则下列级数一定收敛的是( B )A .1nn U∞=∑ B.()12008nn U ∞=∑C .()10.001n n U ∞=+∑ D .11n uU ∞=∑解:()12008nn U ∞=∑=20081nn U∞=∑1nn U ∞=∑收敛∴由性质()12008nn U ∞=∑收敛3.下列级数中一定收敛的是…( A )A .21014n n ∞=-∑ B .10244n n nn ∞=-∑ C .101nn n n ∞=⎛⎫⎪+⎝⎭∑ D+… 解:214n U n =-0n ≥21n=lim 1n n nU V →∞=,且2101n n ∞=∑收敛,由比较法21014n n ∞=-∑收敛 4.下列级数条件收敛的是……( C )A .11n n n ∞=+∑n(-1) B .()211nn n ∞=-∑C .1nn ∞=- D .()1312nnn ∞=⎛⎫- ⎪⎝⎭∑ 解:(1)n ∞∞=n=1发散(112p =<)(2)11nn ∞=-为莱布尼兹级数收敛,选C5.级数()111cos nn k n ∞=⎛⎫-- ⎪⎝⎭∑ (k>0)…( B )A .发散B .绝对收敛C .条件收敛D .敛散性与K 相关解:11(1)(1cos )1cos nn n k k n n ∞∞-=⎛⎫--=- ⎪⎝⎭∑∑1cos n kU n=-222k n =lim 1n n nU V →∞=且1n n V ∞=∑收敛,故选B 6.设正项极数!1lim n nn n nU U p U∞+→∞==∑若则(D )A..当0<p<+∞时,级数收敛B.当p<1时级数收敛,p ≥1时级数发散C.当p ≤1时级数收敛,p>1时级数发散D.当p<1时级数收敛,p>1时级数发散解:当P<1时级数收敛,当P>1时级数发散,当P =1时失效。
数项级数试题[整理版]
![数项级数试题[整理版]](https://img.taocdn.com/s3/m/59147efd541810a6f524ccbff121dd36a32dc460.png)
( —— 学年度第 学期)课程名称:数学分析(二) 试卷类型:数项级数一、填空题(每小题2分,共30分)1、交错级数()∑∞=-11n n。
2、若级数∑∞=1n n u 收敛,则nn u∞→lim = 。
3、级数∑∞=11n p n ,当p 时收敛,当p 时发散。
4、交错级数()∑∞=-21n xnn,当x 时绝对收敛,当x 时条件收敛。
5、若级数∑∞=1n n a 绝对收敛,数列{}n b 有界,则级数∑∞=1n n n b a(绝对收敛或条件收敛或发散)。
试卷不允许拆开6、若数列{}n a 收敛于a ,则级数()=-∑∞=+11n n n a a 。
7、当正数a 时,∑∞=+111n n a 收敛;当正数a 时,∑∞=+111n na发散。
8、级数()()∑∞=+-112121n n n = 。
9、级数∑∞=-1132n n = 。
10、级数nn n x n ∑∞=⎪⎭⎫⎝⎛1!,当11、若∑∑∞=∞=1212,n nn n v u 收敛,则∑∞=1n nn vu (绝对收敛或条件收敛或发散)。
12、级数∑∞=1!n nn a (绝对收敛或条件收敛或发散)(0>a )。
13、级数()n n 11∑∞=-。
14、由正项级数收敛的必要条件知=+∞>-2)!(limn n nn 。
15、若级数∑∞=1n n a 收敛,∑∞=1n n b 发散,则级数()∑∞=+1n n n b a 。
二、 计算题(共28分)1、判别下列级数的收敛性:(14分)(1)∑∞=03sin 2n n nπ; (2)nn n n ∑∞=⎪⎭⎫ ⎝⎛+112; (3)∑∞=1!n nnn ;(4)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n ;(5)∑∞=+-12121n n n ;(6)()()0111>+-∑∞=x x x n n n n n ;(7)()()0,2,0,sin 1>∈∑∞=απαx n nxn 。
数学分析函数项级数课后习题答案

§11.11.解:(1)由于,所以于是,,因此 ,,(2)由于对,有,又,故,于是,, ⑶ 解:,故在上不一致收敛。
⑷ 解:令,故得为唯一极大值,从而是最大值,,故一致收敛。
⑸ 解: 法一,直接有和函数的连续性,可知在上不一致收敛。
法二,取, 故不一致收敛。
()()x S x x S n n ==∞→lim ()()n xnx n x n x x S x S n 111122222≤++=-+=-()()n x S x S n Dx 1sup ≤-∈()()0sup lim =-∈∞→x S x S n Dx n ()x x S x S n =⇒)(()∞→n D x ∈()+∞∞-∈∀,x ()()x S x n xx f n n n ==+=∞→∞→01limlim 22()()nx n x x S x S n 21122≤+=-()()()0sup lim ,=-+∞∞-∈∞→x S x S n x n ()0)(122=⇒+=x S xn xx S n ()∞→n R x ∈01lim 0,sup 010nxnx n x e e --→∞<<=-=≠n S ()0,1()()0,nx n S x xe S x -=→=(),nx f x xe -=()()()001'10,''0nx f x e nx x f x n-=-=⇒=<0x ()10,111sup 00n nxn x xee n e n--∈+∞-==→()n S x ()()[]1,2sin ,0,0,\2nn x S x S x x πθππ⎧=⎪⎪=→=⎨⎪∈⎪⎩()n S x []0,π()11sin lim 0022n n n n n n x arc x s x →∞→∞=-=-=≠⑹ 解:,又,(7)由于,,而收敛,故由判别法知在上一致收敛。
(8)设,则是正项级数,且有 , 即收敛,而对,有故由判别法知:在上一致收敛。
级数考试题及答案

级数考试题及答案【题目一】确定下列级数是否收敛,并给出证明。
\[ \sum_{n=1}^{\infty} \frac{1}{n^2} \]【答案一】该级数是一个交错级数,我们可以使用比较判别法来证明其收敛性。
首先,我们知道调和级数\( \sum_{n=1}^{\infty} \frac{1}{n} \)是发散的,但是其平方级数\( \sum_{n=1}^{\infty} \frac{1}{n^2} \)是收敛的。
因为对于所有的\( n \geq 1 \),有\( \frac{1}{n^2}\leq \frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n} \)。
通过部分和的望远镜效应,我们可以证明\( \sum_{n=1}^{\infty}\frac{1}{n^2} \)的收敛性。
【题目二】计算级数\( \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \)的和。
【答案二】该级数是一个交错级数,我们可以通过级数的和-项公式来计算其和。
首先,我们注意到级数的项是交错的,即正负交替出现。
我们可以使用交错级数的和-项公式:\[ S = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} \]\[ S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots \] 我们可以通过分组求和的方式来简化计算:\[ S = (1 + \frac{1}{2} + \frac{1}{3} + \cdots) - (\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots) \]第一个括号内的级数是调和级数的一半,第二个括号内的级数是第一个括号内级数的四分之一。
因此,我们可以得出:\[ S = \ln(2) \]【题目三】判断级数\( \sum_{n=1}^{\infty} \frac{n^2}{e^n} \)的收敛性。
大学第四版高等数学教材答案

大学第四版高等数学教材答案【前言】在大学学习的过程中,高等数学是一门非常重要的课程。
为了更好地帮助同学们进行学习,提供一个参考,下面是大学第四版高等数学教材的答案。
【第一章微分学】1.1 导数与微分练习题答案:1. 求函数f(x) = 3x^2 - 2x的导数。
答:f'(x) = 6x - 2.2. 计算函数f(x) = x^3 - 2x^2 + 4x - 1在x = 2处的导数。
答:f'(2) = 6.1.2 函数的凹凸性和拐点练习题答案:1. 求函数f(x) = x^3 - 3x^2 + 2x的凹凸性和拐点。
答:f''(x) = 6x - 6,令f''(x) = 0,解得x = 1。
当x小于1时,f''(x)小于0,函数凹;当x大于1时,f''(x)大于0,函数凸。
所以在x = 1处有拐点。
2. 设函数f(x) = x^4 - 8x^2 + 12x,求其在[-2, 4]上的最大值和最小值。
答:首先求f'(x) = 4x^3 - 16x + 12,求解得到导数的零点x = -2, 1, 2。
然后求解f''(x) = 12x^2 - 16,代入得到f''(-2) = 20, f''(1) = -4, f''(2) = 20。
通过计算得知,在x = -2处为极小值,x = 1处为极大值。
所以最小值为f(-2) = 20,最大值为f(1) = 5。
【第二章积分学】2.1 不定积分练习题答案:1. 求函数f(x) = 3x^2 - 2x + 1的不定积分。
答:∫(3x^2 - 2x + 1)dx = x^3 - x^2 + x + C,其中C为常数。
2. 计算不定积分∫(4x^3 - 6x^2 + 2x + 5)dx。
答:∫(4x^3 - 6x^2 + 2x + 5)dx = x^4 - 2x^3 + x^2 + 5x + C,其中C为常数。
级数测试题及答案

级数测试题及答案一、单项选择题(每题2分,共10分)1. 级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2}\) 是:A. 收敛的B. 发散的C. 条件收敛的D. 绝对收敛的答案:A2. 级数 \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n}\) 是:A. 收敛的B. 发散的C. 条件收敛的D. 绝对收敛的答案:C3. 级数 \(\sum_{n=1}^{\infty} \frac{1}{n^p}\) 的收敛性取决于\(p\) 的值,其中 \(p > 1\) 时级数:A. 收敛B. 发散C. 条件收敛D. 绝对收敛答案:A4. 级数 \(\sum_{n=1}^{\infty} \frac{1}{2^n}\) 是:A. 收敛的B. 发散的C. 条件收敛的D. 绝对收敛的答案:D5. 级数 \(\sum_{n=1}^{\infty} \frac{n}{n+1}\) 是:A. 收敛的B. 发散的C. 条件收敛的D. 绝对收敛的答案:B二、填空题(每题3分,共15分)6. 级数 \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\) 的和为_______。
答案:17. 级数 \(\sum_{n=1}^{\infty} \frac{1}{n^3}\) 是 _______ 级数。
答案:p8. 级数 \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}\) 的和为_______。
答案:\(\frac{\pi^2}{12}\)9. 级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}\) 与级数\(\sum_{n=1}^{\infty} \frac{1}{n^2}\) 相比,前者是 _______ 收敛的。
答案:更慢10. 级数 \(\sum_{n=1}^{\infty} \frac{1}{n(n+2)}\) 的和为_______。