数项级数的概念与性质

合集下载

数项级数的基本概念及性质

数项级数的基本概念及性质

称为级数的部分和.
机动 目录 上页 下页 返回 结束
5
则称无穷级数收敛,
并称 S 为级数的和, 记作:S un
n 1
则称无穷级数发散。
即:常数项级数收敛(发散) lim S n 存在(不存在)
n
当级数收敛时, 称差值
为级数的余项. 显然

Sn S
误差为 Rn
机动 目录 上页 下页 返回 结束
设三角形 周长为 P1 3 , 3 面积为 A1 ; 4
第一次分叉:
4 周长为 P2 P1 , 3 1 面积为 A2 A1 3 A1 ; 9
播放
依次类推
机动 目录 上页 下页 返回
9
结束
第 n 次分叉:
4 n 1 周长为: Pn ( ) P1 3 n 1, 2,
n n n
a lim s n n 1 q
收敛
lim q n lim sn 当 q 1时 , n
机动
发散
目录 上页 下页 返回
17
结束
当 q 1时 ,
sn na
发散
发散
aq 3 aq
2
当 q 1 时 , 级数变为 a a a a
a 1 q , n 综上所述 aq n 0 发散 ,

q 1 q 1
a aq
aq 2
右图给出了几何级数的一个 几何解释:
S a 由三角形的相似 a a aq a S 1 q
a
aq
aq
S
a
a
机动 目录 上页 下页 返回
18
结束
例 4: 以德国数学家 Cantor 命名的 Cantor 集是这样

数项级数的定义

数项级数的定义

数项级数的定义一、数项级数的概念数项级数是指由一系列数项按照一定规律相加而得到的一种数列。

数项级数一般表示为 S =a 1+a 2+a 3+...+a n +...,其中 a n 是数项。

二、数项级数的和数项级数的和指的是将数项按照一定次序相加的结果。

如果数项级数的和存在有限值,我们称该数项级数是收敛的,收敛的和就是该级数的和;如果数项级数的和不存在有限值,我们称该数项级数是发散的。

三、数项级数的收敛条件数项级数的收敛与数项的值有关,有以下几种常见的收敛条件:1. 绝对收敛如果数项级数的各个数项 a n (n ≥1)的绝对值组成的级数 ∑|a n |∞n=1 收敛,则称原数项级数 ∑a n ∞n=1 是绝对收敛的。

2. 条件收敛如果数项级数 ∑a n ∞n=1 收敛,但 ∑|a n |∞n=1 发散,则称原数项级数是条件收敛的。

3. 收敛性与发散性对于一般的数项级数,没有绝对收敛或条件收敛的情况,称该数项级数是发散的。

四、数项级数的性质数项级数具有以下一些基本的性质:若级数 ∑a n ∞n=1 和 ∑b n ∞n=1 都收敛,则级数 ∑(a n +b n )∞n=1 也收敛,并且有∑(a n +b n )∞n=1=∑a n ∞n=1+∑b n ∞n=1。

2. 常数倍数性若级数 ∑a n ∞n=1 收敛,则级数 ∑(ka n )∞n=1 也收敛,并且有 ∑(ka n )∞n=1=k ∑a n ∞n=1(k 为常数)。

3. 递推式若级数 ∑a n ∞n=1 的部分和数列 {S n } 满足递推式 S n =S n−1+a n (n ≥2)并且lim n→∞S n 存在,则级数 ∑a n ∞n=1 收敛且 lim n→∞S n =∑a n ∞n=1。

4. 比较性若级数 ∑a n ∞n=1 和 ∑b n ∞n=1 满足 |a n |≤|b n |(n ≥1),且 ∑b n ∞n=1 收敛,则∑a n ∞n=1 绝对收敛。

数项级数的概念与基本性质

数项级数的概念与基本性质

数项级数的概念与基本性质8.1 数项级数的概念与基本性质教学目的:理解级数的概念和基本性质。

教学重点:级数的基本性质,收敛的必要条件,几何级数。

教学难点:有限项相加与无穷项相加的差异。

教学过程:1.导入我们以前研究的加法是将有限个数相加,这种加法易于计算但无法满足应用的需要。

在许多技术问题中,常要求我们将无穷多个数相加,这种加法叫做无穷级数。

无穷级数是表示函数、研究函数性质以及进行数值计算的一种工具。

无穷级数分为常数项级数和函数项级数,常数项级数是函数项级数的特殊情况,是函数项级数的基础。

2.讲授新课2.1 常数项级数的概念定义8.1:设给定数列{an},我们把形如a1+a2+。

+an+。

=∑an (n=1,2.)的式子称为一个无穷级数,简称级数。

其中第n项an称为级数∑an的通项(或一般项)。

如果级数中的每一项都是常数,我们称此级数为数项级数。

例如,等差数列各项的和a1+(a1+d)+(a1+2d)+。

+[a1+(n-1)d]+。

称为算术级数。

等比数列各项的和XXX.称为等比级数,也称为几何级数。

级数2n-1+。

+1111+。

=∑(2n-1)/(3n) (n=1,2.)称为调和级数。

级数(8.1.1)的前nXXX:XXX,k=1,2.n称Sn为级数∑an的前n项部分和,简称部分和。

2.2 常数项级数收敛与发散定义8.2:若级数(8.1.1)的部分和数列{Sn}的极限存在,即limSn=S (常数)n→∞则称极限S为无穷级数∑an的和。

记作S=∑an=a1+a2+。

+an+。

此时称级数∑an收敛;如果数列{Sn}没有极限,则称级数∑XXX发散,这时级数没有和。

显然,当级数收敛时,其部分和Sn是级数和S的近似值,它们之间的差rn=S-Sn=an+1+an+2+。

叫做级数的余项。

用近似值Sn代替S所产生的误差是这个余项的绝对值,即误差为|rn|。

例1:讨论几何级数∑aq^(n-1)=a+aq+aq^2+。

数学分析数项级数

数学分析数项级数
傅里叶级数的应用
傅里叶级数在信号处理、图像处理、通信等领域有着广泛的应用。通过傅里叶变换,可 以将信号从时域转换到频域,从而更好地理解和处理信号。
泰勒级数
01
泰勒级数的定义
泰勒级数是无穷级数,用于逼近一个 函数。泰勒级数展开式由多项式和无 穷小量组成,可以用来近似表示任意 函数。
02
泰勒级数的性质
数学分析数项级数
目录
• 数项级数的基本概念 • 数项级数的性质 • 数项级数的求和法 • 数项级数的应用 • 数项级数的扩展
01
数项级数的基本概念
级数的定义
定义
级数是无穷数列的和,表示为Σ,其 中每一项都是正项或负项。
特点
级数中的每一项都是无穷小量,但整 个级数的和可能是有限的或无限的。
级数的分类
泰勒级数具有收敛性、唯一性和可微 性等重要性质。这些性质使得泰勒级 数成为分析函数的有力工具。
03
泰勒级数的应用
泰勒级数在数学分析、物理和工程等 领域有着广泛的应用。通过泰勒展开 ,可以更好地理解和分析函数的性质 ,如求函数的极限、证明不等式等。
感谢您的观看
THANKS
有穷级数
所有项的和是有限的,例如1+2+3+...+100。
无穷级数
所有项的和是无限的,例如1+1/2+1/3+...。
级数的收敛与发散
收敛
级数的和是有限的,即级数 收敛。
发散
级数的和是无限的,即级数 发散。
判定方法
通过比较测试、柯西收敛准 则等判定级数的收敛与发散 。
02
数项级数的性质
收敛级数的性质
数项级数的扩展
幂级数

《数学分析》第十二章 数项级数

《数学分析》第十二章 数项级数

第十二章 数项级数 ( 1 4 时 )§1 级数的收敛性( 3 时 )一. 概念:1.级数:级数,无穷级数;通项 (一般项, 第n 项), 前n 项部分和等概念 (与中学的有关概念联系).级数常简记为∑nu.2. 级数的敛散性与和:介绍从有限和入手, 引出无限和的极限思想.以在中学学过的无穷等比级数为蓝本, 定义敛散性、级数的和、余和以及求和等概念 . 例1 讨论几何级数∑∞=0n nq的敛散性.解 当1||<q 时, ) ( , 11110∞→-→--==∑=n q q q q S n nk kn . 级数收敛;当1||>q 时, , =n S 级数发散 ;当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, ()n n S )1(121-+=, ) (∞→n , 级数发散 . 综上, 几何级数∑∞=0n n q 当且仅当 1||<q 时收敛, 且和为q-11( 注意n 从0开始 ). 例2 讨论级数∑∞=+1)1(1n n n 的敛散性. 解 用链锁消去法求. 例3 讨论级数∑∞=12n n n的敛散性. 解 设 ∑=-+-++++==nk n n k n n n k S 11322212322212, =n S 211432221 232221++-++++n n nn ,1322212121212121+-++++=-=n n n n n n S S S12211211211→--⎪⎭⎫ ⎝⎛-=+n n n , ) (∞→n .⇒ n S →2, ) (∞→n .因此, 该级数收敛. 例4 讨论级数∑∞=-1352n n n的敛散性. 解52, 5252352⋅>⇒=>-n S n n n n n →∞+, ) (∞→n . 级数发散.3. 级数与数列的关系:⑴设∑nu对应部分和数列{n S }, 则∑nu收敛 ⇔ {n S }收敛;⑵对每个数列{n x },对应级数∑∞=--+211)(n n nx xx ,对该级数,有n S =n x .于是,数列{n x }收敛⇔级数 ∑∞=--+211)(n n nx xx 收敛.可见,级数与数列是同一问题的两种不同形式. 4. 级数与无穷积分的关系:⑴⎰∑⎰+∞∞=+==111)(n n nf dx x f ∑∞=1n nu, 其中 ⎰+=1n nn f u . 无穷积分可化为级数;⑵对每个级数, 定义函数 , 2 , 1 , 1 , )(=+<≤=n n x n u x f n , 易见有∑∞=1n nu=⎰+∞1)(dx x f . 即级数可化为无穷积分.综上所述,级数和无穷积分可以互化,它们有平行的理论和结果.可以用其中的一个研究另一个.二 级数收敛的充要条件 —— Cauchy 准则 :把部分和数列{n S }收敛的Cauchy 准则翻译成级数的语言,就得到级数收敛的Cauchy 准则.Th1 ( Cauchy 准则 )∑nu收敛⇔N n N >∀∃>∀ , , 0ε和∈∀p N ⇒ε | |21<++++++p n n n u u u .由该定理可见,去掉或添加上或改变(包括交换次序) 级数的有限项, 不会影响级数的敛散性. 但在收敛时, 级数的和将改变.去掉前 k 项的级数表为∑∞+=1k n nu或∑∞=+1n kn u.推论 (级数收敛的必要条件)∑nu收敛⇒ 0lim =∞→n n u .例5 证明2-p 级数∑∞=121n n 收敛 . 证 显然满足收敛的必要条件.令 21nu n =, 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++pk pk p n n n n p n n k n k n k n u u u 11221 ,111))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 |∑=+pk kn u1|不失真地放大成只含n 而不含p 的式子,令其小于ε,确定N . 例6 判断级数∑∞=11sinn nn 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要条件)例7 证明调和级数∑∞=11n n发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n nn ln 1 1211 )1ln(+<+++<+ . 即得+∞→n S ,) (∞→n . )注: 此例为0→n u 但级数发散的例子.三. 收敛级数的基本性质:(均给出证明)性质1∑nu收敛,a 为常数⇒∑nau收敛,且有∑nau=a∑nu(收敛级数满足分配律)性质2∑nu和∑nv收敛⇒)(n nv u±∑收敛,且有)(n n v u ±∑=∑n u ±∑nv.问题:∑nu、∑nv、)(n nv u±∑三者之间敛散性的关系.性质3 若级数∑nu收敛, 则任意加括号后所得级数也收敛, 且和不变.(收敛数列满足结合律)例8 考查级数 ∑∞=+-11)1 (n n 从开头每两项加括号后所得级数的敛散性. 该例的结果说明什么问题 ?Ex [1]P 5—7 1 — 7.§2 正项级数( 3 时 )一. 正项级数判敛的一般原则 :1.正项级数: n n S u , 0>↗; 任意加括号不影响敛散性.2. 基本定理: Th 1 设0≥n u .则级数∑nu收敛⇔)1(0=n S .且当∑nu发散时,有+∞→n S ,) (∞→n . ( 证 )正项级数敛散性的记法 . 3. 正项级数判敛的比较原则: Th 2 设∑nu和∑nv是两个正项级数, 且N n N >∃ , 时有n n v u ≤, 则 ⅰ> ∑nv <∞+ , ⇒ ∑nu<∞+ ;ⅱ>∑nu=∞+, ⇒∑nv=∞+ . ( ⅱ> 是ⅰ>的逆否命题 )例1 考查级数∑∞=+-1211n n n 的敛散性 .解 有 , 2 11 012222nn n n n <+-⇒>+- 例2 设)1( 0π><<q q p . 判断级数∑∞=+111sin n n n q p 的敛散性.推论1 (比较原则的极限形式) 设∑n u 和∑n v 是两个正项级数且l v u nnn =∞→lim,则ⅰ> 当∞+<< 0l 时,∑nu和∑nv共敛散 ; ⅱ> 当0=l 时 ,∑nv<∞+⇒∑nu<∞+ ;ⅲ> 当+∞=l 时,∑nv=∞+⇒∑nu=∞+ . ( 证 )推论2 设∑nu和∑nv 是两个正项级数,若n u =)(0n v ,特别地,若 n u ~n v ,) (∞→n , 则∑nu<∞+⇔∑nv=∞+.例3 判断下列级数的敛散性:⑴∑∞=-121n n n ; ( n n -21~ n 21) ; ⑵ ∑∞=11sin n n ; ⑶ ∑∞=+12) 11 ln(n n .二 正项级数判敛法:1.比值法:亦称为 D ’alembert 判别法.用几何级数作为比较对象,有下列所谓比值法. Th 3 设∑nu为正项级数, 且0 N ∃ 及 0 , ) 10 ( N n q q ><<时ⅰ> 若11<≤+q u u nn ⇒∑n u <∞+; ⅱ> 若11≥+nn u u ⇒∑n u =∞+ . 证 ⅰ> 不妨设 1≥n 时就有11<≤+q u u nn 成立, 有, , , , 12312q u u q u u q u u n n ≤≤≤- 依次相乘⇒11-≤n n q u u , 即 11-≤n n qu u . 由 10<<q , 得∑<nq∞+⇒∑n u <∞+.ⅱ> 可见}{n u 往后递增⇒ , 0→/n u ) (∞→n . 推论 (比值法的极限形式) 设∑n u 为正项级数, 且 q u u nn n =+∞→1lim. 则ⅰ> 当q <1⇒∑nu<∞+; ⅱ>当q >1或q =∞+⇒∑nu=∞+. ( 证 )注: ⑴倘用比值法判得∑nu=∞+, 则有 , 0→/n u ) (∞→n .⑵检比法适用于n u 和1+n u 有相同因子的级数, 特别是n u 中含有因子!n 者. 例4 判断级数 ()()+-+⋅⋅-+⋅⋅++⋅⋅⋅⋅+⋅⋅+)1(41951)1(32852951852515212n n的敛散性. 解 1 434132lim lim1<=++=∞→+∞→n n u u n nn n ⇒∑+∞<.例5 讨论级数∑>-)0( 1x nx n 的敛散性.解 因为) ( , 1)1(11∞→→+⋅+=-+n x n n x nxx n u u n n n n . 因此, 当10<<x 时,∑+∞<; 1>x 时, ∑+∞=; 1=x 时, 级数成为∑n , 发散.例6 判断级数∑+nn n n !21的敛散性 .注: 对正项级数∑n u ,若仅有11<+nn u u ,其敛散性不能确定. 例如对级数∑n 1和∑21n,均有 11<+nn u u ,但前者发散, 后者收敛.Ex [1]P 16 1⑴―⑺, 2⑴⑵⑷⑸,3,4,12⑴⑷;2. 根值法 ( Cauchy 判别法 ): 也是以几何级数作为比较的对象建立的判别法.Th 4 设∑nu为正项级数,且 0 N ∃ 及 0>l , 当 0N n >时,ⅰ> 若 1 <≤l u n n ⇒∑nu<∞+;ⅱ> 若1 ≥n n u ⇒∑nu =∞+. ( 此时有 , 0→/n u ) (∞→n .) ( 证 ) 推论 (根值法的极限形式) 设∑nu为正项级数,且 l u n n n =∞→lim . 则ⅰ> 当1 <l 时⇒∑nu<∞+; ⅱ> 当1 >l 时⇒∑nu=∞+ . ( 证 )注: 根值法适用于通项中含有与n 有关的指数者.根值法优于比值法. (参阅[1]P 12)例7 研究级数 ∑-+nn2) 1 (3的敛散性 .解 1212)1(3l i m l i m <=-+=∞→∞→nnn n nn u ⇒∑+∞<. 例8 判断级数∑⎪⎭⎫⎝⎛+21n n n 和∑⎪⎭⎫⎝⎛+21n n n 的敛散性 .解 前者通项不趋于零 , 后者用根值法判得其收敛 . 3. 积分判别法:Th 5 设在区间) , 1 [∞+上函数0)(≥x f 且↘. 则正项级数∑)(n f 与积分⎰+∞1)(dx x f 共敛散.证 对] , 1[ , 1 A R f A ∈>∀ 且 ⎰-=-≤≤nn n n f dx x f n f 1, 3 , 2 , )1()()(⇒⎰∑∑∑=-===-≤≤mmn m n mn n f n f dx x f n f 12112, )()1()()( . 例9 讨论 -p 级数∑∞=11n pn的敛散性. 解 考虑函数>=p xx f p ,1)(0时)(x f 在区间 ) , 1 [∞+上非负递减. 积分⎰+∞1)(dxx f当1>p 时收敛, 10≤<p 时发散⇒级数∑∞=11n pn当1>p 时收敛,当10≤<p 时发散,当0≤p 时,01→/pn , 级数发散. 综上,-p 级数∑∞=11n pn当且仅当1>p 时收敛. 例10 讨论下列级数的敛散性:⑴ ∑∞=2) ln ( 1n p n n ; ⑵ ∑∞=3)ln ln ( ) ln ( 1n pn n n .Ex [1]P 16 1⑻,2⑶⑹,5,6,8⑴―⑶,11;§3 一般项级数 ( 4 时 )一. 交错级数: 交错级数, Leibniz 型级数.Th 1 ( Leibniz ) Leibniz 型级数必收敛,且余和的符号与余和首项相同, 并有1 ||+≤n n u r . 证 (证明部分和序列 } {n S 的两个子列} {2n S 和} {12+n S 收敛于同一极限. 为此先证明} {2n S 递增有界. ))()()()(22122124321)1(2++-+-+-++-+-=n n n n n u u u u u u u u S ≥ n n n S u u u u u u 22124321)()()(=-++-+-- ⇒n S 2↗; 又 1212223212)()(u u u u u u u S n n n n ≤------=-- , 即数列} {2n S 有界. 由单调有界原理, 数列} {2n S 收敛 . 设 )( , 2∞→→n s S n .)( , 12212∞→→+=++n s u S S n n n . ⇒s S n n =∞→lim .由证明数列} {2n S 有界性可见 , ∑∞=+≤-≤111)1 (0n n n u u . 余和∑∞=++-nm m m u 12)1(亦为型级数 ⇒余和n r 与1+n u 同号, 且1 ||+≤n n u r .例1 判别级数∑∞=>-1)0( ) 1 (n nnx n x 的敛散性.解 当10≤<x 时, 由Leibniz 判别法⇒∑收敛;当1>x 时, 通项0→/,∑发散.二. 绝对收敛级数及其性质:1. 绝对收敛和条件收敛: 以Leibniz 级数为例, 先说明收敛⇒/ 绝对收敛.Th 2 ( 绝对收敛与收敛的关系 ) ∑∞+< ||na, ⇒∑na收敛.证 ( 用Cauchy 准则 ).注: 一般项级数判敛时, 先应判其是否绝对收敛. 例2 判断例1中的级数绝对或条件收敛性 . 2. 绝对收敛级数可重排性: ⑴ 同号项级数:对级数∑∞=1n nu,令⎩⎨⎧≤>=+=. 0 , 0 , 0 , 2||n n n n n n u u u u u v ⎩⎨⎧≥<-=-= . 0 , 0 ,0 , 2||n n n n n n u u u u u w 则有 ⅰ>∑nv和∑nw均为正项级数 , 且有|| 0n n u v ≤≤和|| 0n n u w ≤≤;ⅱ> n n n w v u +=|| , n n n w v u -= . ⑵ 同号项级数的性质: Th 3 ⅰ> 若∑||nu +∞< , 则∑n v +∞< ,∑n w +∞< .ⅱ> 若∑nu条件收敛 , 则∑nv+∞= ,∑nw+∞= .证 ⅰ> 由|| 0n n u v ≤≤和|| 0n n u w ≤≤, ⅰ> 成立 .ⅱ> 反设不真 , 即∑nv和∑nw中至少有一个收敛 , 不妨设∑nv+∞< .由 n u = n v n w - , n w =n v n u - 以及 ∑nv+∞<和∑n u 收敛 ⇒∑n w +∞<.而n n n w v u +=||⇒∑||nu+∞<, 与∑n u 条件收敛矛盾 .⑶ 绝对收敛级数的可重排性: 更序级数的概念. Th 4 设∑'nu 是∑nu的一个更序. 若∑||nu+∞<,则||∑'nu +∞<,且∑'n u =∑n u . 证 ⅰ> 若n u 0≥,则∑'nu 和∑nu是正项级数,且它们的部分和可以互相控制.于是,∑nu+∞< ⇒∑'nu +∞<, 且和相等. ⅱ> 对于一般的n u , ∑nu=∑nv ∑-nw⇒∑'nu = ∑'nv ∑'-nw .正项级数∑'nv 和∑'n w 分别是正项级数∑nv和∑nw的更序. 由∑||nu+∞<, 据Th 1 ,∑nv和∑nw收敛. 由上述ⅰ>所证,有∑'nv +∞<,∑'nw +∞<, 且有∑nv =∑'nv , ∑n w ∑n u =∑'n w ⇒∑nu =∑'nu .由该定理可见, 绝对收敛级数满足加法交换律.是否只有绝对收敛级数才满足加法交换律呢 ? 回答是肯定的 . Th 5 ( Riemann ) 若级数∑nu条件收敛, 则对任意实数s ( 甚至是∞± ),存在级数∑nu的更序∑'nu , 使得∑'nu =s .证 以Leibniz 级数∑∞=+-111) 1 (n n n为样本, 对照给出该定理的证明. 关于无穷和的交换律, 有如下结果: ⅰ> 若仅交换了级数∑nu的有限项,∑nu的敛散性及和都不变.ⅱ> 设∑'nu 是的一个更序. 若N ∈∃K , 使 nu在∑'nu 中的项数不超过K n +,106则∑'n u 和∑n u 共敛散, 且收敛时和相等 .三. 级数乘积简介:1. 级数乘积: 级数乘积, Cauchy 积. [1] P 20—22.2.级数乘积的Cauchy 定理:Th 6 ( Cauchy ) 设∑||n u +∞<, ||∑n v +∞<, 并设∑n u =U , ∑n v =V . 则 它们以任何方式排列的乘积级数也绝对收敛, 且乘积级数的和为UV . ( 证略 ) 例3 几何级数1 || ,1112<+++++=-r r r r rn 是绝对收敛的. 将()2∑n r 按Cauchy 乘积排列, 得到 +++++++++++=++个12222)()()(1)1(1n n n n r r r r r r r r r ++++++=n r n r r )1(3212 .Ex [1] P 24—25 1⑴—⑻ ⑽,4; 31(总Ex ) 2,3,4⑴⑵;四. 型如∑n n b a 的级数判敛法:1.Abel 判别法:引理1 (分部求和公式,或称Abel 变换)设i a 和i b m i ≤≤1)为两组实数.记) (1 ,1m k b B k i i k ≤≤=∑=. 则∑∑=-=++-=m i m i m m i i i i i B a B a a b a 1111)(.证 注意到 1--=i i i B B b , 有∑∑==-+-=m i m i i i ii i b a B B a b a 12111)()()()(123312211--++-+-+=m m m B B a B B a B B a B a107 m m m m m B a B a a B a a B a a +-++-+-=--11232121)()()() )( ( . )(111111∑∑-=+-=+--=+-=m i i i i m m m m m i i i i B a a B a B a B a a. 分部求和公式是离散情况下的分部积分公式. 事实上,⎰⎰⎰=⎪⎪⎭⎫ ⎝⎛=b a ba x a dt t g d x f dx x g x f )()()()( ⎰⎰⎰⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=b a x a b a x a x df dt t g dt t g x f )()()()(⎰⎰⎰⎪⎭⎫ ⎝⎛-=b a b ax a x df dt t g dt t g b f )()()()(. 可见Abel 变换式中的i B 相当于上式中的⎰x a dt t g )(, 而差i i a a -+1相当于)(x df , 和式相当于积分. 引理 2 ( Abel )设i a 、i b 和i B 如引理1 .若i a 单调 , 又对m i ≤≤1,有M B i ≤||,则||1∑=mi i i b a ) ||2|| (1m a a M +≤.证 不妨设i a ↘.||1∑=m i i i ba ∑-=++-≤111||||||m i m m i i i B a B a a ) ||2|| ( ||)(1111m m i m i i a a M a a a M +≤⎥⎦⎤⎢⎣⎡+-≤∑-=+. 推论 设i a , 0≥i a ↘,(m i ≤≤1 ). i b 和i B 如引理1. 则有||1∑=m i i i ba 1Ma ≤.( 参引理2证明 ) Th 7 (Abel 判别法)设ⅰ> 级数∑n b 收敛,ⅱ> 数列}{n a 单调有界.则级数∑n n b a 收敛. 证 (用Cauchy 收敛准则,利用Abel 引理估计尾项)设K a n ≤||, 由∑n b 收敛 ⇒对N n N >∃>∀ , , 0ε时 , 对N ∈∀p , 有108 ε | |21<++++++p n n n b b b .于是当N n >时对p ∀有()εεK a a b a p n n pn n k k k 3 ||2|| 11≤+≤++++=∑.由Cauchy 收敛准则 ⇒∑n n b a 收敛.2. Dirichlet 判别法:Th 8 ( Dirichlet)设ⅰ> 级数∑n b 的部分和有界, ⅱ> 数列}{n a 单调趋于零. 则级数∑n n b a 收敛.证 设∑==n i n n bB 1, 则M B n ||≤ ⇒对p n , ∀, 有M B B b b b n p n p n n n 2 ||||21≤-=+++++++ .不妨设n a ↘0 ⇒对εε<⇒>∀∃>∀|| , , , 0n a N n N . 此时就有εM a a M b a P n n pn n k k k 6|)|2|(|2 11<+≤++++=∑.由Cauchy 收敛准则,∑n n b a 收敛. 取n a ↘0,∑n b ∑+-=1) 1(n ,由Dirichlet 判别法, 得交错级数∑+-n n a 1) 1(收敛 . 可见Leibniz 判别法是Dirichlet 判别法的特例.由Dirichlet 判别法可导出 Abel 判别法. 事实上, 由数列}{n a 单调有界 ⇒}{n a 收敛, 设) ( , ∞→→n a a n .考虑级数∑∑+-n n n b a b a a )(,a a n -单调趋于零,n B 有界 ⇒级数∑-n n b a a )(收敛,又级数∑n b a 收敛⇒级数∑∑+-n n n b a b a a )(收敛.109 例4 设n a ↘0.证明级数∑nx a n sin 和∑nx a n cos 对)2 , 0(π∈∀x 收敛.证 ++⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+∑= 2s i n 23s i n 2s i n c o s 212s i n 21x x x kx x n k x n x n x n ) 21sin() 21 sin() 21 sin(+=⎥⎦⎤⎢⎣⎡--++, ) 2 , 0 (π∈x 时,02sin ≠x ⇒∑=+=+nk x x n kx 12sin 2) 21 sin(cos 21. 可见) 2 , 0 (π∈x 时, 级数∑kx cos 的部分和有界. 由Dirichlet 判别法推得级数∑nx a n cos 收敛 . 同理可得级数数∑nx a n sin 收敛 .Ex [1]P 24 — 25 2, 3.。

数项级数的定义

数项级数的定义

数项级数的定义数项级数的定义数项级数是由一系列有限或无限个数项所组成的一种特殊的数列。

这些数项可以是实数、复数或其他类型的数字。

在这个级数中,每个数字都被称为一个“项”,而这些项被按照一定的顺序排列在一起,形成了一个整体。

1. 数项级数的基本概念1.1 级数和部分和对于一个由n个项组成的级数,我们可以将它表示为S_n,其中S_n 表示前n个项之和。

当n趋近于无穷大时,我们可以得到该级数的总和S。

1.2 收敛与发散如果一个级数在某种意义下能够收敛于某个值S,则我们称该级数是收敛的。

反之,如果该级别不能收敛,则我们称它是发散的。

2. 数学公式表示对于一个由n个项组成的级别,我们可以用以下公式来表示它:∑ a_n = a_1 + a_2 + … + a_n其中a_n代表第n个项。

3. 级别收敛与发散判断方法3.1 正项级别判定法则正向级别指所有a_n都为正实数组成的级别。

如果正向序列满足以下条件,则该序列是收敛的:a_n ≤ a_(n+1) (n≥N)3.2 比值判别法对于一个级数∑ a_n,如果存在一个正整数q,使得:|a_(n+1) / a_n| ≤ q (n≥N)则该级数是收敛的。

3.3 积分判别法对于一个级别∑ a_n,如果存在一个连续的正函数f(x),满足以下条件,则该级数是收敛的:∫ f(x)dx 从N到无穷大收敛4. 常见级数之和4.1 等比级数求和公式对于形如∑ ar^n的等比级数,我们可以用以下公式来求和:S = a / (1-r)其中a为首项,r为公比。

4.2 调和级数求和公式调和级数指形如∑ 1/n的级别。

这个序列是发散的,但它可以用以下公式来近似计算:S_n = ln(n) + γ + ε_n其中γ为欧拉常数(约为0.577),ε_n是一个趋近于零的误差项。

5. 应用领域在实际生活中,级别经常被用于描述各种数量关系。

例如,在金融领域中,人们经常使用复利计算来计算投资回报率。

这种计算方法就涉及到等比级数。

数学物理基本方法4.1数项级数、幂级数

数学物理基本方法4.1数项级数、幂级数

幂级数在物理学中的应用
弹性力学
幂级数在弹性力学中用于 描述弹性体的应力和应变 关系。
热力学
热力学中的理想气体状态 方程就是通过幂级数来表 达的。
电磁学
在电磁学中,幂级数用于 描述电磁波的传播和电磁 场的分布。
数项级数与幂级数在金融领域的应用
复利计算
通过使用幂级数和数项级数,可以更精确地计算 复利,这对于金融投资和保险非常重要。
定义
数项级数与幂级数的乘法运算是 将两个级数的对应项相乘,得到
一个新的级数。
规则
乘法运算有特定的规则,如合并 同类项、调整系数等,需要细心
操作避免出错。
应用
数项级数与幂级数的乘法运算在 数学、物理、工程等领域有广泛 应用,如求解物理问题、研究复
合材料的性质等。
Part
05
数项级数与幂级数的应用实例
数学物理基本方法 4.1数项级数、幂级 数
• 数项级数简介 • 幂级数简介 • 数项级数与幂级数的联系与区别 • 数项级数与幂级数的运算方法 • 数项级数与幂级数的应用实例
目录
Part
01
数项级数简介
数项级数的定义
01
数项级数是无穷序列的和,表示为 $sum_{n=0}^{infty} a_n$,其中 $a_n$是序列中的第$n$项。
的时间序列数据。
Part
03
数项级数与幂级数的联系与区 别
数项级数与幂级数的共同点
01
两者都是无穷序列
数项级数和幂级数都是无穷序列,可以表示为无限多个项的和或乘积。
02
两者都有收敛和发散的概念
数项级数和幂级数都有收敛和发散的概念,收敛的级数或幂级数具有确
定的极限值,而发散的级数或幂级数则没有确定的极限值。

11-2 数项级数收敛性的判定

11-2 数项级数收敛性的判定
n =1
∑v
n=1

n
也发散 .
推论 设两正项级数
∞ ∞ un 1 ( 若 lim ) = 0 , 则由 vn 收敛可推知 un 收敛. ∑ ∑ n→∞ v n=1 n=1 n
∞ ∞ un 2 若 () lim = ∞ , 则由 vn 发散可推知 un 发散. ∑ ∑ n→∞ v n=1 n=1 n
∞ n
正 项 级 数 及 其 审 敛 法
1 1 1 1 (3) 调和级数 ∑ = 1 + + + L + + L 发散 2 3 n n =1 n
©

1 1 1 1 例1. 证明 p-级数 ∑ p = 1 + p + p +L+ p +L 2 3 n n=1 n

0 时发散, 当 < p ≤ 1时发散, p > 1 时收敛. 当
un+1 知存在N ∈Z ,当n ≥ N 时 < r < 1, 即un+1 < run , un
∞ ∞
+
将 ∑ uN + n 与收敛的等比级数
n =1
r n uN 比较, ∑ 比较,
n =1
可知原级数收敛。 可知原级数收敛。
(2) 当 ρ > 1或 ρ = ∞时必存在N ∈ Z+ , uN ≠ 0, 当n ≥ N , 时 从而
§11.2 数项级数的概念和性质
一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛和条件收敛
一、正项级数及其审敛法 若 un ≥ 0, 则称 ∑un 为正项级数 .
n=1 ∞
定理 1. 正项级数 有上界 . 证: “ “ ”若 ”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23
n n 1 2 n 2

lim
n
sn
lim( 1 1 ) 1 n 2 n 2 2
此级数收敛,和为 1 . 2
E-mail: xuxin@
例2 讨论等比级数(几何级数)
aqn a aq aq2 aqn
n0
(其中a 0, q为等比级数的公比)
解:(1)若 q 1 ,则部分和
lim
n
Sn不存在.
故原级数发散.
E-mail: xuxin@
2.数项级数基本性质
性质1:(收敛的必要条件) 如果级数
un u1 u2 un
n 1
u 收敛,则它的一般项 n 趋于零,即
lim
n
un
0
证明: un sn sn1
lim
n
un
nlim(sn
sn 1 )
E-mail: xuxin@
(2) 当 q 1时,
当 q 1时, sn na 级数发散,
当q 1时,级数成为a a a a 当n为奇数或偶数时, sn为a或0, 则 sn的极限不存在,级数发散. 小结: 等比级数的公比 | q | 1 ,级数收敛,
| q | 1 ,级数发散.
rn s sn un1 un2 ,
称为级数的余项,
rn 为 sn 代替s所产生的误差 .
.
E-mail: xuxin@
注意2:
到目前为止,已了解的级数的基本概念,特别
了解了级数 un 的收敛与发散性(敛散性)是由其 n 1
部分和数列 sn 的敛散性所决定的。
确切地说,两者敛散性是相同的
s1 u1, s2 u1 u2,, sn u1 u2 un. (2)
E-mail: xuxin@
例如 级数 1 1 1 的 23 34 45
一般项
它的前n项和
un
(n
1 1)(n
2)
111
1
sn 2 3 3 4 4 5
(n 1)(n 2)
1
lim
n
sn
lim
n
sn 1
s
s
0
E-mail: xuxin@
注1: 若反之,则不一定成立。

lim
n
un
0,原级数
un不一定收敛。
如级数调和 级1 数,有nl1i1nm发1散,0,但但n1事lnim实1n上 0
1 1
(n 1)(n 2) n 1 n 2
sn
(1 2
1) 3
(1 3
1) 4
(1 4
1) 5
1 1 2 n2
( 1 1 ) n1 n 2
E-mail: xuxin@
问题
由上我们便得到一个数列 s1, s2 ,L , sn ,从形式上
不难知道 un = n 1
lim
n
sn
,以前我们学过数列的收敛
与发散,进而就不难得出级数的收敛与发散的概念。
换而言之,有限个数相加为一数,无穷多个数相加是
否仍为一个数呢?
E-mail: xuxin@
定义1 若级数 ui的部分和数列sn收敛,设其极
i=1
限值为 s
lim
n
sn
lim
n
ui s
i=1
则称无穷级数 un 收敛.s称为此级数的和.且有
E-mail: xuxin@
§1 数项级数的概念与性质
1.数项级数的基本概念 2.数项级数的性质 3.柯西(cauchy)收敛准则
E-mail: xuxin@
1.无穷级数的概念
若有一个无穷数列
u1,u2,u3, ,un, 此无穷数列构成下列表达式
u1 + u2 + u3 + + un +
sn a aq aqn1 a(1 qn ) a aqn 1q 1q 1q
敛散性.
E-mail: xuxin@
当 q 1时,
lim qn 0,
aqn lim 0
n
lim
n
sn
n
a
1
q ,
1 q
则级数收敛;
当 q 1时, lim qn ,
n
lim
n
sn
则级数发散。
E-mail: xuxin@
第十三章 无 穷 级 数
无穷级数是微积分学的重要组成部分,它在函数 表示、数值计算、研究函数性质、微分方程的求 解等诸多方面,都有着不可替代的作用。无论对 数学理论本身,还是在科学技术的应用中,无穷 级数都是一个有效的工具。
本章内容由常数项级数、幂级数和傅立叶级数三 部分组成。主要介绍无穷级数的基本概念、基本 性质、敛散性的审敛法、幂级数以及将函数展开 为幂级数和傅立叶级数的方法及其应用。
对上式两端在区间[k,k+1]上取定积分
1 k1 1
k 1 1
k k
kdx k
dx x
11
12
31
n1 1
sn 1 2 3 L
n
dx
1
dxdx 1x
3 1dx L 2x
n1 1dx nx
n1 1 dx
1x
ln
x
n1 n
ln(n
1)
当n
时,
sn
.显然
E-mail: xuxin@
例 1 判定级数
1
1
1
的收敛性.
n1 (n 1)(n 2) 2 3
(n 1)(n 2)
解:un
(n
1 1)(n
2)
1 n 1
n
1
2
sn
1 23
1
1
n (n 1) (n 1) (n 2)
(1 1) (1 1 ) 1 1
(1)
称以上表达式为(常数项)无穷级数,简称(常数项)
级数,记为
un u1 u2 u3 un
sn
n1
其中第n项un叫作级数的一般项或通项
E-mail: xuxin@
显然,对于给定的级数(1),其任意前n项和sn都是已知的. 于是级数(1)对应着一个部分和数列{sn},即
s u u u , n1 12
无穷多项求和问题转 化成n数列{sn}的极限
若 {sn} 无极限,则称无穷级数问题un 发散.
n 1
lim
n
sn
s 称 un收敛于和s
n 1
lim
n
sn不存在

n 1
u
发散
n
E-mail: xuxin@
注意1:
如果级数(1)收敛,其和为s,则称
E-mail: xuxin@
例3 证明调和级数1 1 1 1 发散.
23
n
证: 为估计调和级数的部分和sn,我们在区间
[1,+∞]上引入函数 f (x) 1
x
对于任一x属于[1,+∞],存在自然数k,使得
k x k 1 ,于是 1 1 (k 1, 2,L )
kx
相关文档
最新文档