高考数学命题及其关系充分条件与必要条件(教学案)-数学(理)热点题型例题分析(原卷版)
高考数学(理科)一轮复习命题及其关系、充分条件与必要条件学习型教学案

高考数学(理科)一轮复习命题及其关系、充分条件与必要条件学案本资料为woRD文档,请点击下载地址下载全文下载地址学案2 命题及其关系、充分条件与必要条件导学目标:.能写出一个命题的逆命题、否命题、逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的含义.自主梳理.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系四种命题一般地,用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p和q的否定,于是四种命题的形式就是原命题:若p则q;逆命题:若q则p;否命题:若綈p则綈q;逆否命题:若綈q则綈p.四种命题间的关系四种命题的真假性①两个命题互为逆否命题,它们有相同的真假性.②两个命题为逆命题或否命题,它们的真假性没有关系.3.充分条件与必要条件若p⇒q,则p叫做q的充分条件;若q⇒p,则p叫做q的必要条件;如果p⇔q,则p叫做q的充要条件.自我检测.下列命题中的假命题是A.∃x∈R,lgx=0B.∃x∈R,tanx=1c.∀x∈R,x3>0D.∀x∈R,2x>0答案 c解析对于c选项,当x=0时,03=0,因此∀x ∈R,x3>0是假命题.2.“a>0”是“|a|>0”的A.充分不必要条件B.必要不充分条件c.充要条件D.既不充分也不必要条件答案 A解析a>0⇒|a|>0,|a|>0a>0,∴“a>0”是“|a|>0”的充分不必要条件.3.“x>0”是“x≠0”的A.充分而不必要条件B.必要而不充分条件c.充分必要条件D.既不充分也不必要条件答案 A解析对于“x>0”⇒“x≠0”,反之不一定成立,因此“x>0”是“x≠0”的充分而不必要条件.4.若命题p的否命题为r,命题r的逆命题为s,则s 是p的逆命题t的A.逆否命题B.逆命题c.否命题D.原命题答案 c解析由四种命题逆否关系知,s是p的逆命题t的否命题.5.与命题“若a∈m,则bm”等价的命题是A.若am,则bmB.若bm,则a∈mc.若am,则b∈mD.若b∈m,则am答案 D解析因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.探究点一四种命题及其相互关系例1 写出下列命题的逆命题、否命题、逆否命题,并判断其真假.实数的平方是非负数;等底等高的两个三角形是全等三角形;弦的垂直平分线经过圆心,并平分弦所对的弧.解题导引给出一个命题,判断其逆命题、否命题、逆否命题等的真假时,如果直接判断命题本身的真假比较困难,则可以通过判断它的等价命题的真假来确定.解逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.逆命题:若两个三角形全等,则这两个三角形等底等高.真命题.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.真命题.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.假命题.逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线.真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧.真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题.变式迁移1 有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆命题.其中真命题的序号为________.答案①③解析①的逆命题是“若x,y互为相反数,则x+y=0”,真;②的否命题是“不全等的三角形的面积不相等”,假;③若q≤1,则Δ=4-4q≥0,所以x2+2x+q=0有实根,其逆否命题与原命题是等价命题,真;④的逆命题是“三个内角相等的三角形是不等边三角形”,假.探究点二充要条件的判断例2 给出下列命题,试分别指出p是q的什么条件.p:x-2=0;q:=0.p:两个三角形相似;q:两个三角形全等.p:m<-2;q:方程x2-x-m=0无实根.p:一个四边形是矩形;q:四边形的对角线相等.解∵x-2=0⇒=0;而=0x-2=0.∴p是q的充分不必要条件.∵两个三角形相似两个三角形全等;但两个三角形全等⇒两个三角形相似.∴p是q的必要不充分条件.∵m<-2⇒方程x2-x-m=0无实根;方程x2-x-m=0无实根m<-2.∴p是q的充分不必要条件.∵矩形的对角线相等,∴p⇒q;而对角线相等的四边形不一定是矩形,∴qp.∴p是q的充分不必要条件.变式迁移2 下列各小题中,p是q的充要条件的是①p:m<-2或m>6;q:y=x2+mx+m+3有两个不同的零点;②p:f-xfx=1;q:y=f是偶函数;③p:cosα=cosβ;q:tanα=tanβ;④p:A∩B=A;q:∁UB⊆∁UA.A.①②B.②③c.③④D.①④答案 D解析①q:y=x2+mx+m+3有两个不同的零点⇔q:Δ=m2-4>0⇔q:m<-2或m>6⇔p;②当f=0时,由qp;③若α,β=kπ+π2,k∈Z时,显然cosα=cosβ,但tanα≠tanβ;④p:A∩B=A⇔p:A⊆B⇔q:∁UA⊇∁UB.故①④符合题意.探究点三充要条件的证明例3 设a,b,c为△ABc的三边,求证:方程x2+2ax +b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.解题导引有关充要条件的证明问题,要分清哪个是条件,哪个是结论,由“条件”⇒“结论”是证明命题的充分性,由“结论”⇒“条件”是证明命题的必要性.证明要分两个环节:一是充分性;二是必要性.证明必要性:设方程x2+2ax+b2=0与x2+2cx-b2=0有公共根x0,则x20+2ax0+b2=0,x20+2cx0-b2=0,两式相减可得x0=b2c-a,将此式代入x20+2ax0+b2=0,可得b2+c2=a2,故∠A=90°,充分性:∵∠A=90°,∴b2+c2=a2,b2=a2-c2.①将①代入方程x2+2ax+b2=0,可得x2+2ax+a2-c2=0,即=0.将①代入方程x2+2cx-b2=0,可得x2+2cx+c2-a2=0,即=0.故两方程有公共根x=-.所以方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.变式迁移3 已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.证明必要性:∵a+b=1,∴a+b-1=0.∴a3+b3+ab-a2-b2=-==0.充分性:∵a3+b3+ab-a2-b2=0,即=0.又ab≠0,∴a≠0且b≠0.∵a2-ab+b2=2+34b2>0.∴a+b-1=0,即a+b=1.综上可知,当ab≠0时,a+b=1的充要条件是a3+b3+ab-a2-b2=0.转化与化归思想的应用例已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0,且m∈Z.求两方程的根都是整数的充要条件.【答题模板】解∵mx2-4x+4=0是一元二次方程,∴m≠0.[2分]另一方程为x2-4mx+4m2-4m-5=0,两方程都要有实根,∴Δ1=161-m≥0,Δ2=16m2-44m2-4m-5≥0,解得m∈[-54,1].[6分]∵两根为整数,故和与积也为整数,∴4m∈Z4m∈Z4m2-4m-5∈Z,∴m为4的约数,[8分]∴m=-1或1,当m=-1时,第一个方程x2+4x-4=0的根为非整数,而当m=1时,两方程均为整数根,∴两方程的根均为整数的充要条件是m=1.[12分]【突破思维障碍】本题涉及到参数问题,先用转化思想将生疏复杂的问题化归为简单、熟悉的问题解决,两方程有实根易想Δ≥0.求出m的范围,要使两方程根都为整数可转化为它们的两根之和与两根之积都是整数.【易错点剖析】易忽略一元二次方程这个条件隐含着m≠0,不易把方程的根都是整数转化为两根之和与两根之积都是整数..研究命题及其关系时,要分清命题的题设和结论,把命题写成“如果……,那么……”的形式,当一个命题有大前提时,必须保留大前提,只有互为逆否的命题才有相同的真假性.2.在解决充分条件、必要条件等问题时,要给出p与q 是否可以相互推出的两次判断,同时还要弄清是p对q而言,还是q对p而言.还要分清否命题与命题的否定的区别.3.本节体现了转化与化归的数学思想.一、选择题.给出以下四个命题:①若ab≤0,则a≤0或b≤0;②若a>b,则am2>bm2;③在△ABc中,若sinA=sinB,则A=B;④在一元二次方程ax2+bx+c=0中,若b2-4ac<0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是A.①B.②c.③D.④答案 c解析对命题①,其原命题和逆否命题为真,但逆命题和否命题为假;对命题②,其原命题和逆否命题为假,但逆命题和否命题为真;对命题③,其原命题、逆命题、否命题、逆否命题全部为真;对命题④,其原命题、逆命题、否命题、逆否命题全部为假.2.设0<x<π2,则“xsin2x<1”是“xsinx<1”的A.充分而不必要条件B.必要而不充分条件c.充分必要条件D.既不充分也不必要条件答案 B解析∵0<x<π2,∴0<sinx<1.∴xsinx<1⇒xsin2x<1,而xsin2x<1xsinx<1.故选B.3.“α=π6+2kπ”是“cos2α=12”的A.充分而不必要条件B.必要而不充分条件c.充分必要条件D.既不充分也不必要条件答案 A解析由α=π6+2kπ可得到cos2α=12.由cos2α=12得2α=2kπ±π3.∴α=kπ±π6.所以cos2α=12不一定得到α=π6+2kπ.4.关于命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题,下列结论成立的是A.都真B.都假c.否命题真D.逆否命题真答案 D解析本题考查四种命题之间的关系及真假判断.对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题,但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线的开口可以向上.因此否命题也是假命题.5.集合A={x||x|≤4,x∈R},B={x|x<a},则“A⊆B”是“a>5”的A.充分不必要条件B.必要不充分条件c.充要条件D.既不充分也不必要条件答案 B解析A={x|-4≤x≤4},若A⊆B,则a>4,a>4a>5,但a>5⇒a>4.故选B.二、填空题6.“x1>0且x2>0”是“x1+x2>0且x1x2>0”的________条件.答案充要7.已知p:=0,q:2+2=0,则p是q的____________条件.答案必要不充分解析由=0得x=1或y=2,由2+2=0得x=1且y =2,所以由q能推出p,由p推不出q,所以填必要不充分条件.8.已知p:x2+2x-m>0,如果p是假命题,p是真命题,则实数m的取值范围为________.答案[3,8)解析因为p是假命题,所以1+2-m≤0,解得m≥3;又因为p是真命题,所以4+4-m>0,解得m<8.故实数m的取值范围是3≤m<8.三、解答题9.分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.若q<1,则方程x2+2x+q=0有实根;若ab=0,则a=0或b=0;若x2+y2=0,则x、y全为零.解逆命题:若方程x2+2x+q=0有实根,则q<1,为假命题.否命题:若q≥1,则方程x2+2x+q=0无实根,为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.逆命题:若a=0或b=0,则ab=0,为真命题.否命题:若ab≠0,则a≠0且b≠0,为真命题.逆否命题:若a≠0且b≠0,则ab≠0,为真命题.逆命题:若x、y全为零,则x2+y2=0,为真命题.否命题:若x2+y2≠0,则x、y不全为零,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.0.设p:实数x满足x2-4ax+3a2<0,其中a<0;q:实数x满足x2-x-6≤0,或x2+2x-8>0,且綈p 是綈q的必要不充分条件,求a的取值范围.解设A={x|p}={x|x2-4ax+3a2<0,a<0}={x|3a<x<a,a<0},B={x|q}={x|x2-x-6≤0或x2+2x-8>0}={x|x2-x-6≤0}∪{x|x2+2x-8>0}={x|-2≤x≤3}∪{x|x<-4或x>2}={x|x<-4或x≥-2}.∵綈p是綈q的必要不充分条件,∴綈q⇒綈p,且綈p綈q.则{x|綈q}{x|綈p},而{x|綈q}=∁RB={x|-4≤x<-2},{x|綈p}=∁RA={x|x≤3a或x≥a,a<0},∴{x|-4≤x<-2}{x|x≤3a或x≥a,a<0},则3a≥-2,a<0或a≤-4,a<0.综上,可得-23≤a<0或x≤-4.1.已知数列{an}的前n项和Sn=pn+q,求证:数列{an}为等比数列的充要条件为q=-1.证明充分性:当q=-1时,a1=S1=p+q=p-1.当n≥2时,an=Sn-Sn-1=pn-1.当n=1时也成立.于是an+1an=pnp-1pn-1p-1=p,即数列{an}为等比数列.必要性:当n=1时,a1=S1=p+q.当n≥2时,an=Sn-Sn-1=pn-1.∵p≠0,p≠1,∴an+1an=pnp-1pn-1p -1=p.∵{an}为等比数列,∴a2a1=an+1an=p,即pp-1p+q =p,即p-1=p+q.∴q=-1.综上所述,q=-1是数列{an}为等比数列的充要条件.。
高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修

教案:高中数学《命题及其关系-充分条件与必要条件》教案苏教版选修一、教学目标1. 理解充分条件和必要条件的概念。
2. 学会判断充分条件和必要条件。
3. 掌握充分条件和必要条件与命题真假之间的关系。
4. 能够运用充分条件和必要条件解决实际问题。
二、教学重点与难点重点:充分条件和必要条件的概念及判断。
难点:充分条件和必要条件与命题真假之间的关系。
三、教学准备1. 教师准备PPT课件,包括充分条件和必要条件的定义、判断方法及应用实例。
2. 准备一些练习题,用于巩固所学知识。
四、教学过程1. 导入:教师通过一个生活实例引入新课,如:“如果一个人每天坚持锻炼身体,他身体健康。
”让学生思考这个实例中的条件和结论之间的关系。
2. 新课讲解:教师讲解充分条件和必要条件的定义,并通过PPT展示相关知识点。
定义:如果一个条件能推出结论,这个条件叫做结论的充分条件;如果结论能推出条件,这个条件叫做结论的必要条件。
教师讲解如何判断充分条件和必要条件,并举例说明。
3. 课堂练习:教师给出一些练习题,让学生判断给出的条件是充分条件还是必要条件,或两者都是。
五、课后作业1. 完成练习册的相关题目。
2. 举出生活中的实例,运用充分条件和必要条件进行分析。
教学反思:教师在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。
如有需要,可在下一节课进行针对性讲解。
六、教学拓展1. 教师通过PPT展示充分条件和必要条件的相关拓展知识,如充分不必要条件、必要不充分条件、既不充分也不必要条件等。
2. 教师举例解释这些概念,并让学生进行判断。
七、课堂小结1. 教师引导学生回顾本节课所学的内容,包括充分条件和必要条件的定义、判断方法及应用。
2. 学生分享自己在课堂练习中的收获和感悟。
八、课后反思1. 教师对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了充分条件和必要条件的概念及判断方法。
命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,掌握简单命题和复合命题的关系。
2. 理解充分条件和必要条件的定义,能够判断一个条件是充分还是必要。
3. 能够运用充分条件和必要条件解决实际问题。
教学内容:第一章:命题及其关系1.1 命题的概念1.2 简单命题和复合命题第二章:充分条件与必要条件2.1 充分条件的定义2.2 必要条件的定义2.3 充分条件和必要条件的关系第三章:判断充分条件和必要条件3.1 如何判断一个条件是充分条件3.2 如何判断一个条件是必要条件3.3 实例分析第四章:充分条件和必要条件在实际问题中的应用4.1 应用举例4.2 练习题5.1 本章小结5.2 知识拓展教学过程:第一章:命题及其关系1.1 命题的概念教师提问:什么是命题?学生回答后,教师给出命题的定义,即可以判断真假的陈述句。
1.2 简单命题和复合命题教师通过举例讲解简单命题和复合命题的概念,让学生理解并区分两者。
第二章:充分条件与必要条件2.1 充分条件的定义教师提问:什么是充分条件?学生回答后,教师给出充分条件的定义,即能够导致某个结果的条件。
2.2 必要条件的定义教师提问:什么是必要条件?学生回答后,教师给出必要条件的定义,即某个结果必须满足的条件。
2.3 充分条件和必要条件的关系教师讲解充分条件和必要条件的关系,让学生理解两者之间的区别和联系。
第三章:判断充分条件和必要条件3.1 如何判断一个条件是充分条件教师讲解如何判断一个条件是充分条件,让学生掌握判断方法。
3.2 如何判断一个条件是必要条件教师讲解如何判断一个条件是必要条件,让学生掌握判断方法。
3.3 实例分析教师通过实例分析,让学生理解充分条件和必要条件的应用。
第四章:充分条件和必要条件在实际问题中的应用4.1 应用举例教师通过实际问题举例,让学生学会运用充分条件和必要条件解决问题。
4.2 练习题教师布置练习题,让学生巩固所学知识。
命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,掌握简单命题和复合命题的关系。
2. 了解充分条件和必要条件的定义,能够判断一个命题的充分条件和必要条件。
3. 能够运用充分条件和必要条件分析问题,解决问题。
教学重点:1. 命题的概念及分类。
2. 充分条件和必要条件的判断。
教学难点:1. 充分条件和必要条件的判断。
教学准备:1. PPT课件。
2. 教学案例。
教学过程:一、导入(5分钟)1. 引入命题的概念,让学生回顾简单命题和复合命题的关系。
2. 提问:什么是充分条件和必要条件?二、新课讲解(15分钟)1. 讲解充分条件和必要条件的定义。
2. 通过PPT课件和教学案例,让学生理解充分条件和必要条件的判断方法。
3. 讲解充分条件和必要条件与命题的关系。
三、课堂练习(10分钟)1. 让学生运用充分条件和必要条件分析问题,解决问题。
2. 学生互相讨论,老师巡回指导。
四、课堂小结(5分钟)1. 回顾本节课所学内容,让学生巩固知识点。
2. 提问:如何判断一个命题的充分条件和必要条件?五、课后作业(课后自主完成)1. 完成PPT课件上的练习题。
2. 结合自己的生活经验,找出一道具有充分条件和必要条件的命题,并分析。
教学反思:本节课通过讲解命题的概念,充分条件和必要条件的定义,以及判断方法,让学生掌握了充分条件和必要条件与命题的关系。
在课堂练习环节,学生能够运用所学知识分析问题,解决问题。
但在课后作业环节,发现部分学生对充分条件和必要条件的判断仍存在一定的困难,需要在今后的教学中加强训练。
六、案例分析:充分条件与必要条件的应用1. 案例展示:判断火灾发生的充分条件和必要条件。
2. 学生分组讨论,分析案例中哪些条件是充分条件,哪些条件是必要条件。
3. 各组汇报讨论成果,老师点评并总结。
七、练习与巩固1. 完成PPT课件上的练习题。
2. 学生互相讨论,老师巡回指导。
八、充分条件与必要条件的区别与联系1. 讲解充分条件与必要条件的区别与联系。
命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,能够正确识别题设和结论。
2. 掌握充分条件和必要条件的定义,能够判断两者之间的逻辑关系。
3. 能够运用充分条件和必要条件解决实际问题。
教学重点:1. 命题的概念及识别。
2. 充分条件和必要条件的定义及判断。
教学难点:1. 命题的逻辑关系的理解。
2. 充分条件和必要条件在实际问题中的应用。
教学准备:1. PPT课件。
2. 教学案例或例题。
教学过程:一、导入(5分钟)1. 引入命题的概念,让学生回顾题设和结论的组成。
2. 提问:什么是有意义的故事?引导学生思考命题与故事之间的关系。
二、新课讲解(15分钟)1. 讲解充分条件和必要条件的定义。
解释:充分条件:一个条件如果能导致某个结果,这个条件就是充分条件。
必要条件:一个条件如果必须满足才能导致某个结果,这个条件就是必要条件。
2. 举例说明充分条件和必要条件的判断方法。
例1:如果下雨,地面湿润。
充分条件:下雨必要条件:地面湿润例2:如果一个人是学生,他有书包。
充分条件:是学生必要条件:有书包3. 引导学生思考充分条件和必要条件之间的关系。
解释:充分条件不一定必要,即满足充分条件不一定能导致结果。
必要条件不一定充分,即结果不一定是由满足必要条件引起的。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固充分条件和必要条件的判断。
四、案例分析(10分钟)1. 提供案例,让学生分析案例中的充分条件和必要条件。
案例:小王考试及格了,他一定学习了。
分析:考试及格是充分条件,学习是必要条件。
2. 引导学生运用充分条件和必要条件解决实际问题。
五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结充分条件和必要条件的概念及关系。
2. 强调充分条件和必要条件在实际问题中的应用。
教学反思:本节课通过讲解、举例、练习和案例分析等多种教学方法,让学生掌握了充分条件和必要条件的概念及判断方法。
在课堂练习和案例分析环节,学生能够独立完成题目,并运用所学知识解决实际问题。
命题及其关系充分条件与必要条件教案

命题及其关系:充分条件与必要条件教案一、教学目标1. 让学生理解命题的概念,能够正确书写简单命题。
2. 让学生掌握充分条件和必要条件的定义,能够判断一个条件是充分还是必要。
3. 培养学生运用逻辑推理解决实际问题的能力。
二、教学内容1. 命题的概念:命题是判断某件事情的语句,可以是真的,也可以是假的。
2. 充分条件和必要条件的定义:充分条件:如果一个条件能够保证结论的发生,这个条件就是结论的充分条件。
必要条件:如果一个条件是结论发生的前提,这个条件就是结论的必要条件。
三、教学重点与难点1. 教学重点:充分条件和必要条件的判断。
2. 教学难点:如何区分充分条件和必要条件,以及如何在实际问题中运用。
四、教学方法1. 采用案例分析法,通过具体例子让学生理解命题、充分条件和必要条件的概念。
2. 采用小组讨论法,让学生在小组内讨论如何判断一个条件是充分还是必要。
3. 采用练习法,让学生通过做练习题巩固所学知识。
五、教学过程1. 导入:通过一个生活中的例子,如“如果明天不下雨,我们就去公园玩”,引出命题、充分条件和必要条件的概念。
2. 讲解:讲解命题的定义,让学生明白命题是可以判断真假的语句。
讲解充分条件和必要条件的定义,并通过例子让学生判断一个条件是充分还是必要。
3. 互动:让学生在小组内讨论如何判断一个条件是充分还是必要,并分享彼此的看法。
4. 练习:给学生发放练习题,让学生运用所学知识判断题目中的条件是充分还是必要。
5. 总结:对本节课的内容进行总结,强调如何区分充分条件和必要条件,以及如何在实际问题中运用。
6. 作业:布置一道课后作业,让学生巩固所学知识。
六、教学延伸1. 让学生了解充分条件和必要条件之间的关系:充分条件不一定必要,必要条件不一定充分。
2. 引导学生思考:如何找出一个命题中的充分条件和必要条件?七、案例分析1. 案例一:判断“如果一个人是男性,他一定有力气”这个命题中的条件是充分还是必要。
命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,能够正确判断一个命题是真是假。
2. 掌握充分条件和必要条件的定义,能够判断一个条件是充分还是必要。
3. 能够运用充分条件和必要条件解决实际问题。
教学重点:1. 命题的真假判断2. 充分条件和必要条件的判断教学难点:1. 命题的真假判断2. 充分条件和必要条件的应用教学准备:1. PPT课件2. 教学案例教学过程:第一章:命题的概念1.1 命题的定义教师讲解命题的概念,引导学生理解命题是由题设和结论两部分组成的陈述句。
1.2 命题的真假判断学生通过举例判断命题的真假,教师讲解判断方法。
第二章:充分条件与必要条件的定义2.1 充分条件的定义教师讲解充分条件的概念,引导学生理解充分条件是指能够保证结论成立的条件。
2.2 必要条件的定义教师讲解必要条件的概念,引导学生理解必要条件是指结论成立的必要条件。
第三章:判断充分条件和必要条件3.1 判断充分条件学生通过举例判断充分条件,教师讲解判断方法。
3.2 判断必要条件学生通过举例判断必要条件,教师讲解判断方法。
第四章:充分条件和必要条件的运用4.1 运用充分条件解决问题学生通过案例运用充分条件解决问题,教师讲解解题方法。
4.2 运用必要条件解决问题学生通过案例运用必要条件解决问题,教师讲解解题方法。
第五章:总结与拓展5.1 总结学生总结本节课所学内容,教师进行点评。
5.2 拓展学生思考如何运用充分条件和必要条件解决更复杂的问题,教师进行引导。
教学评价:1. 课后作业:布置有关命题、充分条件和必要条件的练习题,检查学生掌握情况。
2. 课堂问答:提问学生关于命题、充分条件和必要条件的问题,检查学生理解程度。
3. 案例分析:让学生运用充分条件和必要条件解决实际问题,评估学生应用能力。
第六章:实例分析与判断6.1 实例分析教师提供实例,学生分析实例中的充分条件和必要条件,并判断其真假。
6.2 小组讨论学生分组讨论实例,交流判断方法和思路,教师巡回指导。
命题及其关系充分条件与必要条件教案

命题及其关系——充分条件与必要条件教案教学目标:1. 理解命题的概念,能够正确判断一个句子是否为命题。
2. 掌握充分条件和必要条件的定义,能够判断一个条件语句中的条件是充分条件还是必要条件。
3. 能够运用充分条件和必要条件的关系解决实际问题。
教学内容:第一章:命题的概念1.1 命题的定义1.2 命题的分类第二章:条件语句2.1 条件语句的定义2.2 条件语句的类型第三章:充分条件与必要条件3.1 充分条件的定义3.2 必要条件的定义3.3 充分条件与必要条件的关系第四章:判断充分条件和必要条件4.1 判断一个条件语句中的条件是充分条件还是必要条件4.2 判断一个条件语句中的条件既是充分条件又是必要条件第五章:运用充分条件和必要条件解决实际问题5.1 运用充分条件和必要条件的关系解决实际问题的方法5.2 实际问题案例分析教学过程:第一章:命题的概念1.1 命题的定义讲解命题的概念,让学生理解命题是一种可以判断真假的陈述句。
1.2 命题的分类介绍命题的分类,包括简单命题和复合命题,让学生能够判断一个句子是简单命题还是复合命题。
第二章:条件语句2.1 条件语句的定义讲解条件语句的概念,让学生理解条件语句是一种特殊的命题形式。
2.2 条件语句的类型介绍条件语句的类型,包括充分条件语句和必要条件语句,让学生能够判断一个条件语句的类型。
第三章:充分条件与必要条件3.1 充分条件的定义讲解充分条件的定义,让学生理解充分条件是一种可以推出结论的条件。
3.2 必要条件的定义讲解必要条件的定义,让学生理解必要条件是一种必须满足的条件。
3.3 充分条件与必要条件的关系介绍充分条件与必要条件的关系,让学生能够判断一个条件是充分条件还是必要条件。
第四章:判断充分条件和必要条件4.1 判断一个条件语句中的条件是充分条件还是必要条件讲解如何判断一个条件语句中的条件是充分条件还是必要条件,让学生能够运用这个方法判断条件语句中的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题02 命题及其关系、充分条件与必要条件
1.理解命题的概念
2.了解“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系
3.理解充分条件、必要条件与充要条件的含义
热点题型一 四种命题及其真假判断
例1、【20**山东,理3】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是
(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q
【提分秘籍】
在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系。
要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可。
对涉及数学概念的命题的判定要从概念本身入手。
【举一反三】
已知:命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )
A .否命题是“若函数f (x )=e x -mx 在(0,+∞)上是减函数,则m >1”,是真命题
B .逆命题是“若m ≤1,则函数f (x )=e x -mx 在(0,+∞)上是增函数”,是假命题
C .逆否命题是“若m >1,则函数f (x )=e x -mx 在(0,+∞)上是减函数”,是真命题
D .逆否命题是“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”,是真命题
热点题型二 充分条件、必要条件的判断
例2、(2018年浙江卷)已知平面α,直线m ,n 满足mα,nα,则“m ∥n ”是“m ∥α”的
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
【变式探究】【20**天津,理4】设θ∈R ,则“ππ||1212θ-<”是“1sin 2
θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件
【提分秘籍】 充要条件的三种判断方法
(1)定义法:根据p⇒q,q⇒p进行判断。
(2)集合法:根据p,q成立的对应的集合之间的包含关系进行判断。
(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断。
这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的何种条件,即可转化为判断“x=1且y=1”是“xy=1”的何种条件。
【举一反三】设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
热点题型三充分条件、必要条件的应用
例3.(2018年北京卷)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.
【变式探究】已知集合M={x|x<-3或x>5},P={x|(x-a)·(x-8)≤0}。
(1)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件;
(3)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的一个必要但不充分条件。
【提分秘籍】
与充要条件有关的参数问题的求解方法
解决此类问题一般是根据条件把问题转化为集合之间的关系,并由此列出关于参数的不等式(组)求解。
【举一反三】原命题为“若a n+a n+1
2<a n,n∈N+,则{a n}为递减数列”,关于其逆命题,否命题,逆否
命题真假性的判断依次如下,正确的是()
A.真,真,真B.假,假,真
C.真,真,假D.假,假,假
1.(2018年浙江卷)已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
2. (2018年天津卷)设,则“”是“”的
A. 充分而不必要条件
B. 必要而不重复条件
C. 充要条件
D. 既不充分也不必要条件
3. (2018年北京卷)设a ,b 均为单位向量,则“
”是“a ⊥b ”的 A. 充分而不必要条件 B. 必要而不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
4. (2018年北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.
1.【20**天津,理4】设θ∈R ,则“ππ||1212θ-<”是“1sin 2
θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件
2.【20**山东,理3】已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是
(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q
1.【20**高考浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )
A .*x n ∀∈∃∈,R N ,使得2n x <
B .*x n ∀∈∀∈,R N ,使得2n x <
C .*x n ∃∈∃∈,R N ,使得2n x <
D .*x n ∃∈∀∈,R N ,使得2n x <
【20**高考新课标1,理3】设命题:2,2n n N n ∃∈>,则为( )
(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤
(C )2,2n n N n ∀∈≤ (D )2,=2n
n N n ∃∈
【20**高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )
A. **,()n N f n N ∀∈∈且()f n n >
B. **,()n N f n N ∀∈∈或()f n n >
C. **00,()n N f n N ∃∈∈且00()f n n >
D. **00,()n N f n N ∃∈∈或00()f n n >
【20**·陕西卷】原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )
A .真,假,真
B .假,假,真
C .真,真,假
D .假,假,假
【20**·重庆卷】已知命题p :对任意x ∈R ,总有2x >0,q :“x >1”是“x >2”的充分不必要条件,则下列命
题为真命题的是()
A.p∧q B.綈p∧綈q
C.綈p∧q D.p∧綈q。