2015年江苏省南京市高一下学期期末数学试卷与解析答案
2015-2016年江苏省南京市高一上学期期末数学试卷与答案Word版

2015-2016学年江苏省南京市高一(上)期末数学试卷一、填空题:本大题共14小题,每小题3分,共42分.请把答案填写在答题卡相应位置上.1.(3.00分)函数f(x)=的定义域是.2.(3.00分)集合{0,1}的子集的个数为.3.(3.00分)求值log345﹣log35=.4.(3.00分)已知角α的终边过点P(2,﹣1),则sinα的值为.5.(3.00分)已知扇形的半径为3cm,圆心角为2弧度,则扇形的面积为cm2.6.(3.00分)函数f(x)=cos(x﹣),x∈[0,]的值域是.7.(3.00分)若a=0.32,b=log20.3,c=20.3,则a,b,c的大小关系(由小到大是).8.(3.00分)将函数y=sin2x的图象向右平移个单位所得函数的解析式为.9.(3.00分)如图,在矩形ABCD中,已知AB=3,AD=2,且=,=,则•=.10.(3.00分)已知函数f(x)=﹣log2x的零点为x0,若x0∈(k,k+1),其中k为整数,则k=.11.(3.00分)已知函数f(x)=,其中e为自然对数的底数,则f[f ()]=.12.(3.00分)已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(lgx)<f(1),则实数x的取值范围是.13.(3.00分)若函数f(x)=m•4x﹣3×2x+1﹣2的图象与x轴有交点,则实数m 的取值范围是.14.(3.00分)若函数f(x)=sin(ωx+)(ω>0)在区间[0,2π]上取得最大值1和最小值﹣1的x的值均唯一,则ω的取值范围是.二、解答题:本大题共6小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(8.00分)已知sinx=,其中0≤x≤.(1)求cosx的值;(2)求的值.16.(10.00分)已知向量=(2,﹣1),=(3,﹣2),=(3,4)(1)求•(+);(2)若(+λ)∥,求实数λ的值.17.(10.00分)经市场调查,某商品在过去20天的日销售量和日销售价格均为销售时间t(天)的函数,日销售量(单位:件)近似地满足:f (t)=﹣t+30(1≤t≤20,t∈N*),日销售价格(单位:元)近似地满足:g(t)=(1)写出该商品的日销售额S关于时间t的函数关系;(2)当t等于多少时,日销售额S最大?并求出最大值.18.(10.00分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)的部分图象如图所示,且f(0)=f().(1)求函数f(x)的最小正周期;(2)求f(x)的解析式,并写出它的单调增区间.19.(10.00分)已知向量、、,满足||=,||=,•=﹣5,=x+(1﹣x).(1)当⊥时,求实数x的值;(2)当||取最小值时,求向量与的夹角的余弦值.20.(10.00分)对于定义在[0,+∞)上的函数f(x),若函数y=f(x)﹣(ax+b)满足:①在区间[0,+∞)上单调递减;②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b为f(x)的“渐近函数”(1)证明:函数g(x)=x+1是函数f(x)=,x∈[0,+∞)的渐近函数,并求此时实数p的值;(2)若函数f(x)=,x∈[0,+∞)的渐近函数是g(x)=ax,求实数a 的值,并说明理由.2015-2016学年江苏省南京市高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题3分,共42分.请把答案填写在答题卡相应位置上.1.(3.00分)函数f(x)=的定义域是(3,+∞).【解答】解:要使原函数有意义,则x﹣3>0,即x>3.∴函数f(x)=的定义域是(3,+∞).故答案为:(3,+∞).2.(3.00分)集合{0,1}的子集的个数为4.【解答】解:集合{0,1}的子集有:∅,{0},{1},{0,1}共4个.故答案为:4.3.(3.00分)求值log345﹣log35=2.【解答】解:log345﹣log35=log39=2.故答案为:2.4.(3.00分)已知角α的终边过点P(2,﹣1),则sinα的值为﹣.【解答】解:∵角α的终边过点P(2,﹣1),∴r=,故sinα==﹣,故答案为:﹣.5.(3.00分)已知扇形的半径为3cm,圆心角为2弧度,则扇形的面积为9cm2.【解答】解:由题意可得圆心角大小为α=2(rad),半径为r=3,则扇形的面积为S=r2α==9cm2.故答案为:9.6.(3.00分)函数f(x)=cos(x﹣),x∈[0,]的值域是[,1] .【解答】解:∵x∈[0,],∴x﹣∈[﹣,],∴当x﹣=﹣即x=0时,函数取最小值,当x﹣=0即x=时,函数取最大值1,故函数的值域为[,1]故答案为:[,1]7.(3.00分)若a=0.32,b=log20.3,c=20.3,则a,b,c的大小关系(由小到大是)b<a<c.【解答】解:∵0<a=0.32<1,b=log20.3<log21=0,c=20.3>20=1,∴b<a<c.故答案为:b<a<c.8.(3.00分)将函数y=sin2x的图象向右平移个单位所得函数的解析式为y=sin (2x﹣).【解答】解:将函数y=sin2x的图象向右平移个单位所得函数的解析式:y=sin2(x﹣)=sin(2x﹣),故答案为:y=sin(2x﹣).9.(3.00分)如图,在矩形ABCD中,已知AB=3,AD=2,且=,=,则•=﹣4.【解答】解:以AB为x轴,以AD为y轴建立平面直角坐标系,则A(0,0),B (3,0),E(3,1),F(1,2).∴=(3,1),=(﹣2,2).∴•=﹣6+2=﹣4.故答案为﹣4.10.(3.00分)已知函数f(x)=﹣log2x的零点为x0,若x0∈(k,k+1),其中k为整数,则k=2.【解答】解:函数f(x)的定义域为(0,+∞),且函数在定义域上为减函数,∵f(1)=3>0,f(2)=﹣log22=﹣1=>0,f(3)=1﹣log23<0,∴函数f(x)在(2,3)内存在唯一的一个零点x0,∵x0∈(k,k+1),∴k=2,故答案为:2.11.(3.00分)已知函数f(x)=,其中e为自然对数的底数,则f[f()]=.【解答】解:函数f(x)=,则f[f()]=f[ln]==.故答案为:.12.(3.00分)已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(lgx)<f(1),则实数x的取值范围是.【解答】解:∵f(x)定义在实数集R上的偶函数,在区间[0,+∞)上是单调增函数∴f(x)中(﹣∞,0)上是减函数又f(lgx)<f(1)∴﹣1<lgx<1∴故答案为:13.(3.00分)若函数f(x)=m•4x﹣3×2x+1﹣2的图象与x轴有交点,则实数m 的取值范围是(0,+∞).【解答】解:若f(x)=m•4x﹣3×2x+1﹣2的图象与x轴有交点,即f(x)=m•4x﹣3×2x+1﹣2=0,有根,即m•4x=3×2x+1+2,则m==+,设t=,则t>0,则函数等价为m=6t+2t2=2(t2+3t)=2(t+)2﹣,∵t>0,∴y=6t+2t2=2(t2+3t)=2(t+)2﹣>0,即m>0,故答案为:(0,+∞)14.(3.00分)若函数f(x)=sin(ωx+)(ω>0)在区间[0,2π]上取得最大值1和最小值﹣1的x的值均唯一,则ω的取值范围是[,).【解答】解:∵函数f(x)=sin(ωx+)(ω>0)在区间[0,2π]上取得最大值1和最小值﹣1时的x的值均唯一,∴≤ω•2π+<2π+,求得≤ω<,故答案为:[,).二、解答题:本大题共6小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(8.00分)已知sinx=,其中0≤x≤.(1)求cosx的值;(2)求的值.【解答】解:(1)∵sinx=,0≤x≤,∴cosx==;(2)∵sinx=,cosx=,∴原式===.16.(10.00分)已知向量=(2,﹣1),=(3,﹣2),=(3,4)(1)求•(+);(2)若(+λ)∥,求实数λ的值.【解答】解:(1)=(6,2),=2×6﹣1×2=10.(2)(+λ)=(2+3λ,﹣1﹣2λ),∵(+λ)∥,∴4(2+3λ)﹣3(﹣1﹣2λ)=0,解得λ=﹣.17.(10.00分)经市场调查,某商品在过去20天的日销售量和日销售价格均为销售时间t(天)的函数,日销售量(单位:件)近似地满足:f (t)=﹣t+30(1≤t≤20,t∈N*),日销售价格(单位:元)近似地满足:g(t)=(1)写出该商品的日销售额S关于时间t的函数关系;(2)当t等于多少时,日销售额S最大?并求出最大值.【解答】解:(1)由题意知,S=f (t)•g(t)=…(4分)(2)当1≤t≤10,t∈N*时,S=(2t+40)(﹣t+30)=﹣2 t2+20t+1200=﹣2 (t﹣5)2+1250.因此,当t=5时,S最大值为1250;…(7分)当11≤t≤20,t∈N*时,S=15(﹣t+30)=﹣15t+450为减函数,因此,当t=11时,S最大值为285.…(9分)综上,S的最大值为1250.答:当t=5时,日销售额S最大,最大值为1250元.…(10分)18.(10.00分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)的部分图象如图所示,且f(0)=f().(1)求函数f(x)的最小正周期;(2)求f(x)的解析式,并写出它的单调增区间.【解答】(本题满分为10分)解:(1)由函数图象可得:A=2,又由f(0)=f(),可知函数f(x)一条对称轴为x==,故函数f(x)的最小正周期T=4(﹣)=π.(2)由(1)可得:ω==2,由点(,﹣2)在函数图象上,可得:2sin(×2+φ)=﹣2,解得:φ=2kπ+,k∈Z,又0<φ<2π,可得:φ=,f(x)的解析式为:f(x)=2sin(2x+).故由2kπ≤2x+≤2k,k∈Z即可解得函数单调递增区间为:[kπ,kπ],k∈Z.19.(10.00分)已知向量、、,满足||=,||=,•=﹣5,=x+(1﹣x).(1)当⊥时,求实数x的值;(2)当||取最小值时,求向量与的夹角的余弦值.【解答】解:(1)||=,||=,•=﹣5,=x+(1﹣x);当⊥时,•=•[x+(1﹣x)]=x•+(1﹣x)=0,∴﹣5x+5(1﹣x)=0,解得x=;(2)∵=x2+2x(1﹣x)•+(1﹣x)2=10x2﹣10x(1﹣x)+5(1﹣x)2=25x2﹣20x+5,当x==时,||取得最小值,此时=+,∴•=+•=×10+×(﹣5)=1,且||=1,∴向量与的夹角余弦值为cos<,>===.20.(10.00分)对于定义在[0,+∞)上的函数f(x),若函数y=f(x)﹣(ax+b)满足:①在区间[0,+∞)上单调递减;②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b为f(x)的“渐近函数”(1)证明:函数g(x)=x+1是函数f(x)=,x∈[0,+∞)的渐近函数,并求此时实数p的值;(2)若函数f(x)=,x∈[0,+∞)的渐近函数是g(x)=ax,求实数a 的值,并说明理由.【解答】(1)证明:依题意,令t(x)=f(x)﹣g(x),则t(x)=﹣(x+1)=,∵t′(x)=﹣<0,∴t(x)在区间[0,+∞)上单调递减,且t(x)=0,∴0<t(x)≤t(0)=2,于是函数g(x)=x+1是函数f(x)=,x∈[0,+∞)的渐近函数,此时实数p=2;(2)解:记t(x)=f(x)﹣g(x)=﹣ax,则t′(x)=﹣a,∵函数f(x)=,x∈[0,+∞)的渐近函数是g(x)=ax,∴当x∈[0,+∞)时t′(x)<0,即<a,令函数q(x)=,其中x∈[0,+∞),当x=0时,q(x)=0;当x≠0时,q(x)===在区间(0,+∞)上单调递增,且q(x)=1,赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< .x.2.时,都有f(x...1.)<f(x.....2.).,那么就说f(x)在这个区间上是增函数....x1x2y=f(X)xyf(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< .x.2.时,都有f(x...1.)>f(x.....2.).,那么就说f(x)在这个区间上是减函数....y=f(X)yxo x x2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f .(x ..).,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)yxo如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.∴a ≥1.。
2014-2015学年江苏省南京市高一(下)期末数学试卷

整数 ,
3 若 cn=
从数列{cn}中取出若
奇数
偶数
均 少于两 , 将取出的 按照某一 序排列后构成等差数列. 等差数列的 求所有满足条件的等差数列.
数最大时,
2014-2015 学
参考答案 试题解析
江
省南京市高一
小题 5 ,共 70
期
数学试卷
位置
一、填空题 . 1. 等式
大题共 14 小题,
.请把答案填写在答题卡相
考点 点到直线的距离公式. 题 直线 圆. 析 把已知条件 入点到直线的距离公式,化简 得. 解答 解 由题意结合点到直线的距离公式 得 点 P 3,﹣2 到直线 l 3x+4y﹣26=0 的距离 d= 故答案 点评 = =5.
5 题考查点到直线的距离公式,属基础题.
5.函数 y=x+
x ﹣1 的最小值
0 的解集
﹣1,0
.
考点 题 析 解答 故答案 点评
其他 等式的解法. 等式的解法及 用. 等式 解 等式 0,即 x x+1 0,即 x x+1 0,由 求得它的解集. 0,求得﹣1 x 0,
﹣1,0 . 题 要考查 式 等式的解法,体现了转化的数学思想,属于基础题. 16 .
2.数列{an}是等比数列,若 a3=1,a5=4,则 a7 的值
a,b,c.若 bcosC+ccosB=csinA,则
的最
12.若一个圆锥的侧面展开图是一个半径 3 cm .
13.已知 x 0,y 0,
n
xy=x+2y,则 x+y 的最小值
* *
.
14.已知 an=3 ,bn=3n,n∈N ,对于 一个 k∈N ,在 ak ak+1 之间插入 bk 个 3 得到一个 数列{cn}.设 Tn 是数列{cn}的前 n 和,则所有满足 Tm=3cm+1 的 整数 m 的值 .
(南京考越)2015年秋季学期高一数学联考和参考答案

2015年秋季学期南京八校联考高一数学及参考答案审核:南京考越数学研究中心一、选择题 (本大题共12题,每小题5分,共60分。
每小题只有一项是最符合题目要求。
)1、下图是由哪个平面图形旋转得到的( A )A B C D2、函数65)(2-+-=x x x f 的零点是( B )A 、3,2-B 、 2,3C 、3,2-D 、3,1--3、下列指数式与对数式互化不正确的一组是( C )A. 01ln 10==与eB. 3121log 2188)31(-==-与 C. 3929log 213==与 D. 7717log 17==与4、下列函数中能用二分法求零点的是( C )A B C D5、下列说法正确的是( D )A. 有一个面是多边形,其余各面是三角形的多面体是棱锥B. 有两个面互相平行,其余各面均为梯形的多面体是棱台C. 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D. 棱柱的两个底面互相平行,侧面均为平行四边形6、方程2x =2-x 的根所在区间是( D ).A .(-1,0)B .(2,3)C .(1,2)D .(0,1) 7、若315.032,31,5.0log =⎪⎭⎫ ⎝⎛==c b a ,则( C ) A.b a c << B. a b c << C. c b a << D. c a b <<8、若函数)(x f y =的定义域为{}22|≤≤-=x x M ,值域为{}20|≤≤=y x N ,则函数)(x f y =的图象可能是( B )9、某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( C )A 、14400亩B 、172800亩C 、17280亩D 、20736亩10、若函数)(x f y =在区间[0, 4]上的图象是连续不断的曲线,且方程0)(=x f 在(0, 4)有 一个实数根,则)4()0(f f ⋅的值( B )A 、大于0B 、 小于0C 、等于0D 、以上情况均有可能11、已知n m ,是方程05lg 3lg lg 15lg lg 2=++x x 的两根,则=mn ( D )A .)5lg 3(lg +-B .5lg 3lgC .158 D .15112、已知函数())0(2>++=a c bx ax x f 的零点为()2121,x x x x <,函数)(x f 的最小值为0y ,且[)210,x x y ∈,则函数()()x f f y =的零点个数是( D )A .3 B.4 C. 3或4 D. 2或3二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡上)13、若3)1()2()(2+-+-=x a x a x f =是偶函数,则=2015a 1 .14、设幂函数)(x f y =的图象经过点(12,18),则当)(x f =8时,实数x 的值为 2 . 15、函数()()25.028log x x x f -+=的单调递增区间是 ()4,1,[)4,1 .说明:以上两个答案,填其中任何一个都为准确答案。
2014-2015学年高一数学下学期期末卷及答案

2014—2015学年高一数学下学期学生学业水平监测时间120分钟;满分150分; 2015.7一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卡相应的位置上) 1、不等式2230x x --<的解集是 .2、过两点()21A -,,(),3B m 的直线倾斜角是45︒,则m 的值是 .3、在等差数列}{n a 中,121=+a a ,943=+a a ,则56a a += .4、已知0,0a b >>,且4,a b ab +=则ab 的最小值为 .5、在ABC ∆中,135B =︒,15C =︒,5a =,则此三角形的最大边长为 .6、圆122=+y x 上的点到直线02543=-+y x 的距离的最小值是 .7、设b a ,是两条不重合的直线,,αβ是两个不重合的平面,给出以下四个命题:①若//a b ,a α⊥,则b α⊥;②若,,a b a α⊥⊥则//b α;③若a α⊥,a β⊥,则α∥β;④若a β⊥,α⊥β,则a ∥α. 其中所有正确命题的序号是 .8、已知等比数列的前n 项和为n S ,若32:3:2S S =,则公比q = .9、若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则的取值范围是 .10、将一张坐标纸折叠一次,使点()0,2与点()4,6重合,且点()7,3与点(),m n 重合,则m n +的值是 .11、如右图所示,ABCD 是空间四边形,E F G H 、、、分别是四边 上的点,并且AC 面EFGH ,BD 面EFGH ,2AC =,4BD =, 当EFGH 是菱形时,AEEB的值是 . 12、若关于x 的不等式220ax x a -+<的解集为空集,则实数a 的取值范围是 .13、在平面直角坐标系xoy 中,已知圆C :222(62)4560x y m x my m m +---+-=,直线l 经过点()1,1-,若对任意的实数m ,直线l 被圆C 截得的弦长都是定值,则直线l 的方程为 .14、记数列{}n a 的前n 项和为n S ,若不等式22212n n S a ma n+≥对任意等差数列{}n a 及任意正整数n 都成立,则实数m 的最大值为 .二、解答题(本大题共6道题,计80分;解答应写出必要的文字说明、证明过程或演算步骤)AB CDEFG H15、(满分12分)在ABC ∆中,角A ,B ,C 的对边分别是c b a ,,,且0c o s )2(c o s =--A b c B a ;⑴ 求角A 的大小;⑵ 若2a =,求ABC ∆面积的最大值.16、(满分12分)如图,在四棱锥P -ABCD 中,四边形ABCD 是矩形,侧面PAD ⊥底面ABCD ,若点E 、F 分别是PC ,BD的中点;⑴ 求证:EF ∥平面PAD ;⑵ 求证:平面PAD ⊥平面PCD .17、(满分14分)已知ABC ∆的顶点(5,1)A ,AB 边上的中线CM 所在直线方程为250x y --=,AC 边上的高BH 所在直线方程为250x y --=;求⑴顶点C 的坐标;⑵ 直线BC 的方程.BCDEFP18、(满分14分)某工厂年初用49万元购买一台新设备,第一年设备维修及原料消耗的总费用6万元,以后每年都增 加2万元,新设备每年可给工厂创造收益25万元.⑴ 工厂第几年开始获利?⑵ 若干年后,该工厂有两种处理该设备的方案:①年平均收益.....最大时,以14万元出售该设备;②总.收益..最大时,以9万元出售该设备.问出售该设备.....后.,哪种方案年平均收益.....较大?19、(满分14分)已知圆O :224x y +=,直线:4l y kx =-; ⑴ 若直线l 与圆O 交于不同的两点A 、B 时,求k 的值; ⑵ 若1k =,P 是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,问:直线CD是否过定点?若过定点,求出定点坐标;若不过定点,说明理由;⑶ 若EF 、GH 为圆O :224x y +=的两条相互垂直的弦,垂足为(M ,求四边形EGFH 的面积的最大值;20、(满分14分)已知数列{}n a 满足:121113,,2,(2,)44n n n a a a a a n n N *+-===+≥∈,数列{}n b 满足:10b <, 13,(2,)n n b b n n n N *--=≥∈,数列{}n b 的前项和为n S ;⑴ 求证:数列{}n n b a -为等比数列; ⑵ 求证:数列{}n b 为递增数列;⑶ 若当且仅当3n =时,n S 取得最小值,求1b 的取值范围.n常州市教育学会学生学业水平监测 高一数学参考答案及评分意见一、填空题(本大题共14小题,每小题5分,共70分)1、()1,3-2、03、174、16 5、 6、4 ; 7、①③ 8、112-或 9、2 11、12 12、+⎫∞⎪⎪⎣⎭13、210x y ++= 14、15 二、解答题:(本大题共6道题,计80分)15、……2分 ……4分 ……7分……10分…… 14分 16、(满分12分)证明:⑴设PD 中点为H ,AD 中点为G ,连结FG ,GH ,HE ,Q G 为AD 中点,F 为BD 中点,∴GF //12AB , 同理EH //12CD ,……………2分Q ABCD 为矩形,∴AB //CD ,∴GF //EH ,∴EFGH 为平行四边形,……………4分 ∴EF ∥GH ,……………6分又Q ,,GH PAD EF PAD EF ⊂⊄∴面面∥面PAD . ……………7分 (用EF ∥AD 证明当然可以)⑵Q 面PAD ⊥面ABCD ,面PAD ⋂面ABCD =AD ,又Q ABCD 为矩形, ∴CD ⊥AD ,∴ CD ⊥面PAD ,……………11分又Q CD ⊂面PCD ,∴面PAD ⊥面PCD . ……………14分 17、(满分14分)……………3分……………6分……………8分 即210a b --= ……………10分……………12分……………14分18、(满分14分)解:⑴由题设,每年费用是以6为首项,2为公差的等差数列,设第n n 年时累计的纯收入为()f n .()()2256824492049f n n n n n ∴=-⎡++++⎤-=-+-⎣⎦, ……………3分获利即为:()0f n >∴220490n n -+->,即220490n n -+<又N n ∈ ∴3,4,5,,17n =. ……………6 分∴当3n =时,即第3年开始获利; ……………7分⑵方案①:年平均收入()492020146f n n n n ⎛⎫=-+≤-= ⎪⎝⎭(万元),此时7n =, 出售该设备后,年平均收益.....为14687+=(万元); ……………11 分 方案②:()()21051f n n =--+ ∴当10n =时,()max 51f n =,出售该设备后,年平均收益.....为519610+=(万元), ……………15 分故第一种方案年平均收益.....较大。
江苏省南京市2014-2015学年高一上学期期末考试数学试题(附答案)(2021年整理)

江苏省南京市2014-2015学年高一上学期期末考试数学试题(附答案)(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省南京市2014-2015学年高一上学期期末考试数学试题(附答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省南京市2014-2015学年高一上学期期末考试数学试题(附答案)(word版可编辑修改)的全部内容。
南京市2014-2015学年度第一学期期末学情调研测试卷高一数学2015.01注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为100分,考试时间为100分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题卡的密封线内.试题的答案写在答.题卡..上对应题目的答案空格内.考试结束后,交回答题卡.一、填空题:本大题共14小题,每小题3分,共42分.请把答案填写在答.题卡..相应位置....上.1.已知集合A={0,2,4,6},B={x|3<x<7},则A∩B=▲.2.函数y=sin(ωx-错误!)(ω>0)的最小正周期为π,则ω的值为▲.3.函数f(x)=2-x的定义域为▲.4.设向量a=(1,-2),b=(4,x),若a∥b,则实数x的值为▲.5.已知f(x)=错误!则f(f(1))的值为▲.6.在平面直角坐标系中,已知角错误!的终边经过点P,且OP=2(O为坐标原点),则点P的坐标为▲.7.已知f(x)是定义域为R的偶函数,且x≥0时,f(x)=3x-1,则f(-1)的值为▲.8.求值:2log212-log29=▲.9.函数f(x)=A sin(ωx+φ)(A>0,ω>0,0分图象如图所示,则φ的值为▲.10.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上是单调减函数.若f(2x+1)+f(1)<0,则x11.已知函数y=log a(错误!x+b)(a,b为常数,其中a>0如图所示,则a+b的值为▲.(第11题图)12.化简:错误!= ▲ .13.已知在△ABC 中,∠A =错误!,AB =2,AC =4,错误!=错误!错误!,错误!=错误!错误!,错误!=错误!错误!,则错误!·错误!的值为_______.14.若f (x )=x (|x |-2)在区间[-2,m ]上的最大值为1,则实数m的取值范围是 ▲ .二、解答题:本大题共6小题,共58分.请在答.题卡..指定区域内.....作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分8分)已知cos =-错误! ,0<<.(1)求tan 的值;()求sin (α+错误!)的值.16.(本小题满分8分)已知向量a ,b 满足|a |=2,|b |=1,a ,b 的夹角为120°. (1)求a ·b 的值;(2)求向量a -2b 的模.17.(本小题满分10分)ABCDE(第13题图)F已知向量a=(cosα,sinα),b=(cosβ,-sinβ).(1)若α=错误!,β=-错误!,求向量a与b的夹角;(2)若a·b=错误!,tanα=错误!,且α,β为锐角,求tanβ的值.18.(本小题满分10分)如图所示,某住宅小区有一个矩形休闲广场ABCD,其中AB=40 米,BC=30 米,根据小区业主建议,需将其扩大成矩形区域EFGH,要求A、B、C、D四个点分别在矩形EFGH的四条边(不含顶点)上.设∠BAE=θ,EF长为y米.(1)将y表示成θ的函数;(2)求矩形区域EFGH的面积的最大值.19.(本小题满分10分)已知函数f(x)=错误!sin x+cos x.(第18题图)A BC DEGHθ(1)求f(x)的单调递增区间;(2)设g(x)=f(x)cos x,x∈[0,错误!],求g(x)的值域.20.(本小题满分12分)若函数f(x)和g(x)满足:①在区间[a,b]上均有定义;②函数y=f(x)-g(x)在区间[a,b]上至少有一个零点,则称f(x)和g(x)在[a,b]上具有关系G.(1)若f(x)=lg x,g(x)=3-x,试判断f(x)和g(x)在[1,4]上是否具有关系G,并说明理由;(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有关系G,求实数m的取值范围.。
江苏省南京市高三数学下学期期初试卷(含解析)

江苏省南京市2015届高三下学期期初数学试卷二、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={x|log2x≤2},B=(﹣∞,a),若A⊆B则实数a的取值范围是(c,+∞),其中c=.2.(5分)由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是.3.(5分)底面边长为2m,高为1m的正三棱锥的全面积为m2.4.(5分)已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值为.5.(5分)已知△ABC中,∠B=45°,AC=4,则△ABC面积的最大值为.(5分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.6.7.(5分)已知函数,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是.8.(5分)已知平面上四个互异的点A、B、C、D满足:(﹣)•(2﹣﹣)=0,则△ABC的形状是.9.(5分)设x,y均为正实数,且=1,则xy的最小值为.10.(5分)在矩形ABCD中,对角线AC与相邻两边所成的角为α,β,则有cos2α+cos2β=1.类比到空间中的一个正确命题是:在长方体ABCDA1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=.11.(5分)已知点P(m,4)是椭圆+=1(a>b>0)上的一点,F1,F2是椭圆的两个焦点,若△PF1F2的内切圆的半径为,则此椭圆的离心率为.12.(5分)若函数f(x)=﹣ln(x+1)不存在零点,则实数k的取值范围是.13.(5分)函数f(x)=x2e x在区间(a,a+1)上存在极值点,则实数a的取值范围为.14.(5分)设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,若x0是方程f(x)﹣f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则实数a=.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;并判定函数f(x)单调性(不必证明).(2)若对于任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.16.(14分)已知函数f(x)=2cos(x)(0≤x≤5),点A、B分别是函数y=f(x)图象上的最高点和最低点.(1)求点A、B的坐标以及•的值(2)设点A、B分别在角α、β(α、β∈[0,2π])的终边上,求sin(﹣2β)的值.17.(14分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG的体积.18.(16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获得,国家将给予补偿.(Ⅰ)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(Ⅱ)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?19.(16分)设A,B分别为椭圆的左、右顶点,椭圆的长轴长为4,且点在该椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于异于A的点M,证明:△MBP为钝角三角形.20.(16分)已知函数f(x)=x2+alnx.(1)若a=﹣1,求函数f(x)的极值,并指出极大值还是极小值;(2)若a=1,求函数f(x)在[1,e]上的最值;(3)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在g(x)=x3的图象下方.(理科选做)加试题(每题10分,共20分)选修4-2【矩阵与变换】21.设矩阵A=,矩阵A属于特征值λ1=﹣1的一个特征向量为α1=,属于特征值λ2=4的一个特征向量为α2=,求ad﹣bc的值.23.如图,将长为4,宽为1的长方形折叠成长方体ABCD﹣A1B1C1D1的四个侧面,记底面上一边AB=t(0<t<2),连接A1B,A1C,A1D1(1)当长方体ABCD﹣A1B1C1D1的体积最大时,求二面角B﹣A1C﹣D的值;(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由.24.设数列{a n}的前n项和为S n,已知2S n+1=S n+λ(n∈N*,λ为常数),a1=2,a2=1.(1)求数列{a n}的通项公式;(2)求所有满足等式=成立的正整数m,n.选修4-4:【坐标系与参数方程】22.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.江苏省南京市2015届高三下学期期初数学试卷参考答案与试题解析二、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={x|log2x≤2},B=(﹣∞,a),若A⊆B则实数a的取值范围是(c,+∞),其中c=4.考点:集合的包含关系判断及应用.专题:集合.分析:先化简集合A,然后根据子集的定义求出集合B的取值范围,总而求出所求.解答:解:A={x|log2x≤2}={x|0<x≤4}而B=(﹣∞,a),∵A⊆B∴a>4即实数a的取值范围是(4,+∞),故答案为:4点评:本题属于以对数不等式为依托,考查集合子集的基础题,也是2015届高考常会考的题型.2.(5分)由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是1.考点:一元二次不等式的解法.专题:计算题.分析:由题意知“任意x∈R,使x2+2x+m>0”是真命题,由二次函数的性质得△<0,求出m的范围,结合题意求出a的值.解答:解:∵“存在x∈R,使x2+2x+m≤0”是假命题,∴“任意x∈R,使x2+2x+m>0”是真命题,∴△=4﹣4m<0,解得m>1,故a的值是1.故答案为:1.点评:本题考查了二次函数恒成立问题,即根据二次函数图象开口方向和判别式的符号,列出等价条件求出对应的参数的范围.3.(5分)底面边长为2m,高为1m的正三棱锥的全面积为m2.考点:棱柱、棱锥、棱台的侧面积和表面积.专题:计算题.分析:由已知中正三棱锥的底面边长为2m,高为1m,我们易出求棱锥的侧高,进而求出棱侧面积和底面面积即可求出棱锥的全面积.解答:解:如图所示,正三棱锥S﹣ABC,O为顶点S在底面BCD内的射影,则O为正△BCD的垂心,过C作CH⊥AB于H,连接SH.则SO⊥HC,且,在Rt△SHO中,.于是,,.所以.故答案为点评:本题主要考查基本运算,应强调考生回归课本、注重运算、留心单位、认真审题.4.(5分)已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值为﹣4.考点:直线与圆的位置关系.专题:直线与圆.分析:把圆的方程化为标准形式,求出弦心距,再由条件根据弦长公式求得a的值.解答:解:圆x2+y2+2x﹣2y+a=0 即(x+1)2+(y﹣1)2=2﹣a,故弦心距d=.再由弦长公式可得 2﹣a=2+4,∴a=﹣4;故答案为:﹣4.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题.5.(5分)已知△ABC中,∠B=45°,AC=4,则△ABC面积的最大值为4+4.考点:余弦定理;正弦定理.专题:计算题.分析:利用余弦定理表示出cosB,将B的度数,以及AC,即b的值代入,整理后再利用基本不等式求出ac的最大值,然后利用三角形的面积公式表示出三角形ABC的面积,将ac的最大值及sinB的值代入,即可求出三角形ABC面积的最大值.解答:解:∵∠B=45°,AC=b=4,∴由余弦定理cosB=得:=,∴ac=a2+c2﹣16≥2ac﹣16,即(2﹣)ac≤16(当且仅当a=c时取等号),∴ac≤=8(2+)=16+8,∴△ABC面积S=acsinB≤(16+8)×=4+4,则△ABC面积的最大值为4+4.故答案为:4+4点评:此题考查了余弦定理,基本不等式,三角形的面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.6.(5分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.考点:正弦函数的图象;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.解答:解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=.故答案为:点评:本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.7.(5分)已知函数,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(0,1).考点:函数的零点.专题:作图题.分析:由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案.解答:解:由题意作出函数的图象,关于x的方程f(x)=k有两个不同的实根等价于函数,与y=k有两个不同的公共点,由图象可知当k∈(0,1)时,满足题意,故答案为:(0,1)点评:本题考查方程根的个数,数形结合是解决问题的关键,属基础题.8.(5分)已知平面上四个互异的点A、B、C、D满足:(﹣)•(2﹣﹣)=0,则△ABC的形状是等腰直角三角形.考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的三角形法则可得=0,因此以AB,AC为邻边的平行四边形是正方形,即可得出△ABC的形状.解答:解:∵=+=+,又(﹣)•(2﹣﹣)=0,∴=0,∴以AB,AC为邻边的平行四边形是正方形,因此△ABC是等腰直角三角形.故答案为:等腰直角三角形.点评:本题考查了向量的三角形法则、平行四边形与正方形的性质、△ABC的形状、数量积运算,考查了推理能力,属于基础题.9.(5分)设x,y均为正实数,且=1,则xy的最小值为16.考点:基本不等式.专题:不等式的解法及应用.分析:由=1,化为xy=x+y+8,使用基本不等式和利用一元二次不等式的解法即可得出.解答:解:由=1,化为3(2+y)+3(2+x)=(2+x)(2+y),整理为xy=x+y+8,∵x,y均为正实数,∴xy=x+y+8,∴,解得,即xy≥16,当且仅当x=y=4时取等号.∴xy的最小值为16.故答案为:16.点评:本题考查了基本不等式和一元二次不等式的解法,属于基础题.10.(5分)在矩形ABCD中,对角线AC与相邻两边所成的角为α,β,则有cos2α+cos2β=1.类比到空间中的一个正确命题是:在长方体ABCDA1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=2.考点:类比推理;棱柱的结构特征.专题:空间位置关系与距离.分析:由类比规则,点类比线,线类比面,可得出在长方体ABCDA1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=2,解直角三角形证明其为真命题即可.解答:解:我们将平面中的两维性质,类比推断到空间中的三维性质.由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们根据长方体性质可以类比推断出空间性质,∵长方体ABCD﹣A1B1C1D1中,如图对角线AC1与过A点的三个面ABCD,AA1B1B、AA1D1D所成的角分别为α,β,γ,∴cosα=,cosβ=,cosγ=,∴cos2α+cos2β+cos2γ=,令同一顶点出发的三个棱的长分别为a,b,c,则有cos2α+cos2β+cos2γ===2故答案为:cos2α+cos2β+cos2γ=2.点评:本题考查类比推理及棱柱的结构特征,线面角的定义,综合性强是一个常考的题型.11.(5分)已知点P(m,4)是椭圆+=1(a>b>0)上的一点,F1,F2是椭圆的两个焦点,若△PF1F2的内切圆的半径为,则此椭圆的离心率为.考点:椭圆的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:设|PF1|=m,|PF2|=n,|F1F2|=2c,由椭圆的定义可得m+n=2a,再由三角形的面积公式以及内切圆的圆心与三个顶点将三角形△PF1F2分成三个小三角形,分别求面积再求和,得到a,c的方程,由离心率公式计算即可得到.解答:解:设|PF1|=m,|PF2|=n,|F1F2|=2c,由椭圆的定义可得m+n=2a,由三角形的面积公式可得=×2c×4=4c,由△PF1F2的内切圆的半径为,则=×(m+n+2c)=(2a+2c)=(a+c),即有4c=(a+c),即为5c=3a,则离心率e==.故答案为:.点评:本题考查椭圆的定义和性质,考查三角形的面积公式和面积的分割法,考查离心率的求法,考查运算能力,属于中档题.12.(5分)若函数f(x)=﹣ln(x+1)不存在零点,则实数k的取值范围是(0,4).考点:函数零点的判定定理.专题:函数的性质及应用.分析:由题意可知可得x>﹣1且x≠0,k=x++2,(x>﹣1且x≠0),由“对号函数”的性质和集合的运算可得.解答:解:由题意可知,解得x>﹣1且x≠0,由对数的性质可得lnkx=2ln(x+1)=ln(x+1)2,可得kx=(x+1)2,变形可得k==x++2,(x>﹣1且x≠0)由“对号函数”的性质可知x+<﹣2,或x+≥2,∴x++2<0,或x++2≥4,要使函数f(x)=﹣ln(x+1)不存在零点,只需k取x++2取值集合的补集,即{k|0≤k<4},当k=0时,函数无意义,故k的取值范围应为:(0,4)故答案为:(0,4)点评:本题考查函数的零点,涉及“对号函数”的性质和集合的运算,属基础题.13.(5分)函数f(x)=x2e x在区间(a,a+1)上存在极值点,则实数a的取值范围为(﹣3,﹣2)∪(﹣1,0).考点:利用导数研究函数的极值.专题:计算题;导数的概念及应用.分析:求导函数,求出函数的极值点,利用函数f(x)=x2e x在区间(a,a+1)上存在极值点,建立不等式,即可求实数a的取值范围.解答:解:函数f(x)=x2e x的导数为y′=2xe x+x2e x =xe x(x+2),令y′=0,则x=0或﹣2,﹣2<x<0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增,∴0或﹣2是函数的极值点,∵函数f(x)=x2e x在区间(a,a+1)上存在极值点,∴a<﹣2<a+1或a<0<a+1,∴﹣3<a<﹣2或﹣1<a<0.故答案为:(﹣3,﹣2)∪(﹣1,0).点评:本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.14.(5分)设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,若x0是方程f(x)﹣f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则实数a=1.考点:导数的运算;对数函数图象与性质的综合应用.专题:导数的概念及应用.分析:由题意可得f(x)﹣log2x为定值,设为t,代入可得t=4,进而可得函数的解析式,化方程有解为函数F(x)=f(x)﹣f′(x)﹣4=log2x﹣有零点,易得F(1)<0,F(2)>0,由零点的判定可得答案.解答:解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)﹣log2x为定值,设t=f(x)﹣log2x,则f(x)=t+log2x,又由f(t)=6,可得t+log2t=6,可解得t=4,故f(x)=4+log2x,f′(x)=,又x0是方程f(x)﹣f′(x)=4的一个解,所以x0是函数F(x)=f(x)﹣f′(x)﹣4=log2x﹣的零点,分析易得F(1)=﹣<0,F(2)=1﹣=1﹣>0,故函数F(x)的零点介于(1,2)之间,故a=1,故答案为:1点评:本题考查函数的零点的判断,涉及导数的运算和性质,属中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;并判定函数f(x)单调性(不必证明).(2)若对于任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.考点:函数恒成立问题;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)由题意知f(0)=0求出b,再由奇函数的定义求出b;(2)利用奇函数的性质转化为一元二次不等式,借助与一元二次函数的关系进行判断.解答:解:∵定义域为R的函数f(x)=是奇函数,∴,即化简,得解得,∴a的值是2,b的值是1.∴f(x)是R上的减函数;(3)由f(t2﹣2t)+f(2t2﹣k)<0,得f(t2﹣2t)<﹣f(2t2﹣k),∵f(x)是奇函数,∴f(t2﹣2t)<f(k﹣2t2),由(2)知,f(x)是减函数,∴原问题转化为t2﹣2t>k﹣2t2,即3t2﹣2t﹣k>0对任意t∈R恒成立,∴△=4+12k<0,解得k<﹣,所以实数k的取值范围是:k<﹣,点评:本题考查函数的奇偶性、单调性及不等式恒成立问题,定义是解决单调性问题的基本方法,而恒成立问题往往转化为函数最值问题解决.16.(14分)已知函数f(x)=2cos(x)(0≤x≤5),点A、B分别是函数y=f(x)图象上的最高点和最低点.(1)求点A、B的坐标以及•的值(2)设点A、B分别在角α、β(α、β∈[0,2π])的终边上,求sin(﹣2β)的值.考点:函数y=Asin(ωx+φ)的图象变换;平面向量数量积的运算.专题:三角函数的图像与性质.分析:(1)由x的范围求出x的范围,得到f(x)的最大值和最小值,从而求出A,B的坐标,则•的值可求;(2)由点A、B分别在角α、β(α、β∈[0,2π])的终边上求出角α的值和角β的正余弦值,由倍角公式求得2β的正余弦值,展开两角差的正弦公式求得sin(﹣2β)的值.解答:解:(1)∵0≤x≤5,∴,∴﹣1≤cos()≤.当,即x=0时,f(x)取得最大值1,当,即x=4时,f(x)取得最小值﹣2.因此,所求的坐标为A(0,1),B(4,﹣2).则.∴•=0﹣2=﹣2;(2)∵点A(0,1)、B(4,﹣2)分别在角α、β(α、β∈[0,2π])的终边上,则,,则sin2β=2sinβcosβ=2×=,cos2β=2cos2β﹣1=2×=.∴sin(﹣2β)=sin()===.点评:本题考查了三角函数最值的求法,考查了平面向量的数量积运算,训练了三角函数的倍角公式及和差化积公式,考查了任意角的三角函数的定义,是中档题.17.(14分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG的体积.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:计算题;证明题;转化思想.分析:(1)取AC的中点P,连接DP,证明DP⊥AC,∠EDC=90°,ED⊥DC;利用平面与平面垂直的性质证明DE⊥平面BCD;(2)说明G为EC的中点,求出B到DC的距离h,说明到DC的距离h就是三棱锥B﹣DEG的高.利用,即可求三棱锥B﹣DEG的体积.解答:解:(1)取AC的中点P,连接DP,因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,所以∠A=30°,△ADC是等腰三角形,所以DP⊥AC,DP=,∠DCP=30°,∠PDC=60°,又点E在线段AC上,CE=4.所以AE=2,EP=1,所以∠EDP=30°,∴∠EDC=90°,∴ED⊥DC;∵将△BCD沿CD折起,使得平面BCD⊥平面ACD,平面BDC∩平面EDC=DC∴DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,G为EC的中点,此时AE=EG=GC=2,因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,所以BD=,DC=,所以B到DC的距离h===,因为平面BCD⊥平面ACD,平面BDC∩平面EDC=DC,所以B到DC的距离h就是三棱锥B﹣DEG的高.三棱锥B﹣DEG的体积:V====.点评:本题考查直线与平面垂直的判定,棱锥的体积的求法,直线与平面平行的判定,考查空间想象能力,计算能力.18.(16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获得,国家将给予补偿.(Ⅰ)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(Ⅱ)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?考点:函数模型的选择与应用;函数的最值及其几何意义.分析:(I)当x∈[200,300]时,该项目获利S=200x﹣<0,说明不获利;当x=300时,S取得最大值﹣5000,说明国家每月至少补贴5000元才能使该项目不亏损;(II)二氧化碳的每吨平均处理成本为:=;分段讨论,①当x∈[120,144)时,求出的最小值;②当x∈[144,500]时,求出的最小值;比较得每月处理量为多少吨时,能使每吨的平均处理成本最低.解答:解:(I)当x∈[200,300]时,设该项目获利为S,则S=200x﹣=﹣x2+400x﹣80000=﹣(x﹣400)2;当x∈[200,300]时,S<0,此时该项目不会获利;当x=300时,S取得最大值﹣5000,所以,国家每月至少补贴5000元才能使该项目不亏损.(II)由题意知,二氧化碳的每吨平均处理成本为:=,则:①当x∈[120,144)时,=x2﹣80x+5040=(x﹣120)2+240,∴当x=120时,取得最小值240;②当x∈[144,500]时,=x+﹣200≥2﹣200=200,当且仅当x=,即x=400时,取得最小值200;∵200<240,∴当每月处理量为400吨时,才能使每吨的平均处理成本最低.点评:本题考查了分段函数模型的应用题目,并且考查了求二次函数的最值,利用基本不等式求函数的最值等问题,是中档题.19.(16分)设A,B分别为椭圆的左、右顶点,椭圆的长轴长为4,且点在该椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于异于A的点M,证明:△MBP为钝角三角形.考点:直线与圆锥曲线的关系;椭圆的简单性质.专题:计算题.分析:(Ⅰ)由椭圆的长轴长为4,得2a=4,即得a=2;又点在椭圆上,代入椭圆标准方程,可得b;从而得出方程.(Ⅱ)设P(4,t)其中t≠0,直线AP与椭圆交于点M(异于A),由直线方程与椭圆方程组成方程组,得出点M的坐标;由B,P,M三点坐标,得向量,,,由•<0,知∠MBP是钝角;从而得出证明.解答:解:(Ⅰ)由题意:2a=4,所以a=2,所求椭圆方程为;又点在椭圆上,∴=1,∴b2=1;故所求椭圆方程为:.(Ⅱ)证明:由(Ⅰ)知,A(﹣2,0),B(2,0),设P(4,t),M(x M,y M),则直线PA的方程为:,(t≠0);由得(9+t2)x2+4t2x+4t2﹣36=0;因为直线PA与椭圆相交于异于A的点M,所以,所以;由,得,所以;从而,;所以=.又M,B,P三点不共线,所以∠MBP为钝角;所以△MBP为钝角三角形.点评:本题(Ⅰ)考查了椭圆的基础知识,(Ⅱ)借助于求直线与椭圆相交时的交点,利用向量的数量积,来判断三角形的形状;要求有较高的计算能力,是中档题.20.(16分)已知函数f(x)=x2+alnx.(1)若a=﹣1,求函数f(x)的极值,并指出极大值还是极小值;(2)若a=1,求函数f(x)在[1,e]上的最值;(3)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在g(x)=x3的图象下方.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.专题:计算题;导数的综合应用.分析:(1)代入a=﹣1,从而化简f(x)并求其定义域,再求导判断函数的单调性及极值即可;(2)代入a=1,从而化简f(x)并求其定义域,再求导判断函数的单调性及求函数的最值;(3)代入a=1,令F(x)=g(x)﹣f(x)=x3﹣x2﹣lnx,从而化在区间[1,+∞)上,函数f(x)的图象在g(x)=x3的图象下方为F(x)>0在[1,+∞)上恒成立,再化为函数的最值问题即可.解答:解:(1)当a=﹣1时,f(x)=x2﹣lnx的定义域为(0,+∞),f′(x)=x﹣=;故f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,故f(x)在x=1处取得极小值f(1)=;(2)当a=1时,f(x)=x2+lnx的定义域为(0,+∞),f′(x)=x+>0;故f(x)在[1,e]上是增函数,故f min(x)=f(1)=,f max(x)=f(e)=e2+1;(3)证明:令F(x)=g(x)﹣f(x)=x3﹣x2﹣lnx;则F′(x)=2x2﹣x﹣=,∵x∈[1,+∞),∴F′(x)=≥0,∴F(x)在[1,+∞)上是增函数,故F(x)≥F(1)=﹣=>0;故在区间[1,+∞)上,函数f(x)的图象在g(x)=x3的图象下方.点评:本题考查了导数的综合应用,同时考查了函数的图象与函数的性质的关系及恒成立问题,属于中档题.(理科选做)加试题(每题10分,共20分)选修4-2【矩阵与变换】21.设矩阵A=,矩阵A属于特征值λ1=﹣1的一个特征向量为α1=,属于特征值λ2=4的一个特征向量为α2=,求ad﹣bc的值.考点:特征值、特征向量的应用.专题:矩阵和变换.分析:根据特征值、特征向量的定义可知Aα=λα,利用待定系数法列出四个等式关系,解二元一次方程组即可求出a、b、c、d的值,进而求出ad﹣bc的值.解答:解:由特征值、特征向量定义可知,Aα1=λ1α1,即=,可得…①;同理可得,即…②;由①②,解得a=2,b=3,c=2,d=1,因此ad﹣bc=2﹣6=﹣4,即ad﹣bc的值为﹣4.点评:本题主要考查了二阶矩阵、矩阵的特征值与特征向量的计算等基础知识,属于基础题.23.如图,将长为4,宽为1的长方形折叠成长方体ABCD﹣A1B1C1D1的四个侧面,记底面上一边AB=t(0<t<2),连接A1B,A1C,A1D1(1)当长方体ABCD﹣A1B1C1D1的体积最大时,求二面角B﹣A1C﹣D的值;(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由.考点:二面角的平面角及求法;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(1)首先根据最大值确定正方体,进一步根据法向量,及向量的数量积求出二面角.(2)与(1)一样建立空间直角坐标系,利用向量的数量积,向量共享的充要条件,进一步利用线面垂直的性质,求出分点坐标,进一步求出点P的位置.解答:解:将长为4,宽为1的长方形折叠成长方体ABCD﹣A1B1C1D1的四个侧面,记底面上一边AB=t(0<t<2),则求得:AD=2﹣t则:V=t(2﹣t)=﹣(t﹣1)2+1当t=1时,V max=1即:长方体ABCD﹣A1B1C1D1的体积最大时,长方体恰好是正方体.所以:建立空间直角坐标系A﹣xyz.正方体的棱长为1.由于AB1⊥A1B,BC⊥AB1所以:AB1⊥平面BA1C所以:可以看做是平面BA1C的法向量.所以:同理:利用线面垂直得到所以:进一步求得:=,所以根据图形知:二面角B﹣A1C﹣D的值为.(2)建立空间直角坐标系A﹣xyz,则:C(t,2﹣t,0),A1(0,0,1),B(t,0,0),D(0,2﹣t,0)所以:,假设在线段A1C上存在一点P,使得A1C⊥平面BPD,则设(λ>0)根据分点坐标公式:P(求得:,由于所以:﹣t2+λ(2﹣t)2﹣1=0①同理利用:解得:﹣t2+(2﹣t)2=0②所以:解得:(负值舍去)所以点P在的位置.点评:本题考查的知识要点:空间直角坐标系,法向量,向量的数量积,分点坐标公式,向量的共线问题,属于中等题型.24.设数列{a n}的前n项和为S n,已知2S n+1=S n+λ(n∈N*,λ为常数),a1=2,a2=1.(1)求数列{a n}的通项公式;(2)求所有满足等式=成立的正整数m,n.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)利用条件a1=2,a2=1建立方程组,即可求数列{a n}的通项公式;(2)求出S n,利用等式=成立,解方程即可得到结论.解答:解:(1)由题意,得2S2=S1+λ,求得λ=4.所以,2S n+1=S n+4①当n≥2时,2S n=S n﹣1+4②①﹣②,得(n≥2),又,所以数列{a n}是首项为2,公比为的等比数列.所以{a n}的通项公式为(n∈N*).(2)由(1),得,由,得,化简得,即(4﹣m)2n﹣4=2m﹣1,即(4﹣m)2n=4+2m﹣1.(*)因为2m﹣1+4>0,所以(4﹣m)•2n>0,所以m<4,因为m∈N*,所以m=1或2或3.当m=1时,由(*)得3×2n=5,所以无正整数解;当m=2时,由(*)得2×2n=6,所以无正整数解;当m=3时,由(*)得2n=8,所以n=3.综上可知,存在符合条件的正整数m=n=3.点评:本题主要考查数列通项公式的求解,考查学生的计算能力.选修4-4:【坐标系与参数方程】22.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.考点:点的极坐标和直角坐标的互化;两点间的距离公式.专题:计算题.分析:(1)将直线化成普通方程,可得它是经过原点且倾斜角为的直线,由此不难得到直线l的极坐标方程;(2)将直线l的极坐标方程代入曲线C极坐标方程,可得关于ρ的一元二次方程,然后可以用根与系数的关系结合配方法,可以得到AB的长度.解答:解:(1)直线l的参数方程是(t为参数),化为普通方程得:y=x∴在平面直角坐标系中,直线l经过坐标原点,倾斜角是,因此,直线l的极坐标方程是θ=,(ρ∈R);…(5分)(2)把θ=代入曲线C的极坐标方程ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0,得ρ2﹣ρ﹣3=0∴由一元二次方程根与系数的关系,得ρ1+ρ2=,ρ1ρ2=﹣3,∴|AB|=|ρ1﹣ρ2|==.…(10分)点评:本题以参数方程和极坐标方程为例,考查了两种方程的互化和直线与圆锥曲线的位置关系等知识点,属于基础题.。
江苏省南京市第二学期高一数学期末试卷(word版含答案)

江苏省南京市2017~2018学年第二学期期末试卷高一数学2018.6一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........) 1.在平面直角坐标系xOy 中,记直线y =x −2的倾斜角是θ,则θ的值为 . 2.在等比数列{}n a 中,已知2a =1,4a 6a 的值为 .3.在平面直角坐标系xOy 中,已知直线l 经过点(﹣1,0),(1,4),则直线l 的方程是 . 4.已知α为锐角,且cos α=13,则sin2α的值为 . 5.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,则四个侧面△PAB ,△PBC ,△PCD ,△PAD 中,有 个直角三角形.第5题 第9题 6.不等式2xx -≤0的解集为 . 7.已知圆锥的底面半径为1,母线长为3,则此圆锥的体积为 .8.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知b =1,c C =23π,则角A 的大小为 .9.如图,在直四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 是正方形,AA 1,记异面直线AB 1与BD 所成的角为θ,则cos θ的值为 . 10.在平面直角坐标系xOy 中,经过点P(1,1)的直线l 与x 轴交于点A ,与y 轴交于点B .若P A 2P B =-,则直线l 的方程是 .11.α,β为两个不同的平面,m ,n 为两条不同的直线,下列命题中正确的是 (填上所有正确命题的序号).①若α//β,m ⊂α,则m //β; ②若m //α,n ⊂α,则m //n ;③若m ⊥α,m // n ,则n ⊥α; ④若α⊥β,α∩β=n ,m ⊥n ,则m ⊥β.12.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若222(c o sB c o sA )a b a b -=+,且△ABC 的面积为50,则△ABC 周长的最小值为 .13.已知数列{}n a 的通项公式为1(2)7n n n n a n n ⎧⎪+=⎨⎪-⎩,为奇数,为偶数,则数列{}n a 前15项和为S 15的值为 .14.已知正实数x ,y 满足2221x xy y +-=,则5x −2y 的最小值为 .二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.)15.(本题满分14分)在平面直角坐标系xOy 中,设直线l 的方程为x +my −2m =0(m ≠0). (1)若直线l 的斜率为−1,求实数m 的值;(2)若直线l 与坐标轴围成的三角形的面积为2,求实数m 的值. 16.(本题满分14分)如图,在三棱柱ABC —A 1B 1C 1中,侧面ACC 1A 1是矩形,侧面BCC 1B 1是菱形,M 是AB 1的中点.N 是BC 1与B 1C 的交点,AC ⊥B 1C ,求证:(1)MN ∥平面ACC 1A 1; (2)BC 1⊥平面AB 1C .在△ABC 中,已知点D 在BC 边上,且2BD =DC ,AB =2,AD (1)若AD ⊥BC ,求tan ∠BAC 的值; (2)若cosB =34,求线段AC 的长. 18.(本题满分16分)已知函数2()(f x x ax b a =+-,)b R ∈.(1)若b =−1,且函数()f x 有零点,求实数a 的取值范围; (2)当b =1−a 时,解关于x 的不等式()f x ≤0; (3)若正数a ,b 满足43a b+≤,且对于任意的x [1∈,)+∞,()f x ≥0恒成立,求实数a ,b 的值. 19.(本题满分16分)某水产养殖户制作一体积为1200立方米的养殖网箱(无盖),网箱内部被隔成体积相等的三块长方体区域(如图),网箱上底面的一边长为20米,网箱的四周与隔栏的制作价格是200元/平方米,网箱底部的制作价格为90元/平方米.设网箱上底面的另一边长为x 米,网箱的制作总费用为y 元.(1)求出y 与x 之间的函数关系,并指出定义域;(2)当网箱上底面的另一边长x 为多少米时,制作网箱的总费用最少.已知{}n a 是公差不为零的等差数列,{}n b 是等比数列,且2a =2b =1,331a b -=,441a b -=.(1)求数列{}n a ,{}n b 的通项公式;(2)记n c =n a ·n b ,求数列{}n c 的前n 项和n S ; (3)若满足不等式18n m n n na mb a b ++++<成立的n 恰有3个,求正整数m 的值.参 考 答 案1.4π 2.33.22y x =+4.95.46.[0,2)7.38.6π9.410.x +2y ﹣3=0 11.①③12.20+13.1271714.4 15.16.17.18.19.20.。
2015年下学期高一期末考试数学(A)试卷及答案

平面 CAA1C1⊥平面 CB1D1.
20、 (本小题满分 12 分)
已知函数 f(x)=log3(ax+b)的图象经过点 A(2,1),B(5,2). (1)求函数 f(x)的解析式及定义域. (2)求 f(14)÷f 的值.
解:因为函数 f(x)=log3(ax+b)的图象经过点 A(2,1),B(5,2), 所以 即
3x y 1 0 x y 3 0
得
x 1 ,所以交点 P(1,2) y 2
1 3
(2) l1 的斜率为 3,故所求直线为 y 2 ( x 1) 即为 x 3 y 7 0
18、(本题满分 12 分)
设 A={x|-1≤x≤4},B={x|m-1<x<3m+1}, (1)当 x∈N 时,求 A 的子集的个数. (2)当 x∈R 且 A∩B=B 时,求 m 的取值范围. 解:(1)当 x∈N 时,A={1,2,3,4}, A 中有 4 个元素, 所以 A 的子集的个数为 2 =16 个. (2)当 x∈R 且 A∩B=B 时,则 B⊆ A, 当 B=∅时,m-1≥3m+1,即 m≤-1, 当 B≠∅时, 综上,m≤-1 或 0≤m≤1. 即 0≤m≤1.
6、一几何体的直观图如图,下列给出的四个俯视图中正确的是( B )
7、下列说法中错误的是 ( B ) A.如果α ⊥β ,那么α 内一定存在直线平行于平面β B.如果α ⊥β ,那么α 内所有直线都垂直于平面β C.如果平面α 不垂直平面β ,那么α 内一定不存在直线垂直于平面β D.如果α ⊥γ ,β ⊥γ ,α ∩β =l,那么 l⊥γ
6
参考答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年江苏省南京市高一(下)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.(5分)不等式<0的解是.2.(5分)数列{a n}是等比数列,若a3=1,a5=4,则a7的值为.3.(5分)在△ABC中,A,B,C所对的边分别为a,b,c.已知a2+b2﹣ab=c2,则角C的大小为.4.(5分)点P(3,﹣2)到直线l:3x+4y﹣26=0的距离为.5.(5分)函数y=x+(x>﹣1)的最小值为.6.(5分)过点P(﹣,1),倾斜角为120°的直线方程为.7.(5分)若等差数列{a n}的前n项和为S n,a8=2a3,则的值是.8.(5分)若三条直线ax+2y+8=0,4x+3y﹣10=0和2x﹣y=0相交于一点,则实数a的值为.9.(5分)下列命题:①如果一条直线平行于平面内的一条直线,那么这条直线与这个平面平行;②垂直于同一条直线的两个平面互相平行;③如果一条直线与平面内无数条直线都垂直,那么这条直线与这个平面垂直;④如果一个平面内有一条直线与另一个平面垂直,那么这两个平面互相垂直.其中正确的命题的序号为.10.(5分)已知经过A(﹣1,a),B(a,8)两点的直线与直线2x﹣y+1=0平行,则实数a的值为.11.(5分)在△ABC中,A,B,C所对的边分别为a,b,c.若bcosC+ccosB=csinA,则的最大值为.12.(5分)若一个圆锥的侧面展开图是一个半径为2cm的半圆,则这个圆锥的体积为cm3.13.(5分)已知x>0,y>0,且xy=x+2y,则x+y的最小值为.14.(5分)已知a n=3n,b n=3n,n∈N*,对于每一个k∈N*,在a k与a k+1之间插入b k个3得到一个数列{c n}.设T n是数列{c n}的前n项和,则所有满足T m=3c m+1的正整数m的值为.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知直线l:x﹣2y+2m﹣2=0.(1)求过点(2,3)且与直线l垂直的直线的方程;(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.16.(14分)一副直角三角板(如图1)拼接,将△BCD折起,得到三棱锥A﹣BCD(如图2).(1)若E,F分别为AB,BC的中点,求证:EF∥平面ACD;(2)若平面ABC⊥平面BCD,求证:平面ABD⊥平面ACD.17.(14分)如图,在平面四边形ABCD中,AD=,CD=,∠ABD=60°,∠ADB=75°,∠ADC=120°.(1)求BD的长;(2)求△ABC的面积.18.(16分)如图,用一块矩形木板紧贴一墙角围成一个直三棱柱空间堆放谷物.已知木板的长BC紧贴地面且为4米,宽BE为2米,墙角的两堵墙面所成二面角为120°,且均与地面垂直,如何放置木板才能使这个空间的体积最大,最大体积是多少?19.(16分)已知公差不为0的等差数列{a n}的前n项和为S n,满足S3=a4+4,且a2,a6,a18成等比数列.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n;(3)设c n=,若{c n}为等差数列,求实数t的值.20.(16分)设等比数列{a n}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项.数列{b n}的前n项和S n=n2,n∈N*.(1)求数列{a n}的通项公式;(2)若不等式λb n≤S n+6对任意n∈N*恒成立,求实数λ的取值范围;(3)若c n=从数列{c n}中取出若干项(奇数项与偶数项均不少于两项),将取出的项按照某一顺序排列后构成等差数列.当等差数列的项数最大时,求所有满足条件的等差数列.2014-2015学年江苏省南京市高一(下)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.(5分)不等式<0的解是(﹣1,0).【解答】解:不等式<0,即x(x+1)<0,求得﹣1<x<0,故答案为:(﹣1,0).2.(5分)数列{a n}是等比数列,若a3=1,a5=4,则a7的值为16.【解答】解:在等比数列中,a3a7=(a5)2,即a7=16,故答案为:163.(5分)在△ABC中,A,B,C所对的边分别为a,b,c.已知a2+b2﹣ab=c2,则角C的大小为.【解答】解:由余弦定理可得:cosC===,∵C∈(0,π),∴C=.故答案为:.4.(5分)点P(3,﹣2)到直线l:3x+4y﹣26=0的距离为5.【解答】解:由题意结合点到直线的距离公式可得:点P(3,﹣2)到直线l:3x+4y﹣26=0的距离d===5.故答案为:55.(5分)函数y=x+(x>﹣1)的最小值为7.【解答】解:∵x>﹣1,∴x+1>0.∴函数y=x+=(x+1)+﹣1﹣1=7,当且仅当x=3时取等号.故答案为:7.6.(5分)过点P(﹣,1),倾斜角为120°的直线方程为x+y+2=0.【解答】解:∵直线l的倾斜角为120°,∴直线的斜率为k=tan120°=﹣,又∵直线l过点(﹣3,1),∴直线l的方程为:y﹣1=﹣(x+3),即x+y+2=0,故答案为:x+y+2=07.(5分)若等差数列{a n}的前n项和为S n,a8=2a3,则的值是6.【解答】解:由{a n}为等差数列,且a8=2a3,得到a1+7d=2(a1+2d),∴a1=3d,∴==6,故答案为:6.8.(5分)若三条直线ax+2y+8=0,4x+3y﹣10=0和2x﹣y=0相交于一点,则实数a的值为﹣12.【解答】解:联立4x+3y﹣10=0,2x﹣y=0,得,解得,∵三条直线ax+2y+8=0,4x+3y﹣10=0,2x﹣y=0相交于一点,∴把点(1,2)代入ax+2y+8=0,可得a+4+8=0,解得a=﹣12.故答案为:﹣12.9.(5分)下列命题:①如果一条直线平行于平面内的一条直线,那么这条直线与这个平面平行;②垂直于同一条直线的两个平面互相平行;③如果一条直线与平面内无数条直线都垂直,那么这条直线与这个平面垂直;④如果一个平面内有一条直线与另一个平面垂直,那么这两个平面互相垂直.其中正确的命题的序号为②④.【解答】解:①如果平面外一条直线平行于平面内的一条直线,那么这条直线与这个平面平行,故不正确;②垂直于同一条直线的两个平面互相平行,根据面面平行的判定定理可知正确;③平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,故不正确;④如果一个平面内有一条直线与另一个平面垂直,那么这两个平面互相垂直,利用平面与平面垂直度判定定理可知正确.故答案为:②④.10.(5分)已知经过A(﹣1,a),B(a,8)两点的直线与直线2x﹣y+1=0平行,则实数a的值为2.【解答】解:直线2x﹣y+1=0的斜率为1,由平行直线斜率相等得:2=,∴a=2故答案为:211.(5分)在△ABC中,A,B,C所对的边分别为a,b,c.若bcosC+ccosB=csinA,则的最大值为.【解答】解:∵bcosC+ccosB=csinA,∴由正弦定理可得:sinBcosC+sinCcosB=sin(B+C)=sinA=sinCsinA,∵sinA≠0,∴sinC=1,C=,∴利用正弦定理可得:==sinA+sinB=sinA+cosA=sin(A+),∴则=sin(A+)的最大值为.故答案为:.12.(5分)若一个圆锥的侧面展开图是一个半径为2cm的半圆,则这个圆锥的体积为πcm3.【解答】解:圆锥的侧面展开恰为一个半径为2cm的半圆,所以圆锥的底面周长为:2πcm,底面半径为:1cm,圆锥的高为:cm;圆锥的体积:V=π•12×=π.故答案为:π.13.(5分)已知x>0,y>0,且xy=x+2y,则x+y的最小值为3+2.【解答】解:∵x>0,y>0,且xy=x+2y,∴y=>0,解得x>2.则x+y=x+=(x﹣2)++3+3=3+2,当且仅当x=2+,y=+1时取等号.∴x+y的最小值为3+2.故答案为:3+2.14.(5分)已知a n=3n,b n=3n,n∈N*,对于每一个k∈N*,在a k与a k+1之间插入b k个3得到一个数列{c n}.设T n是数列{c n}的前n项和,则所有满足T m=3c m+1的正整数m的值为3.【解答】解:a n=3n,b n=3n,由题意知,c1=a1=3,c2=c3=c4=3,c5=a2=9,c6=c7=c8=c9=c10=c11=3,c12=a3=27,…,则当m=1时,T1=3≠3c2=9,不合题意;当m=2时,T2=6≠3c3=9,不合题意;当m=3时,T3=9=3c4=9,适合题意.当m≥4时,若c m+1=3,则T m≥12≠3c m+1,不适合题意,从而c m+1必是数列{a n}中的某一项a k+1,则T m=a1+3+3+3+a2+3+3+3+3+3+3+a3+3+…+3+a4+3+…+a5+3+…+a6+…+a k﹣1+3+…+a k,=(3+32+33+…+3k)+9[1+2+…+(k﹣1)]==,=3a k+1=3×3k+1,又3c m+1∴=3×3k+1,即5×3k=3k2﹣3k﹣1,上式显然无解.即当m≥4时,T m≠3c m,+1综上知,满足题意的正整数m的值为3.故答案为:3.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知直线l:x﹣2y+2m﹣2=0.(1)求过点(2,3)且与直线l垂直的直线的方程;(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.【解答】解:(1)∵直线l:x﹣2y+2m﹣2=0的斜率为,∴与直线l垂直的直线的斜率为﹣2,…(2分)因为点(2,3)在该直线上,所以所求直线方程为y﹣3=﹣2(x﹣2),故所求的直线方程为2x+y﹣7=0.…(6分)(2)直线l与两坐标轴的交点分别为(﹣2m+2,0),(0,m﹣1),…(8分)则所围成的三角形的面积为×|﹣2m+2|×|m﹣1|.…(10分)由题意可知×|﹣2m+2|×|m﹣1|>4,化简得(m﹣1)2>4,…(12分)解得m>3或m<﹣1,所以实数m的取值范围是(﹣∞,﹣1)∪(3,+∞).…(14分)16.(14分)一副直角三角板(如图1)拼接,将△BCD折起,得到三棱锥A﹣BCD(如图2).(1)若E,F分别为AB,BC的中点,求证:EF∥平面ACD;(2)若平面ABC⊥平面BCD,求证:平面ABD⊥平面ACD.【解答】证明:(1)因为E,F分别为AB,BC的中点,所以EF∥AC.…(2分)又EF⊄平面ACD,AC⊂平面ACD,所以EF∥平面ACD.…(6分)(2)因为平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,CD⊂平面BCD,CD⊥BC,所以CD⊥平面ABC.…(8分)因为AB⊂平面ABC,所以CD⊥AB.…(10分)又因为AB⊥AC,AC∩CD=C,AC⊂平面ACD,CD⊂平面ACD,所以AB⊥平面ACD.…(12分)又AB⊂平面ABD,所以平面ABD⊥平面ACD.…(14分)17.(14分)如图,在平面四边形ABCD中,AD=,CD=,∠ABD=60°,∠ADB=75°,∠ADC=120°.(1)求BD的长;(2)求△ABC的面积.【解答】解:(1)在△ABD中,AD=,∠ABD=60°,∠BAD=180°﹣60°﹣75°=45°,由正弦定理得=,所以BD=2.…(4分)(2)在△ABD中,AD=,BD=2,∠ADB=75°,所以△ABD的面积S1=AD•BD•sin∠ADB=.…(8分)又△ACD的面积S2=AD•DC•si n∠ADC=,…(10分)△BCD的面积S3=1.…(12分)所以△ABC的面积S=S1+S3﹣S2=.…(14分)18.(16分)如图,用一块矩形木板紧贴一墙角围成一个直三棱柱空间堆放谷物.已知木板的长BC紧贴地面且为4米,宽BE为2米,墙角的两堵墙面所成二面角为120°,且均与地面垂直,如何放置木板才能使这个空间的体积最大,最大体积是多少?【解答】解法一:设AB=x米,AC=y米,所围成的直三棱柱空间的体积为V立方米,所以V=xysin•2=xy.由题意得42=x2+y2﹣2xycos,即x2+y2+xy=16,因为x2+y2≥2xy,所以16≥2xy+xy,即xy≤,当且仅当x=y=时,不等式取等号.所以V≤•=.答:当AB=AC=米时,所围成的直三棱柱空间最大,最大体积为立方米.解法二:设∠ABC=θ,所围成的直三棱柱空间的体积为V立方米.由正弦定理得==,则AC=sinθ,AB=sin(﹣θ),所以V=AB•AC•sin•BE=×sinθ•sin(﹣θ)××2=sinθ•sin(﹣θ)=sinθ×(cosθ﹣sinθ)=×[sin2θ﹣(1﹣cos2θ)]=sin(2θ+)﹣.因为0<θ<,即<2θ+<,所以当且仅当2θ+=,即θ=时,V取得最大值.答:当∠ABC=时,所围成的直三棱柱空间最大,最大体积为立方米.19.(16分)已知公差不为0的等差数列{a n}的前n项和为S n,满足S3=a4+4,且a2,a6,a18成等比数列.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n;(3)设c n=,若{c n}为等差数列,求实数t的值.(1)设等差数列{a n}的公差为d(d≠0),由S3=a4+4,得3a1+3d=a1+3d+4,【解答】解:即a1=2.又a2,a6,a18成等比数列,∴(a1+5d)2=(a1+d)(a1+17d),整理得:d=2,∴a n=2+2(n﹣1)=2n;(2)b n==,∴T n=1+++…+,∴T n=++…++两式相减,整理可得T n=4﹣;(3)S n=2n+=n2+n.c=,若{c n}为等差数列,则2c2=c1+c3,即2=+,∴t=.n20.(16分)设等比数列{a n}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项.数列{b n}的前n项和S n=n2,n∈N*.(1)求数列{a n}的通项公式;(2)若不等式λb n≤S n+6对任意n∈N*恒成立,求实数λ的取值范围;(3)若c n=从数列{c n}中取出若干项(奇数项与偶数项均不少于两项),将取出的项按照某一顺序排列后构成等差数列.当等差数列的项数最大时,求所有满足条件的等差数列.【解答】解:(1)由题意得,2×3a3=8a1+a5,则6q2=8+q4,…(2分)解得q2=4或q2=2.因为q为正整数,则q=2.…(3分)又a1=2,则a n=2n,即数列{a n}的通项公式为a n=2n.…(4分)(2)当n=1时,b1=S1=1;当n≥2时,b n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,当n=1时也符合,故b n=2n﹣1.…(6分)不等式λb n≤S n+6对一切n∈N*恒成立,转化为λ≤对一切n∈N*恒成立.记T=,令2n﹣1=t(t>0),则n=,T==(t++2)≥(2+2)=(2×5+2)=3,…(8分)当且仅当t=,即t=5,n=3时等号成立,故λ≤3,即实数λ的取值范围是(﹣∞,3].…(10分)(3)由(1),(2)可知c n=,设奇数项取了s项,偶数项取了k项,其中s,k∈N*,s≥2,k≥2.因为数列{c n}的奇数项均为奇数,偶数项均为偶数,因此,若抽出的项按照某种顺序构成等差数列,则该数列中相邻的项必定一个是奇数,一个是偶数.…(12分)假设抽出的数列中有三个偶数,则每两个相邻偶数的等差中项为奇数.设抽出的三个偶数从小到大依次为2i,2j,2p(1≤i<j<p),则=2i﹣1+2j﹣1为奇数,而i≥1,j≥2,则2j﹣1为偶数,2i﹣1为奇数,所以i=1.又=2j﹣1+2p﹣1为奇数,而j≥2,p≥3,则2j﹣1与2p﹣1均为偶数,矛盾.又因为k≥2,所以k=2,即偶数只有两项,则奇数最多有3项,即s+k的最大值为5.…(14分)设此等差数列为d1,d2,d3,d4,d5,则d1,d3,d5为奇数,d2,d4为偶数,且d2=2.由d1+d3=2d2=4,得d1=1,d3=3,此数列为1,2,3,4,5.同理,若从大到小排列,此数列为5,4,3,2,1.综上,当等差数列的项数最大时,满足条件的数列为1,2,3,4,5和5,4,3,2,1.…(16分)赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC.(1)如图,当∠APB=90°时,若AC=5,PC=,求BC的长;(2)当∠APB=90°时,若AB=APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。