【精编文档】北京市石景山区2019年中考数学6月综合练习模拟试卷及答案.doc
年北京市石景山区初三数学一模试题和答案

石景山区2019年初三统一练习暨毕业考试数 学 试 卷一、选择题(本题共16分,每小题2分)第1 - 8题均有四个选项,符合题意的选项只有..一个. 1.在北京筹办2022年冬奥会期间,原首钢西十筒仓一片130000平方米的区域被改建为北京冬奥组委办公区.将130000用科学记数法表示应为 (A )41310⨯(B )51.310⨯(C )60.1310⨯(D )71.310⨯2.如图是某几何体的三视图,该几何体是 (A )三棱柱 (B )三棱锥 (C )长方体 (D )正方体3.实数a ,b ,c在数轴上对应点的位置如图所示,则正确的结论是5.如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G , 若1∠=70︒,则2∠的度数是 (A )60︒ (B )55︒ (C )50︒(D )45︒6.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用 平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为()1,1-,表示点B 的坐标为()32,,则表示其他位置的点的坐标正确的是(A ) C ()10-,(B ) D ()31-,(C ) E ()25--, (D ) F ()52,7.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是 指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是 (A )与2017年相比,2018年年末全国农村贫困人口减少了1386万人 (B )2015 ~ 2018年年末,与上一年相比,全国农村贫困发生率逐年下降 (C )2015 ~ 2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万(D )2015 ~ 2018年年末,与上一年相比,全国农村贫困发生率均下降个百分点 8.如图,在平面直角坐标系xOy 中,△AOB 可以看作是 由△OCD 经过两次图形的变化(平移、轴对称、旋转) 得到的,这个变化过程不可能...是 (A )先平移,再轴对称 (B )先轴对称,再旋转 (C )先旋转,再平移 (D )先轴对称,再平移二、填空题(本题共16分,每小题2分)9.写出一个大于2且小于3的无理数: . 10.右图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m n . (填“>”,“=”或“<”)11.一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为 . 12. 若正多边形的一个内角是135︒,则该正多边形的边数为 . 13.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,DE ∥BC .若6AE =,3EC =,8DE =, 则BC = .14.如果230m m --=,那么代数式211m m m m +⎛⎫-÷ ⎪⎝⎭的值是 .15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y 尺,可列方程组为 .16.如图,AB 是⊙O 的一条弦,P 是⊙O 上一动点 (不与点A ,B 重合),C ,D 分别是AB ,BP 的中点.若AB = 4,∠APB = 45°,则CD 长的最大值为 .三、解答题(本题共68分,第17 - 22题,每小题5分,第23 - 26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 及直线l 外一点A . 求作:直线AD ,使得AD ∥l .作法:如图2,①在直线l 上任取一点B ,连接AB ; ②以点B 为圆心,AB 长为半径画弧, 交直线l 于点C ;③分别以点A ,C 为圆心,AB 长为半径 画弧,两弧交于点D (不与点B 重合); ④作直线AD .所以直线AD 就是所求作的直线. 根据小立设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.(说明:括号里填推理的依据)证明:连接CD .∵AD=CD=BC=AB ,∴四边形ABCD 是 ( ).∴AD ∥l ( ).18.计算:()02cos3023π︒++-.19.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥. 20.关于x 的一元二次方程()2320x m x m -+++=. (1)求证:方程总有两个实数根;图1图2(2)若方程的两个实数根都是正整数,求m的最小值.21.如图,在△ABC 中,90ACB ∠=︒,D 为AB 边上一点,连接CD ,E 为CD 中点,连接BE 并延长至点F ,使得EF =EB ,连接DF 交AC 于点G ,连接CF . (1)求证:四边形DBCF 是平行四边形; (2)若30A ∠=︒,4BC =,6CF =,求CD 的长.22.如图,AB 是⊙O 的直径,过⊙O 上一点C 作⊙O 的切线CD ,过点B 作BE ⊥CD于点E ,延长EB 交⊙O 于点F ,连接AC ,AF . (1)求证:12CE AF =; (2)连接BC ,若⊙O 的半径为5,tan 2CAF ∠=,求BC 的长.23.如图,在平面直角坐标系xOy 中,函数()0ky x x=<的图象经过点()16A -,, 直线2y mx =-与x 轴交于点()10B -,. (1)求k ,m 的值;(2)过第二象限的点P ()2n n -,作平行于x 轴的直线,交直线2y mx =-于点C ,交 函数()0ky x x=<的图象于点D . ①当1=-n 时,判断线段PD 与PC 的数量关系,并说明理由; ②若2PD PC ≥,结合函数的图象,直接写出n 的取值范围.24.如图,Q是»AB上一定点,P是弦AB上一动点,C为AP中点,连接CQ,过点P作PD∥CQ交»AB于点D,连接AD,CD.AB cm,设A,P两点间的距离为x cm,C,D两点间的距离为y cm.已知8(当点P与点A重合时,令y的值为)小荣根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小荣的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,得到了与x的几组对应值:(2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;⊥时,AP的长度约为 cm.(3)结合函数图象,解决问题:当DA DP25.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了 整理、描述和分析.下面给出了部分信息.a .甲、乙两校40名学生成绩的频数分布统计表如下:成绩80分及以上为优秀,70 ~ 79分为良好,60 ~ 69分为合格,60分以 下为不合格)b .甲校成绩在70≤x <80这一组的是:70707071727373737475767778c 根据以上信息,回答下列问题: (1)写出表中n 的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是 校的学生(填“甲”或“乙”),理由是 ; (3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.26.在平面直角坐标系xOy 中,直线1y kx =+(0)k ≠经过点(2,3)A ,与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点(,2)C m . (1)求m 的值;(2)求抛物线的顶点坐标;(3)11(,)N x y 是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22(,)P x y ,33(,)Q x y (点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围.27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC <,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.28. 在平面直角坐标系xOy 中,正方形ABCD 的顶点分别为(0,1)A ,(1,0)B -,(0,1)C -,(1,0)D .对于图形M ,给出如下定义:P 为图形M 上任意一点,Q 为正方形ABCD边上任意一点,如果P ,Q 两点间的距离有最大值,那么称这个最大值为图形M 的 “正方距”,记作d (M ). (1)已知点(0,4)E ,①直接写出()d E 点的值;②直线4y kx =+(0)k ≠与x 轴交于点F ,当()d EF 线段取最小值时,求k 的取 值范围;(2)⊙T 的圆心为(,3)T t ,半径为1.若()6d T <e ,直接写出t 的取值范围.石景山区2019年初三统一练习暨毕业考试数学试卷答案及评分参考阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
2019年北京石景山区数学一模试卷

2019年北京市石景山区中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在北京筹办2022年冬奥会期间,原首钢西十筒仓一片130000平方米的区域被改建为北京冬奥组委办公区.将130000用科学记数法表示应为()A.13×104B.1.3×105C.0.13×106D.1.3×1072.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体3.实数a,b,c在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣2B.|b|>1C.a+c>0D.abc>04.下列图案中,是中心对称图形的为()A.B.C.D.5.如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,EG平分∠BEF,交CD于点G,若∠1=70°,则∠2的度数是()A.60°B.55°C.50°D.45°6.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示点A 的坐标为(1,﹣1),表示点B的坐标为(3,2),则表示其他位置的点的坐标正确的是()A.C(﹣1,0)B.D(﹣3,1)C.E(﹣2,﹣5)D.F(5,2)7.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理的是()A.与2017年相比,2018年年末全国农村贫困人口减少了1386万人B.2015~2018年年末,与上一年相比,全国农村贫困发生率逐年下降C.2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万D.2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点8.如图,在平面直角坐标系xOy中,△AOB可以看作是由△OCD经过两次图形的变化(平移、轴对称、旋转)得到的,这个变化过程不可能是()A.先平移,再轴对称B.先轴对称,再旋转C.先旋转,再平移D.先轴对称,再平移二、填空题(本题共16分,每小题2分)9.请你写出一个大于2小于3的无理数是.10.如图所示的网格是正方形网格,点P到射线OA的距离为m,点P到射线OB的距离为n,则m n.(填“>”,“=”或“<”)11.一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为.12.正多边形的一个内角为135°,则该正多边形的边数为.13.如图,在△ABC中,D,E分别是AB,AC上的点,DE∥BC.若AE=6,EC=3,DE=8,则BC=.14.如果m2﹣m﹣3=0,那么代数式的值是.15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x尺,竿长y尺,可列方程组为.16.如图,AB是⊙O的一条弦,P是⊙O上一动点(不与点A,B重合),C,D分别是AB,BP的中点.若AB=4,∠APB=45°,则CD长的最大值为.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小立设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=BC=AB,∴四边形ABCD是().∴AD∥l().18.(5分)计算:.19.(5分)解不等式组:20.(5分)关于x的一元二次方程x2﹣(m+3)x+m+2=0.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m的最小值.21.(5分)如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF.(1)求证:四边形DBCF是平行四边形;(2)若∠A=30°,BC=4,CF=6,求CD的长.22.(5分)如图,AB是⊙O的直径,过⊙O上一点C作⊙O的切线CD,过点B作BE⊥CD于点E,延长EB交⊙O于点F,连接AC,AF.(1)求证:CE=AF;(2)连接BC,若⊙O的半径为5,tan∠CAF=2,求BC的长.23.(6分)如图,在平面直角坐标系xOy中,函数的图象经过点A(﹣1,6),直线y=mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值;(2)过第二象限的点P(n,﹣2n)作平行于x轴的直线,交直线y=mx﹣2于点C,交函数的图象于点D.①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由;②若PD≥2PC,结合函数的图象,直接写出n的取值范围.24.(6分)如图,Q是上一定点,P是弦AB上一动点,C为AP中点,连接CQ,过点P作PD ∥CQ交于点D,连接AD,CD.已知AB=8cm,设A,P两点间的距离为xcm,C,D两点间的距离为ycm.(当点P与点A重合时,令y的值为1.30)小荣根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小荣的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值:x/cm012345678y/cm 1.30 1.79 1.74 1.66 1.63 1.69 2.08 2.39(2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合函数图象,解决问题:当DA⊥DP时,AP的长度约为cm.25.(6分)为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲、乙两校40名学生成绩的频数分布统计表如下:50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100成绩x学校甲41113102乙6315142(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)b.甲校成绩在70≤x<80这一组的是:70 70 70 71 72 73 73 73 74 75 76 77 78c.甲、乙两校成绩的平均分、中位数、众数如下:学校平均分中位数众数甲74.2n85乙73.57684根据以上信息,回答下列问题:(1)写出表中n的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.26.(6分)在平面直角坐标系xOy中,直线y=kx+1(k≠0)经过点A(2,3),与y轴交于点B,与抛物线y=ax2+bx+a的对称轴交于点C(m,2).(1)求m的值;(2)求抛物线的顶点坐标;(3)N(x1,y1)是线段AB上一动点,过点N作垂直于y轴的直线与抛物线交于点P(x2,y2),Q(x3,y3)(点P在点Q的左侧).若x2<x1<x3恒成立,结合函数的图象,求a的取值范围.27.(7分)如图,在等边△ABC中,D为边AC的延长线上一点(CD<AC),平移线段BC,使点C移动到点D,得到线段ED,M为ED的中点,过点M作ED的垂线,交BC于点F,交AC 于点G.(1)依题意补全图形;(2)求证:AG=CD;(3)连接DF并延长交AB于点H,用等式表示线段AH与CG的数量关系,并证明.2019年北京石景山区数学一模试卷28.(7分)在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,1),B(﹣1,0),C (0,﹣1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD 边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).(1)已知点E(0,4),①直接写出d(点E)的值;②直线y=kx+4(k≠0)与x轴交于点F,当d(线段EF)取最小值时,求k的取值范围;(2)⊙T的圆心为T(t,3),半径为1.若d(⊙T)<6,直接写出t的取值范围.11 / 11。
2019年北京市石景山区中考数学一模试卷(解析版)

2019年北京市石景山区中考数学一模试卷一、选择题(本大题共8小题,共16.0分)1.在北京筹办2022年冬奥会期间,原首钢西十筒仓一片130000平方米的区域被改建为北京冬奥组委办公区.将130000用科学记数法表示应为()A. B. C. D.2.如图是某几何体的三视图,该几何体是()A. 三棱柱B. 三棱锥C. 长方体D. 正方体3.实数a,b,c在数轴上对应点的位置如图所示,则正确的结论是()A. B. C. D.4.下列图案中,是中心对称图形的为()A. B. C. D.5.如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,EG平分∠BEF,交CD于点G,若∠1=70°,则∠2的度数是()A.B.C.D.6.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y轴的正方向,表示点A的坐标为(1,-1),表示点B的坐标为(3,2),则表示其他位置的点的坐标正确的是()A. B. C. D.7.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理的是()A. 与2017年相比,2018年年末全国农村贫困人口减少了1386万人B. ~年年末,与上一年相比,全国农村贫困发生率逐年下降C. ~年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万D. ~年年末,与上一年相比,全国农村贫困发生率均下降个百分点8.如图,在平面直角坐标系xOy中,△AOB可以看作是由△OCD经过两次图形的变化(平移、轴对称、旋转)得到的,这个变化过程不可能是()A. 先平移,再轴对称B. 先轴对称,再旋转C. 先旋转,再平移D. 先轴对称,再平移二、填空题(本大题共8小题,共16.0分)9.请你写出一个大于2小于3的无理数是______.10.如图所示的网格是正方形网格,点P到射线OA的距离为m,点P到射线OB的距离为n,则m______n.(填“>”,“=”或“<”)11.一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为______.12.正多边形的一个内角为135°,则该正多边形的边数为______.13.如图,在△ABC中,D,E分别是AB,AC上的点,DE∥BC.若AE=6,EC=3,DE=8,则BC=______.14.如果m2-m-3=0,那么代数式的值是______.15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x尺,竿长y尺,可列方程组为______.16.如图,AB是⊙O的一条弦,P是⊙O上一动点(不与点A,B重合),C,D分别是AB,BP的中点.若AB=4,∠APB=45°,则CD长的最大值为______.三、解答题(本大题共12小题,共68.0分)17.下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小立设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=BC=AB,∴四边形ABCD是______(______).∴AD∥l(______).18.计算:.<19.解不等式组:20.关于x的一元二次方程x2-(m+3)x+m+2=0.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m的最小值.21.如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF.(1)求证:四边形DBCF是平行四边形;(2)若∠A=30°,BC=4,CF=6,求CD的长.22.如图,AB是⊙O的直径,过⊙O上一点C作⊙O的切线CD,过点B作BE⊥CD于点E,延长EB交⊙O于点F,连接AC,AF.(1)求证:CE=AF;(2)连接BC,若⊙O的半径为5,tan∠CAF=2,求BC的长.23.如图,在平面直角坐标系xOy中,函数<的图象经过点A(-1,6),直线y=mx-2与x轴交于点B(-1,0).(1)求k,m的值;(2)过第二象限的点P(n,-2n)作平行于x轴的直线,交直线y=mx-2于点C,交函数<的图象于点D.①当n=-1时,判断线段PD与PC的数量关系,并说明理由;②若PD≥2PC,结合函数的图象,直接写出n的取值范围.24.如图,Q是上一定点,P是弦AB上一动点,C为AP中点,连接CQ,过点P作PD∥CQ交于点D,连接AD,CD.已知AB=8cm,设A,P两点间的距离为xcm,C,D两点间的距离为ycm.(当点P与点A重合时,令y的值为1.30)小荣根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小荣的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值:函数的图象;(3)结合函数图象,解决问题:当DA⊥DP时,AP的长度约为______cm.25.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.(说明:成绩分及以上为优秀,~分为良好,~分为合格,分以下为不合格)b.甲校成绩在70≤x<80这一组的是:70 70 70 71 72 73 73 73 74 75 76 77 78根据以上信息,回答下列问题:(1)写出表中n的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是______校的学生(填“甲”或“乙”),理由是______;(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.26.在平面直角坐标系xOy中,直线y=kx+1(k≠0)经过点A(2,3),与y轴交于点B,与抛物线y=ax2+bx+a的对称轴交于点C(m,2).(1)求m的值;(2)求抛物线的顶点坐标;(3)N(x1,y1)是线段AB上一动点,过点N作垂直于y轴的直线与抛物线交于点P(x2,y2),Q(x3,y3)(点P在点Q的左侧).若x2<x1<x3恒成立,结合函数的图象,求a的取值范围.27.如图,在等边△ABC中,D为边AC的延长线上一点(CD<AC),平移线段BC,使点C移动到点D,得到线段ED,M为ED的中点,过点M作ED的垂线,交BC于点F,交AC于点G.(1)依题意补全图形;(2)求证:AG=CD;(3)连接DF并延长交AB于点H,用等式表示线段AH与CG的数量关系,并证明.28.在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).(1)已知点E(0,4),①直接写出d(点E)的值;②直线y=kx+4(k≠0)与x轴交于点F,当d(线段EF)取最小值时,求k的取值范围;(2)⊙T的圆心为T(t,3),半径为1.若d(⊙T)<6,直接写出t的取值范围.答案和解析1.【答案】B【解析】解:将130000用科学记数法可表示为1.3×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】A【解析】解:该几何体的左视图为矩形,主视图亦为矩形,俯视图是一个三角形,则可得出该几何体为三棱柱.故选:A.该几何体的主视图与左视图均为矩形,俯视图为三角形,易得出该几何体的形状.主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.3.【答案】C【解析】解:由图可知:-3<a<-2,0<b<1,3<c<4;则:a<-2,A错误;|b|<1,B错误;a+c>0,C正确;abc<0,D错误;故选:C.根据实数在数轴上的位置判断a,b,c正负性和大小即可解题.本题主要考查实数与数轴,关键是利用数轴判断字母的正负性,绝对值的大小.4.【答案】C【解析】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:C.根据中心对称图形的概念求解.此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】B【解析】解:∵EG平分∠BEF,∴∠BEG=∠GEF,∵AB∥CD,∴∠BEG=∠2,∴∠2=∠GEF,∵AB∥CD,∴∠1+∠2+∠GEF=180°,∴∠2=(180°-70°)=55°.故选:B.根据平行线的性质和角平分线定义得到∠2=∠GEF,再根据平行线的性质求出∠2即可.本题考查了平行线的性质的应用,解此题的关键是求出∠2=∠GEF,解题时注意:两直线平行,同旁内角互补.6.【答案】B【解析】解:根据点A的坐标为(1,-1),表示点B的坐标为(3,2),可得:C(0,0),D(-3,1),E(-5,-2),F(5,-3),故选:B.根据平面直角坐标系,找出相应的位置,然后写出坐标即可.此题考查坐标确定位置,本题解题的关键就是确定坐标原点和x,y轴的位置及方向.7.【答案】D【解析】解:A、3046-1660=1386,故本选项推断合理;B、根据2014~2018年年末全国农村贫困发生率统计图,可得2015~2018年年末,与上一年相比,全国农村贫困发生率逐年下降,故本选项推断合理;C、7017-5575=1442>1000,5575-4335=1240>1000,4335-3046=1289>1000,3046-1660=1386>1000,故本选项推断合理;D、根据2014~2018年年末全国农村贫困发生率统计图,可得2015~2016年年末全国农村贫困发生率下降5.7-4.5=1.2个百分点,故本选项推断不合理;故选:D.用2017年年末全国农村贫困人口数减去2018年年末全国农村贫困人口数,即可判断A;根据2014~2018年年末全国农村贫困发生率统计图即可判断B、D;根据2014~2018年年末全国农村贫困人口率统计图,分别计算2015~2018年年末,与上一年相比,全国农村贫困人口的减少量,即可判断C.本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.8.【答案】C【解析】解:将△ABO沿y轴向左翻折,再沿y轴向下平移3个单位长度得到△OCD,或先沿y轴向下平移3个单位长度,再沿y轴向左翻折得到△OCD,或先将△ABO沿x轴向下翻折,再旋转得出△OCD故选:C.根据轴对称的性质,平移的性质即可得到由△ABO得到△OCD的过程.本题考查了坐标与图形变化-轴对称,坐标与图形变化-平移,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线.9.【答案】等【解析】解:∵2=,3=,∴写出一个大于2小于3的无理数是等.故答案为等.本题答案不唯一.根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.此题考查了无理数大小的估算,熟悉算术平方根的性质.10.【答案】>【解析】解:设OP 经过格点C,∵点C到OA的距离为为,点C到OB的距离为1,过P作PG⊥OA于G,过P作PH⊥OB于H,∴CE∥PG,CF∥PH,∴==,∴===,∴m>n,故答案为:>.根据勾股定理和平行线分线段成比例定理即可得到结论.本题考查了勾股定理,解题的关键是利用勾股定理解答.11.【答案】【解析】解:∵一个不透明的盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别,∴从中随机摸出一个小球,恰好是红球的概率为:=.故答案为:.由一个不透明的盒子中装有3个红球、5个黄球和2个白球,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.12.【答案】8【解析】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数n==8,∴该正多边形为正八边形,故答案为8.根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.本题主要考查多边形内角与外角的知识点,解答本题的关键是知道多边形的外角之和为360°,此题难度不大.13.【答案】12【解析】解:∵DE∥BC∴△ADE∽△ABC∴=而AE=6,EC=3,DE=8则=∴BC=12故答案为12.由DE∥BC则可以得出△ADE∽△ABC,于是可得=,根据已知数据即可求出BC的长.本题考查的是相似三角形的判定与性质,平行、比例、相似三者之间的相互推出关系是解题中常用的思路.14.【答案】3【解析】解:原式=•=m(m-1)当m2-m=3时,原式=3,故答案为:3根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算,本题属于基础题型.15.【答案】【解析】解:设绳索长x尺,竿长y尺,根据题意得:.故答案为:.设绳索长x尺,竿长y尺,根据“用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x,y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.16.【答案】2【解析】解:∵C,D分别是AB,BP的中点∴CD=AP,当AP为直径时,CD长最大,∵AP为直径,∴∠ABP=90°,且∠APB=45°,AB=4,∴AP=4∴CD长的最大值为2故答案为2由三角形中位线定理可得CD=AP,即当AP为直径时,CD长最大,由直角三角形的性质可求AP的长,即可求解.本题考查了圆周角定理,三角形中位线定理,熟练运用圆周角定理是本题的关键.17.【答案】菱形四条边都相等的四边形是菱形菱形的对边平行【解析】解:(1)补全的图形如图所示:(2)证明:连接CD.∵AD=CD=BC=AB,∴四边形ABCD是菱形(四条边都相等的四边形是菱形).∴AD∥l(菱形的对边平行)故答案为:菱形,四条边都相等的四边形是菱形,菱形的对边平行.(1)根据要求作图即可得;(2)由菱形的判定及其性质求解可得.本题主要考查作图-复杂作图,解题的关键是掌握菱形的判定与性质.18.【答案】解:原式==.【解析】先分别计算三角函数值、零指数幂、绝对值,然后算加减法.本题考查了实数的运算,熟练掌握三角函数值、零指数幂、绝对值的运算是解题的关键.19.【答案】解:解不等式x-1<3(x-3),得x>4.解不等式,得x≥5.∴原不等式组的解集为x≥5.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】(1)证明:依题意,得△=[-(m+3)]2-4(m+2)=m2+6m+9-4m-8=m+1)2.∵(m+1)2≥0,∴△≥0.∴方程总有两个实数根.(2)解:解方程,得x1=1,x2=m+2,∵方程的两个实数根都是正整数,∴m+2≥1.∴m≥-1.∴m的最小值为-1.【解析】(1)先根据方程有两个相等的实数根列出关于m的一元二次方程,求出m的值即可;(2)根据题意得到x=1和x=m+2是原方程的根,根据方程两个根均为正整数,可求m的最小值.本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.21.【答案】证明:(1)∵点E为CD中点,∴CE=DE.∵EF=BE,∴四边形DBCF是平行四边形.(2)∵四边形DBCF是平行四边形,∴CF∥AB,DF∥BC.∴∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°.在Rt△FCG中,CF=6,∴,.∵DF=BC=4,∴DG=1.在Rt△DCG中,CD==2【解析】(1)由对角线互相平分的四边形是平行四边形可得结论;(2)由平行四边形的性质可得CF∥AB,DF∥BC,可得∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°,由直角三角形的性质可得FG,CG,GD的长,由勾股定理可求CD的长.本题考查了平行四边形的判定和性质,直角三角形的性质,勾股定理,利用直角三角形的性质求线段CG的长度是本题的关键.22.【答案】(1)证明:连接CO并延长交AF于点G,如下图∵CD是⊙O的切线,∴∠ECO=90°.∵AB是⊙O的直径,∴∠AFB=90°.∵BE⊥CD,∴∠CEF=90°.∴四边形CEFG是矩形.∴GF=CE,∠CGF=90°.∴CG⊥AF.∴.∴.即得证.(2)解:连接BC,如下图∵CG⊥AF,∴.∴∠CBA=∠CAF.∴tan∠CBA=tan∠CAF=2.∵AB是⊙O的直径,∴∠ACB=90°.在Rt△CBA中,设BC=x,AC=2x,则.∴x=2即BC的长为2.【解析】(1)连接CO并延长交AF于点G,可得四边形CEFG是矩形,则GF=CE,再由垂径定理可知GF=AF,于是可证CE=AF;(2)可以通过圆周角定理得∠CBA=∠CAF,从而在直角三角形ABC中可解出BC的长.本题考查的是圆周角定理与垂径定理,在解决圆的相关问题中,这两个定理是基本定理,应用非常多,灵活运用是解题的关键.23.【答案】解:(1)∵函数<的图象经过点A(-1,6),∴k=-6.∵直线y=mx-2与x轴交于点B(-1,0),∴m=-2.(2)①判断:PD=2PC.理由如下:当n=-1时,点P的坐标为(-1,2),∵y=-2x-2交于于点C,且点P(-1,2)作平行于x轴的直线,∴点C的坐标为(-2,2),∵函数<的图象于点D,且点P(-1,2)作平行于x轴的直线,点D的坐标为(-3,2).∴PC=1,PD=2.∴PD=2PC.②当PD=2PC时,y=2,若PD≥2PC,0≤y≤2,即0≤-2n≤2解得-1≤n<0.【解析】(1)把A(-1,6)代入函数,即可求出k;把点B(-1,0)代入直线y=mx-2,即可求出m;(2)①求出PC和PD,即可判断PC和PD之间的关系;②求出P点y值的取值范围,即可n的取值范围.本题主要考查了反比例函数上点的坐标特点,熟悉反比例函数图象上点的特点是解答此题的关键.24.【答案】3.31【解析】解:(1)通过取点、画图、测量可得(2)画出该函数的图象如下:(3)∵DA⊥DP,CQ∥DP,∴CQ⊥AD,∵AC=PC=AP=x,∴DC=AC,即y=x,在函数图象中作出y=x(x≥0),可得两函数图象交点的横坐标约为3.31,即AP=3.31,故答案为:3.31.(1)通过取点、画图、测量可得;(2)依据表格中的数据描点、连线即可得;(3)由DA⊥DP,CQ∥DP知CQ⊥AD,结合AC=PC=AP=x得DC=AC,即y=x,据此在函数图象中作出y=x(x≥0),可得两函数图象交点的横坐标即为所求.本题是圆的综合问题,解题的关键是理解题意,学会利用数形结合的思想思考问题,属于中考常考题型.25.【答案】甲甲这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分,【解析】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==72.5;(2)甲这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分,所以该学生在甲校排在前20名,在乙校排在后20名,而这名学生在所属学校排在前20名,说明这名学生是甲校的学生.故答案为:甲,甲这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分.(3)在样本中,乙校成绩优秀的学生人数为14+2=16.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为.(1)根据中位数的定义求解可得;(2)根据甲这名学生的成绩为74分,大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.本题主要考查频数分布表、中位数及样本估计总体,解题的关键是根据表格得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.26.【答案】解:(1)∵y=kx+1(k≠0)经过点A(2,3),∴2k+1=3,解得k=1.∵直线y=x+1与抛物线y=ax2+bx+a的对称轴交于点C(m,2),∴m=1.(2)∵抛物线y=ax2+bx+a的对称轴为x=1,∴ ,即b=-2a.∴y=ax2-2ax+a=a(x-1)2.∴抛物线的顶点坐标为(1,0).(3)当a>0时,如图,若抛物线过点B(0,1),则a=1.结合函数图象可得0<a<1.当a<0时,不符合题意.综上所述,a的取值范围是0<a<1.【解析】(1)将点A坐标代入y=kx+1求出k=1,再根据直线过点C即可求得m的值;(2)由(1)得出抛物线对称轴为x=1,据此知b=-2a,代入得y=ax2-2ax+a=a(x-1)2,从而得出答案;(3)当a>0时,画出图形.若抛物线过点B(0,1)知a=1.结合函数图象可得0<a<1.a<0时显然不成立.本题是二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、二次函数的图象和性质及直线与抛物线相交的问题.27.【答案】解:(1)补全的图形如图1所示.(2)证明:∵△ABC是等边三角形,∴AB=BC=CA.∠ABC=∠BCA=∠CAB=60°.由平移可知ED∥BC,ED=BC.∴∠ADE=∠ACB=60°.∵∠GMD=90°,如图1,∴DG=2DM=DE.∵DE=BC=AC,∴DG=AC.∴AG=CD.(3)线段AH与CG的数量关系:AH=CG.证明:如图2,连接BE,EF.∵ED=BC,ED∥BC,∴四边形BEDC是平行四边形.∴BE=CD,∠CBE=∠ADE=∠ABC.∵GM垂直平分ED,∴EF=DF.∴∠DEF=∠EDF.∵ED∥BC,∴∠BFE=∠DEF,∠BFH=∠EDF.∴∠BFE=∠BFH.∵BF=BF,∴△BEF≌△BHF(ASA).∴BE=BH=CD=AG.∵AB=AC,∴AH=CG.【解析】(1)补全的图形如图1所示;(2)根据直角三角形30度角的性质得:DG=2DM=DE,得DG=AC,可得结论;(3)作辅助线,证明四边形BEDC是平行四边形和△BEF≌△BHF(ASA),可得结论.本题考查平移变换、等边三角形的性质、三角形全等的性质和判定、平行四边形的判定和性质等知识,解题的关键灵活应用所学知识解决问题,正确作出辅助线构造全等三角形是解题的关键,属于中考常考题型.28.【答案】解:(1)①∵正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0),点E(0,4)在y轴上,∴点E到正方形ABCD边上C点间的距离最大值,EC=5,即d(点E)的值为5;②如图1所示:∵d(点E)=5,∴d(线段EF)的最小值是5,∴符合题意的点F满足d(点F)≤5,当d(点F)=5时,BF1=DF2=5,∴点F1的坐标为(4,0),点F2的坐标为(-4,0),将点F1的坐标代入y=kx+4得:0=4k+4,解得:k=-1,将点F2的坐标代入y=kx+4得:0=-4k+4,解得:k=1,∴k=-1或k=1.∴当d(线段EF)取最小值时,EF1直线y=kx+4中k≤-1,EF2直线y=kx+4中k≥1,∴当d(线段EF)取最小值时,k的取值范围为:k≤-1或k≥1;(2)⊙T的圆心为T(t,3),半径为1,当d(⊙T)=6时,如图2所示:CM=CN=6,OH=3,∴T1C=TC=5,CH=OC+OH=1+3=4,∴T1H===3,TH===3,∴d(⊙T)<6,t的取值范围为:-3<t<3.【解析】(1)①由题意得点E到正方形ABCD边上C点间的距离最大值,EC=5,即d (点E)的值为5②由d(点E)=5得出d(线段EF)的最小值是5,得出符合题意的点F满足d(点F)≤5,求出当d(点F)=5时,BF1=DF2=5,得出点F1的坐标为(4,0),点F2的坐标为(-4,0),代入y=kx+4求出k的值,再结合函数图象即可得出结果;(2)⊙T的圆心为T(t,3),半径为1,当d(⊙T)=6时,CM=CN=6,OH=3,得出T1C=TC=5,CH=OC+OH=4,由勾股定理求出T1H==3,TH==3,即可得出结果.本题是圆的综合题目,考查了正方形的性质、勾股定理、新定义、一次函数解析式的求法以及圆的有关知识;本题综合性强,理解新定义是解题的关键.。
2019石景山区初三数学一模答案定稿

石景山区2019年初三统一练习暨毕业考试数学试卷答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可。
若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数。
11.()()22a m n m n +-;12.12;13.12y y <;14.如B C ∠=∠或AC AB =等; 15.预估理由需包含统计图提供的信息,且支撑预估的数据.如:8万,预估理由是下降趋势变缓.16.角平分线上的点到角两边的距离相等;若圆心到直线的距离等于半径,则这条直线为圆的切线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式11242+-⨯+ …………………………4分 =4. ………………………………………………5分18.解:原式=11()mn m n -⋅=11mn mn m n ⋅-⋅=n m -. ……………………3分 (或原式=n mmn mn-⋅=n m -.………………………………………3分)∵m n -=,∴原式=n m -= ……………………………………………5分19.解:解不等式()311x x +>-,得2x >-.………………………………2分解不等式2323x -+≥,得32x ≤. …………………………………3分 ∴ 原不等式组的解集为 322x -<≤.………………………………4分∴ 原不等式组的整数解为-1,0,1. ………………………………5分20.证明:∵Rt △ABC 中,︒=∠90ACB ,CD 是AB 边上的中线,∴12CD AB DB ==.…………………1分 ∴B DCB ∠=∠.………………………2分∵AB DE ⊥于点D ,∴90A AED ∠+∠=︒. ………………3分 ∵90A B ∠+∠=︒,∴B AED ∠=∠.………………………4分 ∴AED DCB ∠=∠. …………………5分21.解:(1)由题意:0∆> , ………………………………………………1分 即:()9410k -->. 解得 54k >-. …………………………………………………2分 (2)若k 为负整数,则1k =-, ……………………………………3分原方程为2320x x -+=,解得121,2x x ==.………………………………………………5分 22.解: 设购进白色文化衫x 件,黑色文化衫y 件.…………………………1分 根据题意,得200,14173040.x y x y +=⎧⎨+=⎩……………………………………………………3分 解得120,80.x y =⎧⎨=⎩…………………………………………4分答: 购进白色文化衫120件,黑色文化衫80件. ………………………5分 23.(1)证明:∵AC //BD ,AB //ED ,∴四边形ABDE 是平行四边形. ……………………………1分 ∵AD 平分CAB ∠,∴BAD CAD ∠=∠.∵AC //BD ,∴ADB CAD ∠=∠.∴ADB BAD ∠=∠. ∴BD AB =.∴四边形ABDE 是菱形. ……………………………………2分E DCA(2)解: ∵︒=∠90ABC ,∴︒=∠+∠90ABG GBH .∵BE AD ⊥, ∴︒=∠+∠90ABG GAB . ∴GBH GAB ∠=∠………………………3分 ∵87cos =∠GBH ,∴87cos =∠GAB . ∴78AB AG AH AB ==. ∵四边形ABDE 是菱形,14=BD , ∴14==BD AB∴16=AH ,449=AG . ……………………………………………4分 ∴415=-=AG AH GH .……………………………………………5分 24.(1)733 …………………………………………………………………………1分 (2)例如:统计表如下:…………………………………………………………………………………5分 25.(1)证明:连接OD ,AD , ∵AC 为⊙O 的直径, ∴∠ADC =90°.又∵AB =AC ,∴CD =DB .又CO =AO ,∴OD ∥AB . ∵FD 是⊙O 的切线,∴OD ⊥DF . ∴FE ⊥AB .(2)解:∵30C ∠=︒,∴60AOD ∠=︒在Rt △ODF 中,90ODF ∠=︒, ∴30F ∠=︒.∴12OA OD OF ==在Rt △AEF 中,90AEF ∠=︒,∵EF =AE = …………………………………………3分∵OD AB ∥,OA OC AF ==∴2OD AE ==2AB OD ==…………………………………………………4分∴EB = …………………………………………………………5分26.解:2a <-; ……………………………………………………………………2分解决问题:将原方程转化为a x x =+-342·设函数3421+-=x x y ,a y =1,………………………………………3分 记函数1y 在40<<x 内的图象为G , 于是原问题转化为2y a =与G 有两个 交点时a 的取值范围,结合图象可知3<.……………………………………………5分27.解:(1)∵抛物线C :142++=x mx y 经过点()65-,A ∴120256+-=m ∴1=m ……………………………………………1分 ∴142++=x x y∴()322-+=x y∴抛物线的顶点坐标是()3,2--.………………………………………3分 (2)∵直线1y x =-+与直线3y x =+相交于点()2,1-∴两直线的对称轴为直线1x =- .……………………………………4分∵直线1y x =-+与直线3y x =+关于抛物线C :142++=x mx y 的对称轴对称 ∴124-=-m∴2=m .………………………………………………5分 (3) 43≤<m . …………………………………………………………7分28.(1)补全图形,如图1所示.………………………………………………………1分(2)ABF ∠与CBE ∠的数量关系:45ABF CBE ∠+∠=︒. ………………2分证明:连接BF ,EF ,延长DC 到G ,使得AF CG =,连接BG .…3分∵四边形ABCD 为正方形,∴AB BC =,90A BCD ABC ∠=∠=∠=︒∴△BAF ≌△BCG .∴BG BF =,ABF CBG ∠=∠. ∵EF CE AF =+,∴EF GE =. …………………………………………………………4分∴△BEF ≌△BEG .ME A C D B∴∠FBE =∠CBE ABF MBE ∠+∠=.∴45ABF CBE ∠+∠=︒. …………………………………………………5分 (3)求解思路如下:a .设正方形的边长为3a ,AF 为x ,则EF x a =+,3DF a x =-;b .在Rt △EFD 中,由222EF DF DE =+,可得()()()22232x a a x a +=-+从而得到x 与a 的关系23x a =; c .根据cos ∠FED 2DE aEF x a==+,可求得结果.…………………………7分 29.解:(1)4,3. ……………………………………………………………………2分(2)设点(),26D x x -+.①当0x ≤时,4,26x y l x l x =-=-+. ∵xy l l =,∴624+-=-x x , ∴02>=x (舍去).②当04x <<时,4,26x y l l x ==-+. ∵x y l l =, ∴624+-=x , ∴1=x 或5=x (舍去). ∴()1,4D .③当4x ≥时,,26x y l x l x ==-. ∵xy l l =,∴62-=x x , ∴6=x . ∴()6,6D -.综上满足条件的D 点的坐标为()1,4或()6,6-.……………………6分(3) 102a ≤<. ……………………………………………………………8分。
2019石景山区初三数学一模参考答案

石景山区2019年初三统一练习暨毕业考试数学试卷答案及评分参考一、选择题(本题共16分,每小题2分)9.答案不唯一,10.>11.31012.813.12 14.315.552x y x y =+⎧⎪⎨=-⎪⎩16.三、解答题(本题共68分,第17 - 22题,每小题5分,第23 - 26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.解:(1)补全的图形如图所示:(2)菱形;四条边都相等的四边形是菱形; 菱形的对边平行. 18.解:原式=213+ 2=.19.解:解不等式13(3)x x -<-,得4x >.解不等式52x x +≥,得5x ≥.∴原不等式组的解集为5x ≥.20.(1)证明:依题意,得()()2342m m ∆=⎡-+⎤-+⎣⎦26948m m m =++--()21m =+. ∵()210m +≥,∴0∆≥.∴方程总有两个实数根.(2)解:解方程,得1212x x m ==+,,∵方程的两个实数根都是正整数, ∴21m +≥. ∴1m -≥. ∴m 的最小值为1-.21.(1)证明:∵点E 为CD 中点,∴CE =DE .∵EF =BE ,∴四边形DBCF 是平行四边形.(2)解:∵四边形DBCF 是平行四边形,∴CF ∥AB ,DF ∥BC .∴30FCG A ∠=∠=︒,90CGF CGD ACB ∠=∠=∠=︒.………………2分………………5分………………4分………………4分 ………………5分………………………………2分 ………………………………3分 ………………………………4分………………………………2分 ………………………………4分………………………………5分…4分 在Rt △FCG 中,CF =6, ∴132FG CF ==CG = ∵4DF BC ==, ∴1DG =. 在Rt △DCG 中,由勾股定理,得CD =22.(1)证明:连接CO 并延长交AF 于点G .∵CD 是⊙O 的切线,∴90ECO ∠=︒.∵AB 是⊙O 的直径, ∴90AFB ∠=︒.∵BE CD ⊥, ∴90CEF ∠=︒. ∴四边形CEFG 是矩形.∴GF CE =,90CGF ∠=︒.∴CG AF ⊥. ∴12GF AF =.∴12CE AF =. (2)解:∵CG AF ⊥, ∴CF CA =.∴CBA CAF ∠=∠. ∴tan tan 2CBA CAF ∠=∠=.∵AB 是⊙O 的直径,∴90ACB ∠=︒. 在Rt △CBA 中,设BC x =,2AC x =,则=52AB =⨯. ∴BC x == 23.解:(1)∵函数()0ky x x=<的图象G 经过点A (-1,6),∴∵直线2y mx =-与x 轴交于点B (-1,0),∴2m =-.… 2分 (2)①判断:PD =2PC .理由如下: ……… 3分 当1n =-时,点P 的坐标为(-1,2),∴点C 的坐标为(-2,2),点D 的坐标为(-3,2). ∴PC =1,PD =2.∴PD =2PC . …… 4分②10n -<≤或3n -≤. …………… 6分 24.解:(1)1.85. (2)(3)3.31.25.解:(1)72.5.(2)甲;这名学生的成绩为74分, 大于甲校样本数据的中位数72.5分,小于乙校样本数据的中位数76分,所以该学生在甲校排在前20名,在乙校排在后20名,而这名学生在所属学校排在前20名,说明这名学生是甲校的学生.(3)在样本中,乙校成绩优秀的学生人数为14+2=16.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为1680032040⨯=26.解:(1)∵1(0)y kx k =+≠经过点A 23(,), ∴1k =.∵直线1y x =+与抛物线2y ax bx a =++的对称轴交于点C ()m,2,∴1m =.(2)∵抛物线2y ax bx a =++的对称轴为1x =,∴12ba-=,即2b a =-. ∴22y ax ax a =-+2(1)a x =-.∴抛物线的顶点坐标为()1,0.……………………………4分………………………………3分………………………………4分………………………………5分………………………………5分………………………………1分………………………………6分 ………………………………2分E D C(3)当0a >时,如图,若抛物线过点B 01(,),则1a =.结合函数图象可得01a <<.当0a <时,不符合题意. 综上所述,a 的取值范围是01a <<. 27.(1)补全的图形如图1所示.… 1分(2)证明:△ABC 是等边三角形,∴AB BC CA ==.60ABC BCA CAB ∠=∠=∠=︒.由平移可知ED ∥BC ,ED =BC .… 2分 60ADE ACB ∴∠=∠=︒.90GMD ∠=︒,2DG DM DE ∴==.… 3分DE BC AC ==,DG AC ∴=. AG CD ∴=. …… 4分(3)线段AH 与CG 的数量关系:AH = CG .…… 5分 证明:如图2,连接BE ,EF .,ED BC =ED ∥BC ,BEDC ∴四边形是平行四边形.BE CD CBE ADE ABC ∴=∠=∠=∠,. GM ED 垂直平分,EF DF ∴=.DEF EDF ∴∠=∠.ED ∥BC , BFE DEF BFH EDF ∴∠=∠∠=∠,.BFE BFH ∴∠=∠. BF BF =,BEF BHF ∴△≌△.…… 6分BE BH CD AG ∴===.AB AC =,AH CG ∴=.…… 7分 28.解:(1)①5.②如图, ()5d E =点. ()d EF ∴线段的最小值是5.∴符合题意的点F 满足()5d F 点≤.当()=5d F 点时, 125BF DF ==.∴点1F 的坐标为()4,0,点2F 的坐标为()4,0-. ∴1k =-或1k =.结合函数图象可得1k ≤-或1k ≥.(2)33t -<<.图1图2。
2019年北京石景山区初三一模数学试卷

2019年北京⽯景⼭区初三⼀模数学试卷⼀、选择题(本题共8⼩题,每题2分,共16分)1. A. B. C. D.在北京筹办年冬奥会期间,原⾸钢⻄⼗筒仓⼀⽚平⽅⽶的区域被改建为北京冬奥组委办公区.将⽤科学记数法表示应为( ).2. A.三棱柱 B.三棱锥 C.⻓⽅体 D.正⽅体如图是某⼏何体的三视图,该⼏何体是( ).3. A. B. C. D.实数,,在数轴上对应点的位置如图所示,则正确的结论是( ).4. A. B. C. D.下列图案中,是中⼼对称图形的为( ).5.如图,直线,直线分别与,交于点,,平分,交于点,若,则的度数是( ).A. B. C. D.6. A. B. C. D.为了保障艺术节表演的整体效果,某校在操场中标记了⼏个关键位置,如图是利⽤平⾯直⻆坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北⽅向为轴、轴的正⽅向,表示点的坐标为,表示点的坐标为,则表示其他位置的点的坐标正确的是( ).北7. A.B.C.D.下⾯的统计图反映了我国五年来农村贫困⼈⼝的相关情况,其中“贫困发⽣率”是指贫困⼈⼝占⽬标调查⼈⼝的百分⽐.年份人数万人年年末全国农村贫困人口统计图年份贫困发生率年年末全国农村贫困发生率统计图(以上数据来⾃国家统计局)根据统计图提供的信息,下列推断不合理的是( ).与年相⽐,年年末全国农村贫困⼈⼝减少了万⼈年年末,与上⼀年相⽐,全国农村贫困发⽣率逐年下降年年末,与上⼀年相⽐,全国农村贫困⼈⼝的减少量均超万年年末,与上⼀年相⽐,全国农村贫困发⽣率均下降个百分点8.如图,在平⾯直⻆坐标系中,可以看作是由经过两次图形的变化(平移、轴对称、旋转)得到的,这个变化过程不可能是().A.先平移,再轴对称B.先轴对称,再旋转C.先旋转,再平移D.先轴对称,再平移⼆、填空题(本题共8⼩题,每题2分,共16分)9.写出⼀个⼤于且⼩于的⽆理数:.10.如图所示的⽹格是正⽅形⽹格,点到射线的距离为,点到射线的距离为,则.(填“”,“”或“”)11.⼀个不透明盒⼦中装有个红球、个⻩球和个⽩球,这些球除了颜⾊外⽆其他差别.从中随机摸出⼀个球,恰好是红球的概率为.12.若正多边形的⼀个内⻆是,则该正多边形的边数为.13.如图,在中,,分别是,上的点,.若,,,则.14.如果,那么代数式的值是 .15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其⼤意为:现有⼀根竿和⼀条绳索,⽤绳索去量竿,绳索⽐竿⻓尺;如果将绳索对半折后再去量竿,就⽐竿短尺.求绳索和竿的⻓度.设绳索⻓尺,竿⻓尺,可列⽅程组为 .16.如图,是⊙的⼀条弦,是⊙上⼀动点(不与点,重合),,分别是,的中点.若,,则⻓的最⼤值为 .三、解答题(本题共12⼩题,共68分)17.图图(1)下⾯是⼩⽴设计的“过直线外⼀点作这条直线的平⾏线”的尺规作图过程.已知:如图,直线及直线外⼀点.求作:直线,使得.作法:如图,①在直线上任取⼀点,连接;②以点为圆⼼,⻓为半径画弧,交直线于点;③分别以点,为圆点,⻓为半径画弧,两弧交于点(不与点重合);④作直线.所以直线就是所求作的直线.根据⼩⽴设计的尺规作图过程.使⽤直尺和圆规,补全图形.(保留作图痕迹)(2)完成下⾯的证明.(说明:括号⾥填推理的依据)证明:连接,∵,∴四边形是 ( ),∴( ).18.计算:.19.解不等式组:.20.(1)(2)关于的⼀元⼆次⽅程.求证:⽅程总有两个实数根.若⽅程的两个实数根都是正整数,求的最⼩值.21.(1)(2)如图,在中,,为边上⼀点,连接,为中点,连接并延⻓⾄点,使得,连接交于点,连接.求证:四边形是平⾏四边形.若,,,求的⻓.22.(1)(2)如图,是⊙的直径,过⊙上⼀点作⊙的切线,过点作于点,延⻓交⊙于点,连接,.求证:.连接,若⊙的半径为,,求的⻓.23.(1)12(2)如图,在平⾯直⻆坐标系中,函数的图象经过点,直线与轴交于点.求,的值.过第⼆象限的点作平⾏于轴的直线,交直线于点,交函数的图象于点.当时,判断线段与的数量关系,并说明理由.若,结合函数的图象,直接写出的取值范围.24.(1)(2)(3)如图,是上⼀定点,是弦上⼀动点,为中点,连接,过点作交于点,连接,,已知,设,两点间的距离为,,两点间的距离为.(当点与点重合时,令的值为)⼩荣根据学习函数的经验,对函数随⾃变量的变化⽽变化的规律进⾏了探究.下⾯是⼩荣的探究过程,请补充完整:按照下表中⾃变量的值进⾏取点、画图、测量,得到了与的⼏组对应值:建⽴平⾯直⻆坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图形;结合函数图象,解决问题,当时,的⻓度约为 .25.(1)(2)(3)为了调查学⽣对垃圾分类及投放知识的了解情况,从甲、⼄两校各随机抽取名学⽣进⾏了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进⾏了整理、描述和分析.下⾯给出了部分信息..甲、⼄两校名学⽣成绩的频数分布统计表如下:成绩学校甲⼄(说明:成绩分及以上为优秀,分为良好,分为合格,分以下为不合格).甲校成绩在这⼀组的是:.甲、⼄两校成绩的平均分、中位数、众数如下:学校平均分中位数众数甲⼄根据以上信息,回答下列问题:写出表中的值.在此次测试中,某学⽣的成绩是分,在他所属学校排在前名,由表中数据可知该学⽣是 校的学⽣(填“甲”或“⼄”),理由是 .假设⼄校名学⽣都参加此次测试,估计成绩优秀的学⽣⼈数.26.(1)(2)(3)在平⾯直⻆坐标系中,直线经过点,与轴交于点,与抛物线的对称轴交于点.求的值.求抛物线的顶点坐标.是线段上⼀动点,过点作垂直于轴的直线与抛物线交于点,(点在点的左侧).若恒成⽴,结合函数的图象,求的取值范围.27.如图,在等边中,为边的延⻓线上⼀点,平移线段,过点移动点,得到线段,为的中点,过点作的垂线,交于点,交于点.(1)(2)(3)依题意补全图形.求证:.连接并延⻓交于点⽤等式表示线段与的数量关系,并证明.28.12(1)(2)在平⾯直⻆坐标系中,正⽅形的顶点分别为,,,.对于图形,给出如下定义:为图形上任意⼀点,为正⽅形边上任意⼀点,如果,两点间的距离有最⼤值,那么称这个最⼤值为图形的“正⽅距”,记作.已知点.直接写出(点的值).直线 ()与轴交于点,当(线段)取最⼩值时,求的取值范围.⊙的圆⼼为,半径为.若(⊙),直接写出的取值范围.。
北京市石景山区2019-2020学年第四次中考模拟考试数学试卷含解析

北京市石景山区2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC 的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y =k x在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A .1≤k≤4B .2≤k≤8C .2≤k≤16D .8≤k≤16 2.如下图所示,该几何体的俯视图是 ( )A .B .C .D .3.如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是( )A .13B .23C .34D .454.-2的绝对值是()A .2B .-2C .±2D .125.若关于x 的不等式组2x a x >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( ) A .a≤﹣1 B .﹣2≤a <﹣1C .a <﹣1D .﹣2<a≤﹣1 6.如图,已知E ,F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M ,O 为BD 的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB ;③∠BMO=90°;④MD=2AM=4EM ;⑤23AM MF =.其中正确结论的是( )A.①③④B.②④⑤C.①③⑤D.①③④⑤7.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查8.-5的相反数是()A.5 B.15C.5D.15-9.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣5 10.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2 B.3 C.4 D.611.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A.b≥1.25B.b≥1或b≤﹣1 C.b≥2D.1≤b≤212.如图,在平面直角坐标系中,P是反比例函数kyx=的图像上一点,过点P做PQ x⊥轴于点Q,若OPQ△的面积为2,则k的值是( )A.-2 B.2 C.-4 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是_____.14.若反比例函数y=2kx-的图象位于第一、三象限,则正整数k的值是_____.15.如图,反比例函数3yx=(x>0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为.16.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_____.17.若代数式1x-在实数范围内有意义,则x的取值范围是_______.18.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC 绕点D 顺时针旋转90°画出旋转后的图形△A 1B 1C 1;在网格中将△ABC 放大2倍得到△DEF ,使A 与D 为对应点.20.(6分)先化简,再求值:22144(1)1a a a a a-+-÷--,其中a 是方程a (a+1)=0的解. 21.(6分)解不等式:3x ﹣1>2(x ﹣1),并把它的解集在数轴上表示出来.22.(8分)如图,在△ABC 中,(1)求作:∠BAD=∠C ,AD 交BC 于D .(用尺规作图法,保留作图痕迹,不要求写作法). (2)在(1)条件下,求证:AB 2=BD•BC .23.(8分)问题探究(1)如图①,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,则线段BE 、EF 、FD 之间的数量关系为 ;(2)如图②,在△ADC 中,AD=2,CD=4,∠ADC 是一个不固定的角,以AC 为边向△ADC 的另一侧作等边△ABC ,连接BD ,则BD 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD 中,AB=AD ,∠BAD=60°,BC=42,若BD ⊥CD ,垂足为点D ,则对角线AC 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.24.(10分)如图,已知平行四边形ABCD ,点M 、N 分别是边DC 、BC 的中点,设AB u u u r =a r ,AD u u u r =b r,求向量MN u u u u r 关于a r 、b r的分解式.25.(10分)如图,四边形ABCD 中,∠C =90°,AD ⊥DB ,点E 为AB 的中点,DE ∥BC.(1)求证:BD 平分∠ABC ;(2)连接EC ,若∠A =30°,DC 3,求EC 的长.26.(12分)定义:任意两个数a ,b ,按规则c =b 2+ab ﹣a+7扩充得到一个新数c ,称所得的新数c 为“如意数”.若a =2,b =﹣1,直接写出a ,b 的“如意数”c ;如果a =3+m ,b =m ﹣2,试说明“如意数”c 为非负数.27.(12分)先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题解析:由于△ABC 是直角三角形,所以当反比例函数k y x =经过点A 时k 最小,进过点C 时k 最大,据此可得出结论.∵△ABC 是直角三角形,∴当反比例函数k y x=经过点A 时k 最小,经过点C 时k 最大, ∴k 最小=1×2=2,k 最大=4×4=1,∴2≤k≤1.故选C .2.B【解析】根据俯视图是从上面看到的图形解答即可.【详解】从上面看是三个长方形,故B 是该几何体的俯视图.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 3.C【解析】【分析】易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB = DF DB ,EF CD =BF BD ,从而可得EF AB +EF CD =DF DB +BF BD=1.然后把AB=1,CD=3代入即可求出EF 的值. 【详解】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB,△BEF ∽△BCD , ∴EF AB = DF DB ,EF CD =BF BD , ∴EF AB +EF CD =DF DB +BF BD =BD BD =1. ∵AB=1,CD=3, ∴1EF +3EF =1, ∴EF=34. 故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.4.A【解析】【分析】根据绝对值的性质进行解答即可【详解】解:﹣1的绝对值是:1.【点睛】此题考查绝对值,难度不大5.B【解析】【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a 的取值范围.【详解】解:∵x 的不等式组2x a x >⎧⎨<⎩恰有3个整数解, ∴整数解为1,0,-1,∴-2≤a <-1.故选B.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.6.D【解析】【分析】根据正方形的性质可得AB=BC=AD ,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF ,然后利用“边角边”证明△ABF 和△DAE 全等,根据全等三角形对应角相等可得∠BAF=∠ADE ,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB ,然后求出∠BAF≠∠EDB ,判断出②错误;根据直角三角形的性质判断出△AED 、△MAD 、△MEA 三个三角形相似,利用相似三角形对应边成比例可得2AM MD AD EM AM AE===,然后求出MD=2AM=4EM ,判断出④正确,设正方形ABCD 的边长为2a ,利用勾股定理列式求出AF ,再根据相似三角形对应边成比例求出AM ,然后求出MF ,消掉a 即可得到AM=23MF ,判断出⑤正确;过点M 作MN ⊥AB 于N ,求出MN 、NB ,然后利用勾股定理列式求出BM ,过点M 作GH ∥AB ,过点O 作OK ⊥GH 于K ,然后求出OK 、MK ,再利用勾股定理列式求出MO ,根据正方形的性质求出BO ,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.【详解】在正方形ABCD 中,AB=BC=AD ,∠ABC=∠BAD=90°,∵E 、F 分别为边AB ,BC 的中点,∴AE=BF=12BC , 在△ABF 和△DAE 中,AE BF ABC BAD AB AD ⎧⎪∠∠⎨⎪⎩=== ,∴△ABF ≌△DAE (SAS ),∴∠BAF=∠ADE ,∵∠BAF+∠DAF=∠BAD=90°,∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°-(∠ADE+∠DAF )=180°-90°=90°,∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;∵DE 是△ABD 的中线,∴∠ADE≠∠EDB ,∴∠BAF≠∠EDB ,故②错误;∵∠BAD=90°,AM ⊥DE ,∴△AED ∽△MAD ∽△MEA , ∴2AM MD AD EM AM AE=== ∴AM=2EM ,MD=2AM ,∴MD=2AM=4EM ,故④正确;设正方形ABCD 的边长为2a ,则BF=a ,在Rt △ABF 中,==∵∠BAF=∠MAE ,∠ABC=∠AME=90°,∴△AME ∽△ABF ,∴AM AE AB AF= ,即2AM a =解得AM=5∴=55-,∴AM=23MF ,故⑤正确; 如图,过点M 作MN ⊥AB 于N ,则MN AN AM BF AB AF== 即25525MN AN a a a== 解得MN=a 52,AN=45a , ∴NB=AB-AN=2a-45a =65a , 根据勾股定理,22226221055NB MN a a ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭ 过点M 作GH ∥AB ,过点O 作OK ⊥GH 于K ,则OK=a-a 52=a 53,MK=65a -a=15a , 在Rt △MKO 中,2222131055MK OK a a ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭根据正方形的性质,BO=2a×22a =, ∵BM 2+MO 2=222210102a ⎫⎫+=⎪⎪⎝⎭⎝⎭)22222BO a a ==∴BM 2+MO 2=BO 2,∴△BMO 是直角三角形,∠BMO=90°,故③正确;综上所述,正确的结论有①③④⑤共4个.故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.7.D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.【详解】A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.9.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 0025=2.5×10﹣6;故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.C【解析】设母线长为R ,底面半径是3cm ,则底面周长=6π,侧面积=3πR=12π,∴R=4cm .故选C .11.A【解析】∵二次函数y =x 2-2(b -2)x +b 2-1的图象不经过第三象限,a =1>0,∴Δ≤0或抛物线与x 轴的交点的横坐标均大于等于0.当Δ≤0时,[-2(b -2)]2-4(b 2-1)≤0,解得b≥.当抛物线与x 轴的交点的横坐标均大于等于0时,设抛物线与x 轴的交点的横坐标分别为x 1,x 2,则x 1+x 2=2(b -2)>0,Δ=[-2(b -2)]2-4(b 2-1)>0,无解,∴此种情况不存在.∴b≥.12.C【解析】【分析】根据反比例函数k 的几何意义,求出k 的值即可解决问题【详解】解:∵过点P 作PQ ⊥x 轴于点Q ,△OPQ 的面积为2,∴|2k |=2, ∵k <0,∴k=-1.故选:C .【点睛】本题考查反比例函数k 的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②③【解析】【分析】由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.【详解】解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000m,则其速度为2000÷5=400米/分钟,故①正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800÷400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故②正确;公交车一共行驶了2800÷400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟<4分钟,故④错误,再由图可知小明跑步时间为300÷3=100米/分钟,故③正确.故正确的序号是:①②③.【点睛】本题考查了一次函数的应用.14.1.【解析】【分析】由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可.【详解】解:∵反比例函数的图象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整数,∴k的值是:1.故答案为:1.【点睛】本题考查了反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.15.9 4【解析】试题分析:如图,连接OB.∵E、F是反比例函数(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=32×1=32.∵AE=BE,∴S△BOE=S△AOE=32,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣32=32.∴F是BC的中点.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣32﹣32﹣32×32=.16.3026π.【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.详解:∵AB=4,BC=3,∴AC=BD=5,转动一次A的路线长是:90π42π180⨯=,转动第二次的路线长是:90π55π1802⨯=,转动第三次的路线长是:90π33π1802⨯=,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:53ππ2π6π22++=,∵2017÷4=504…1,∴顶点A转动四次经过的路线长为:6π5042π3026π.⨯+=故答案为3026π.点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.17.1x≥【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.1x-∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.18.m>2【解析】试题分析:有函数的图象在其所在的每一象限内,函数值y随自变量x的增大而减小可得m-2>0,解得m>2,考点:反比例函数的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析(2)见解析【解析】【分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF即为所求.【点睛】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20.1 3【解析】【分析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解. 【详解】解:原式=()()2a a1 a11a1a2---⨯--=a a 2- ∵a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0,∴a=-1,将a=-1代入a a 2-得, 原式=13【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.21.1x ->【解析】试题分析:按照解一元一次不等式的步骤解不等式即可.试题解析:3122x x -->,3221x x >--+,1x ->.解集在数轴上表示如下点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.22.(1)作图见解析;(2)证明见解析;【解析】【分析】(1)①以C 为圆心,任意长为半径画弧,交CB 、CA 于E 、F ;②以A 为圆心,CE 长为半径画弧,交AB 于G ;③以G 为圆心,EF 长为半径画弧,两弧交于H ;④连接AH 并延长交BC 于D ,则∠BAD=∠C ;(2)证明△ABD ∽△CBA ,然后根据相似三角形的性质得到结论.【详解】(1)如图,∠BAD 为所作;(2)∵∠BAD=∠C ,∠B=∠B∴△ABD ∽△CBA ,∴AB :BC=BD :AB ,∴AB2=BD•BC.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定与性质.23.(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D 、C 、E 三点共线时,DE 存在最大值,且最大值为6,∴BD 的最大值为6;(3)存在.如图③,以BC 为边作等边三角形BCE ,过点E 作EF ⊥BC 于点F ,连接DE ,∵AB=BD ,∠ABC=∠DBE ,BC=BE ,∴△ABC ≌△DBE ,∴DE=AC ,∵在等边三角形BCE 中,EF ⊥BC ,∴BF=BC=2, ∴EF=BF=×2=2,以BC 为直径作⊙F ,则点D 在⊙F 上,连接DF ,∴DF=BC=×4=2, ∴AC=DE≤DF+EF=2+2,即AC 的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.24.答案见解析【解析】试题分析:连接BD ,由已知可得MN 是△BCD 的中位线,则MN=12BD ,根据向量减法表示出BD 即可得.试题解析:连接BD,∵点M 、N 分别是边DC 、BC 的中点,∴MN 是△BCD 的中位线, ∴MN ∥BD ,MN=12BD , ∵DB=AB-AD=a b u u u v u u u v u u u v v v ,∴1122 MN a b=-u u u u v vv.25.(1)见解析;(2)7EC=. 【解析】【分析】(1)直接利用直角三角形的性质得出12DE BE AB==,再利用DE∥BC,得出∠2=∠3,进而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,3DC=,得出DB的长,进而得出EC的长. 【详解】(1)证明:∵AD⊥DB,点E为AB的中点,∴12DE BE AB==.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,3DC=,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴22437EC DE DC=+=+=.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.26.(1)4;(2)详见解析.【解析】【分析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可.【详解】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点睛】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.27.-5【解析】【分析】根据分式的运算法则即可求出答案.【详解】原式=[2(1)(1)xx x--+(2)(2)(2)x xx x-++]÷1x=(1xx-+2xx-)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.。
2019年北京石景山区初三一模数学试卷详解

出了部分信息.
.甲、乙两校 名学生成绩的频数分布统计表如下:
成绩
学校
甲
乙
(说明:成绩 分及以上为优秀,
分为良好,
分为合格, 分以下为不合格)
/
.甲校成绩在
这一组的是:
.甲、乙两校成绩的平均分、中位数、众数如下:
学校
平均分
中位数
众数
甲
乙
根据以上信息,回答下列问题:
( 1 ) 写出表中 的值.
( 2 ) 在此次测试中,某学生的成绩是 分,在他所属学校排在前 名,由表中数据可知该学
, 为 的中点,过点 作 的垂线,交 于点 ,交 于点 .
( 1 ) 依题意补全图形.
( 2 ) 求证:
.
/
( 3 ) 连接 并延⻓交 于点 用等式表示线段 与 的数量关系,并证明.
【答案】( 1 )画图⻅解析.
(2)
,证明⻅解析.
(3)
,证明⻅解析.
【解析】( 1 )如图所示:
(2)
,
.
( 3 ) 连接 、 、 证
时, 的⻓度约为
.
【答案】( 1 )
( 2 ) 画图⻅解析. (3) 【解析】( 1 )
(2)
( 3 )当
时,
是
斜边中线,
∵
,
,
∴ ⻓度为
与图象交点的横坐标的值.
此时 为
.
故答案为: .
25. 为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取 名学生进行了相关
知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给
. .
【解析】( 1 )∵
经过点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年北京市石景山区中考数学二模试卷一、选择题(本题共16分,每小题2分)1.数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是()A.6 B.﹣6 C.3 D.﹣32.如图,在△ABC中,BC边上的高是()A.AF B.BH C.CD D.EC3.如图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是6 B.面朝上的点数是偶数C.面朝上的点数大于2 D.面朝上的点数小于25.下列是一组log o设计的图片(不考虑颜色),其中不是中心对称图形的是()A.B.C. D.6.一个正方形的面积是12,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间7.某商场一名业务员12个月的销售额(单位:万元)如下表:则这组数据的众数和中位数分别是( )A .10,8B .9.8,9.8C .9.8,7.9D .9.8,8.1 8.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S (单位:米)与所用时间t (单位:秒)之间的函数图象分别为线段OA 和折线OBCD .则下列说法正确的是( )A .两人从起跑线同时出发,同时到达终点B .跑步过程中,两人相遇一次C .起跑后160秒时,甲、乙两人相距最远D .乙在跑前300米时,速度最慢二、填空题(共8小题,每小题2分,满分16分)9.分解因式:x 3﹣2x 2+x = .10.若分式的值为0,则x = .11.已知,一次函数y =kx +b (k ≠0)的图象经过点(0,2),且y 随x 的增大而减小,请你写出一个符合上述条件的函数关系式:.12.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x 人,依题意,可列方程为.13.若2x2+3y2﹣5=1,则代数式6x2+9y2﹣5的值为.14.如图,在平面直角坐标系xOy中,点A.B的坐标分别为(﹣4,1)、(﹣1,3),在经过两次变化(平移、轴对称、旋转)得到对应点A''、B''的坐标分别为(1,0)、(3,﹣3),则由线段AB得到线段A'B'的过程是:,由线段A'B'得到线段A''B''的过程是:.15.如图,⊙O的半径为2,切线AB的长为,点P是⊙O上的动点,则AP 的长的取值范围是.16.已知:在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是CD和BC上的点.求作:点M、N,使△AMN的周长最小.作法:如图2,(1)延长AD,在AD的延长线上截取DA´=DA;(2)延长AB,在AB的延长线上截取BA″=BA;(3)连接A′A″,分别交CD.BC于点M、N.则点M、N即为所求作的点.请回答:这种作法的依据是.三、解答题(本题共68分,第17-22题,每小题5分;第23题6分;第24.25题,每小题5分;第26.27题,每小题5分;第28题8分).解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:()﹣1+﹣tan60°﹣|﹣2|.18.(5分)解不等式﹣≥1,并把它的解集在数轴上表示出来.19.(5分)如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE =60°.求证:△ADC∽△DEB.20.(5分)已知关于x的一元二次方程x2+2x+m=0.(1)当m为何非负整数时,方程有两个不相等的实数根;(2)在(1)的条件下,求方程的根.21.(5分)如图,在四边形ABCD中,∠A=45°,CD=BC,DE是AB边的垂直平分线,连接CE.(1)求证:∠DEC=∠BEC;(2)若AB=8,BC=,求CE的长.22.(5分)在平面直角坐标系xOy中,直线l1:y=﹣2x+b与x轴,y轴分别交于点,B,与反比例函数图象的一个交点为M(a,3).(1)求反比例函数的表达式;(2)设直线l2:y=﹣2x+m与x轴,y轴分别交于点C,D,且S△OCD=3S△OAB,直接写出m的值.23.(6分)某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.24.(5分)如图,在△ABC中,∠C=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE.(1)求证:EH=EC;(2)若BC=4,sin A=,求AD的长.25.(5分)如图,在△ABC中,AB=8cm,点D是AC边的中点,点P是边AB上的一个动点,过点P作射线BC的垂线,垂足为点E,连接DE.设PA=xcm,ED=ycm.小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点E是BC边的中点时,PA的长度约为cm.26.(7分)在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2).(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A.B之间的部分记为图象M(含A.B两点).将图象M沿直线x =3翻折,得到图象N.若过点C(9,4)的直线y=kx+b与图象M、图象N 都相交,且只有两个交点,求b的取值范围.27.(7分)在△ABC中,∠ABC=90°,AB=BC=4,点M是线段BC的中点,点N在射线MB上,连接AN,平移△ABN,使点N移动到点M,得到△DEM(点D 与点A对应,点E与点B对应),DM交AC于点P.(1)若点N是线段MB的中点,如图1.①依题意补全图1;②求DP的长;(2)若点N在线段MB的延长线上,射线DM与射线AB交于点Q,若MQ=DP,求CE的长.28.(8分)在平面直角坐标系xOy中,对于任意点P,给出如下定义:若⊙P的半径为1,则称⊙P为点P的“伴随圆”.(1)已知,点P(1,0),①点在点P的“伴随圆”(填“上”或“内”或“外”);②点B(﹣1,0)在点P的“伴随圆”(填“上”或“内”或“外”);(2)若点P在x轴上,且点P的“伴随圆”与直线y=相切,求点P的坐标;(3)已知直线y=x+2与x、y轴分别交于点A,B,直线y=x﹣2与x、y轴分别交于点C,D,点P在四边形ABCD的边上并沿AB→BC→CD→DA的方向移动,直接写出点P的“伴随圆”经过的平面区域的面积.参考答案一、选择题1.数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是()A.6 B.﹣6 C.3 D.﹣3【分析】根据题意表示出B点对应的数,再利用互为相反数的性质分析得出答案.【解答】解:由题意可得:B点对应的数是:a+6,∵点A和点B表示的数恰好互为相反数,∴a+a+6=0,解得:a=﹣3.故选:D.【点评】此题主要考查了数轴以及相反数,正确表示出B点对应的数是解题关键.2.如图,在△ABC中,BC边上的高是()A.AF B.BH C.CD D.EC【分析】根据三角形的高线的定义解答.【解答】解:根据高的定义,AF为△ABC中BC边上的高.故选:A.【点评】本题主要考查了三角形的高的定义,熟记概念是解题的关键.3.如图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱【分析】侧面为4个三角形,底边为正方形,故原几何体为四棱锥.【解答】解:观察图形可知,这个几何体是四棱锥.故选:B.【点评】本题考查的是四棱锥的展开图,考法较新颖,需要对四棱锥有充分的理解.4.任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是6 B.面朝上的点数是偶数C.面朝上的点数大于2 D.面朝上的点数小于2【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:∵抛掷一枚骰子共有1.2.3.4.5.6这6种等可能结果,∴A.面朝上的点数是6的概率为;B.面朝上的点数是偶数的概率为=;C.面朝上的点数大于2的概率为=;D.面朝上的点数小于2的概率为;故选:C.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.下列是一组log o设计的图片(不考虑颜色),其中不是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:A.不是中心对称图形,故此选项正确;B.是中心对称图形,故此选项错误;C.是中心对称图形,故此选项错误;D.是中心对称图形,故此选项错误;故选:A.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.6.一个正方形的面积是12,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】先设正方形的边长等于a,再根据其面积公式求出a的值,估算出a的取值范围即可.【解答】解:设正方形的边长等于a,∵正方形的面积是12,∴a==2,∵9<12<16,∴3<<4,即3<a<4.故选:B.【点评】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7.某商场一名业务员12个月的销售额(单位:万元)如下表:则这组数据的众数和中位数分别是()A.10,8 B.9.8,9.8 C.9.8,7.9 D.9.8,8.1【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:6.2.6.4.7.7.2.7.5.7.8.8.9.8.9.8.9.8.9.8.10,数据9.8出现了4次最多为众数,处在第6.7位的是7.8.8,中位数为(7.8+8)÷2=7.9.故选:C.【点评】考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t(单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是()A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢【分析】根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:A.两人从起跑线同时出发,甲先到达终点,错误;B.跑步过程中,两人相遇两次,错误;C.起跑后160秒时,甲、乙两人相距最远,正确;D.乙在跑后200米时,速度最慢,错误;故选:C.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(共8小题,每小题2分,满分16分)9.分解因式:x3﹣2x2+x=x(x﹣1)2.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.10.若分式的值为0,则x= 2 .【分析】分式的值是0的条件是,分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,x+2≠0,当x=﹣2时,x+2=0.∴当x=2时,分式的值是0.故答案为:2.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.11.已知,一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:答案不唯一如:y=﹣x+2 .【分析】根据题意可知k<0,这时可任设一个满足条件的k,则得到含x、y、b 三求知数的函数式,将(0,2)代入函数式,求得b,那么符合条件的函数式也就求出.【解答】解:∵y随x的增大而减小∴k<0∴可选取﹣1,那么一次函数的解析式可表示为:y=﹣x+b把点(0,2)代入得:b=2∴要求的函数解析式为:y=﹣x+2.【点评】本题需注意应先确定x的系数,然后把适合的点代入求得常数项.12.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x 人,依题意,可列方程为x+(2x﹣30)=600 .【分析】设到植物园的人数为x人,则到野生动物园的人数为(2x﹣30)人,根据到野生动物园和植物园开展社会实践活动的总人数为600人,即可得出关于x的一元一次方程,此题得解.【解答】解:设到植物园的人数为x人,则到野生动物园的人数为(2x﹣30)人,根据题意得:x+(2x﹣30)=600.故答案为:x+(2x﹣30)=600.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.13.若2x2+3y2﹣5=1,则代数式6x2+9y2﹣5的值为13 .【分析】由代数式2x2+3y2﹣5=1,得出2x2+3y2=6,2x2+3y2=6整体代入代数式6x2+9y2﹣5求得数值即可.【解答】解:∵2x2+3y2﹣5=1,∴2x2+3y2=6,把2x2+3y2=6代入6x2+9y2﹣5=18﹣5=13,故答案为:13【点评】此题考查代数式求值,注意整体代入,渗透整体思想.14.如图,在平面直角坐标系xOy中,点A.B的坐标分别为(﹣4,1)、(﹣1,3),在经过两次变化(平移、轴对称、旋转)得到对应点A''、B''的坐标分别为(1,0)、(3,﹣3),则由线段AB得到线段A'B'的过程是:向右平移4个单位长度,由线段A'B'得到线段A''B''的过程是:绕原点顺时针旋转90°.【分析】依据对应点的坐标,即可得到平移的方向和距离;依据对应点的位置,即可得到旋转中心和旋转角度.【解答】解:如图所示,点A.B的坐标分别为(﹣4,1)、(﹣1,3),点A''、B''的坐标分别为(1,0)、(3,﹣3),∴由线段AB得到线段A'B'的过程是向右平移4个单位长度;连接A'A“,B'B“,作这两条线段的垂直平分线,交于点O,∠A'OA“=90°,则由线段A'B'得到线段A''B''的过程是:绕原点O顺时针旋转90°;故答案为:向右平移4个单位长度;绕原点顺时针旋转90°.【点评】本题主要考查了坐标与图形变换,在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行(共线)且相等.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.15.如图,⊙O的半径为2,切线AB的长为,点P是⊙O上的动点,则AP 的长的取值范围是2≤AP≤6 .【分析】连接OB,根据切线的性质得到∠OBA=90°,根据勾股定理求出OA,根据题意计算即可.【解答】解:连接OB,∵AB是⊙O的切线,∴∠OBA=90°,∴OA==4,当点P在线段AO上时,AP最小为2,当点P在线段AO的延长线上时,AP最大为6,∴AP的长的取值范围是2≤AP≤6,故答案为:2≤AP≤6.【点评】本题考查的是切线的性质、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.16.已知:在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是CD和BC上的点.求作:点M、N,使△AMN的周长最小.作法:如图2,(1)延长AD,在AD的延长线上截取DA´=DA;(2)延长AB,在AB的延长线上截取BA″=BA;(3)连接A′A″,分别交CD.BC于点M、N.则点M、N即为所求作的点.请回答:这种作法的依据是①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短.【分析】根据线段垂直平分线的性质和轴对称中的最短路线解答即可.【解答】解:根据线段垂直平分线的性质和两点之间线段最短作图;故答案为:①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短【点评】此题考查轴对称问题,关键是根据线段垂直平分线的性质和轴对称中的最短路线解答.三、解答题(本题共68分,第17-22题,每小题5分;第23题6分;第24.25题,每小题5分;第26.27题,每小题5分;第28题8分).解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:()﹣1+﹣tan60°﹣|﹣2|.【分析】直接利用特殊角的三角函数值以及负指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=2+﹣+﹣2=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)解不等式﹣≥1,并把它的解集在数轴上表示出来.【分析】先去分母、去括号,再移项、合并同类项,最后系数化为1即可.【解答】解:去分母,得 3(x+2)﹣(4x﹣1)≥6,去括号,得 3x+6﹣4x+1≥6,移项,合并同类项:﹣x≥﹣1,系数化为1:x≤1,把解集表示在数轴上:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.(5分)如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE =60°.求证:△ADC∽△DEB.【分析】依据△ABC是等边三角形,即可得到∠B=∠C=60°,再根据∠CAD=∠BDE,即可判定△ADC∽△DEB.【解答】证明:∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C=∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴△ADC∽△DEB.【点评】此题考查了相似三角形的判定与性质、等边三角形的性质等知识.解题时注意:有两组角对应相等的两个三角形相似.20.(5分)已知关于x的一元二次方程x2+2x+m=0.(1)当m为何非负整数时,方程有两个不相等的实数根;(2)在(1)的条件下,求方程的根.【分析】(1)判别式的意义得到△=4﹣4m>0,再解不等式得到m的范围,然后在此范围内找出非负整数即可;(2)利用(1)中m的值得到x2+2x=0,然后利用因式分解法解方程.【解答】解:(1)∵方程有两个不相等的实数根,∴△=4﹣4m>0,解得m<1又m为非负整数,∴m=0;(2)当m=0时,方程变形为x2+2x=0,解得x1=0,x2=﹣2.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.21.(5分)如图,在四边形ABCD中,∠A=45°,CD=BC,DE是AB边的垂直平分线,连接CE.(1)求证:∠DEC=∠BEC;(2)若AB=8,BC=,求CE的长.【分析】(1)根据线段垂直平分线的性质得到DE⊥AB,AE=EB=4,得到DE=AE=EB,根据全等三角形的性质即可得到结论;(2)过点C作CH⊥AB于点H,根据等腰直角三角形的性质得到CH=EH,设EH =x,则BH=4﹣x,根据勾股定理即可得到结论.【解答】(1)证明:∵DE是AB边的垂直平分线,∴DE⊥AB,AE=EB=4,∵∠A=45°,∴DE=AE=EB,又∵DC=CB,CE=CE,∴△EDC≌△EBC(SSS).∴∠DEC=∠BEC=45°;(2)解:过点C作CH⊥AB于点H,∵∠BEC=45°,∴CH=EH,设EH=x,则BH=4﹣x,在Rt△CHB中,CH2+BH2=BC2,即x2+(4﹣x)2=10,解之,x1=3,x2=1(不合题意,舍),即EH=3.∴CE=EH=3.【点评】本题考查了线段的垂直平分线的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.22.(5分)在平面直角坐标系xOy中,直线l1:y=﹣2x+b与x轴,y轴分别交于点,B,与反比例函数图象的一个交点为M(a,3).(1)求反比例函数的表达式;(2)设直线l2:y=﹣2x+m与x轴,y轴分别交于点C,D,且S△OCD=3S△OAB,直接写出m的值.【分析】(1)依据一次函数y=﹣2x+b的图象过点,即可得到一次函数的表达式为y=﹣2x+1.再根据一次函数的图象与反比例函数图象交于点M(a,3),即可得出a的值,由反比例函数图象过点M(﹣1,3),可得反比例函数的表达式为.(2)由一次函数的表达式为y=﹣2x+1,可得A(0,1),依据直线l2:y=﹣2x+m与直线l1:y=﹣2x+1互相平行,即可得出△AOB∽△COD,依据S△OCD=3S△OAB,即可得到|m|=,进而得出m的值为.【解答】解:(1)∵一次函数y=﹣2x+b的图象过点,∴.∴解得,b=1.∴一次函数的表达式为y=﹣2x+1.∵一次函数的图象与反比例函数图象交于点M(a,3),∴3=﹣2a+1,解得,a=﹣1.由反比例函数图象过点M(﹣1,3),得k=﹣1×3=﹣3,∴反比例函数的表达式为.(2)由一次函数的表达式为y=﹣2x+1,可得A(0,1),即OA=1,∵直线l2:y=﹣2x+m与直线l1:y=﹣2x+1互相平行,∴△AOB∽△COD,又∵S△OCD=3S△OAB,∴==,即OD=,又∵D(0,m),∴|m|=,∴m的值为.故答案为:.【点评】本题主要考查一次函数与反比例函数的交点问题,解题的关键是利用待定系数法求函数解析式,利用相似三角形的性质建立方程.23.(6分)某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【分析】(1)用不剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供50人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为:1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(5分)如图,在△ABC中,∠C=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE.(1)求证:EH=EC;(2)若BC=4,sin A=,求AD的长.【分析】(1)连接OE,根据切线的性质得到OE⊥AC,根据平行线的性质、角平分线的性质证明结论;(2)根据正弦的定义求出AB,根据相似三角形的性质求出OB,计算即可.【解答】(1)证明:连接OE,∵⊙O与边AC相切,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠OEB=∠CBE∵OB=OE,∴∠OEB=∠OBE,∴∠OBE=∠CBE,又∵EH⊥AB,∠C=90°,∴EH=EC;(2)解:在Rt△ABC中,BC=4,,∴AB=6,∵OE∥BC,∴,即,解得,,∴.【点评】本题考查的是切线的性质、解直角三角形、圆周角定理,掌握相关的判定定理和性质定理是解题的关键.25.(5分)如图,在△ABC中,AB=8cm,点D是AC边的中点,点P是边AB上的一个动点,过点P作射线BC的垂线,垂足为点E,连接DE.设PA=xcm,ED=ycm.小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点E是BC边的中点时,PA的长度约为 6.8 cm.【分析】根据题意画图测量即可.【解答】解:(1)由题意,测量得x=5时,y=2.7 (2)(2)根据已知数据画出图象如下图:(3)根据题意测量可得PA约为6.8故答案为:6.8【点评】本题为动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合的数学思想.26.(7分)在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2).(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A.B之间的部分记为图象M(含A.B两点).将图象M沿直线x =3翻折,得到图象N.若过点C(9,4)的直线y=kx+b与图象M、图象N 都相交,且只有两个交点,求b的取值范围.【分析】(1)把点A.B的坐标代入抛物线解析式,列出关于A.c的方程组,通过解该方程可以求得它们的值.由函数解析式求得顶点坐标;(2)根据题意作出函数图象,由图象直接回答问题.【解答】解:(1)∵抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2),可得:解得:∴抛物线的表达式为y=﹣2x2+4x+2.∵y=﹣2x2+4x+2=﹣2(x﹣1)2+4,∴顶点坐标为(1,4);(2)设点B(0,2)关于x=3的对称点为B’,则点B’(6,2).若直线y=kx+b经过点C(9,4)和B'(6,2),可得b=﹣2.若直线y=kx+b经过点C(9,4)和A(3,﹣4),可得b=﹣8.直线y=kx+b平行x轴时,b=4.综上,﹣8<b<﹣2或b=4.【点评】本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式.解题时,注意数形结合,使抽象的问题变得具体化,降低了解题的难度.27.(7分)在△ABC中,∠ABC=90°,AB=BC=4,点M是线段BC的中点,点N在射线MB上,连接AN,平移△ABN,使点N移动到点M,得到△DEM(点D 与点A对应,点E与点B对应),DM交AC于点P.(1)若点N是线段MB的中点,如图1.①依题意补全图1;②求DP的长;(2)若点N在线段MB的延长线上,射线DM与射线AB交于点Q,若MQ=DP,求CE的长.【分析】(1)利用平移的性质画出图形,再利用相似得出比例,即可求出线段DP的长.(2)根据条件MQ=DP,利用平行四边形的性质和相似三角形的性质,求出BN 的长即可解决.【解答】解:(1)①如图1,补全图形②连接AD,如图1.在Rt△ABN中,∵∠B=90°,AB=4,BN=1,∴AN=∵线段AN平移得到线段DM,∴DM=AN=,AD=NM=1,AD∥MC,∴△ADP∽△CMP.∴∴DP=(2)连接NQ,由平移知:AN∥DM,且AN=DM.∵MQ=DP,∴PQ=DM.∴AN∥PQ,且AN=PQ.∴四边形ANQP是平行四边形.∴NQ∥AP.∴∠BQN=∠BAC=45°.又∵∠NBQ=∠ABC=90°,∴BN=BQ.∵AN∥MQ,∴.又∵M是BC的中点,且AB=BC=4,∴.∴(负数舍去).∴.∴【点评】本题考察的是等腰三角形的性质与相似三角形的综合应用,利用相似比求线段长是重难点,按题意画出图形是解决本题的关键.28.(8分)在平面直角坐标系xOy中,对于任意点P,给出如下定义:若⊙P的半径为1,则称⊙P为点P的“伴随圆”.(1)已知,点P(1,0),①点在点P的“伴随圆”上(填“上”或“内”或“外”);②点B(﹣1,0)在点P的“伴随圆”外(填“上”或“内”或“外”);(2)若点P在x轴上,且点P的“伴随圆”与直线y=相切,求点P的坐。