实际问题与二元一次方程教案
实际问题与二元一次方程组 教案

8.3实际问题与二元一次方程组教学任务分析教学流程安排教学过程设计一、 创设问题情境,激发学生兴趣,引起探索渴望.探究1:养牛场原有30只大牛和15只小牛,1天约需用饲料675 kg ;一周后又购进12只大牛和5只小牛,这时1天约需要饲料940 kg .饲养员李大叔估计平均每只大牛1天约需要饲料18~20 kg ,每只小牛1天约需要7~8 kg .你能否通过计算检验他的估计?探究2:根据以往的统计资料,甲、乙两种作物的单位面积的产量比是1∶1.5,现在要在一块长为200 m ,宽100 m 的长方形的土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量比为3∶4(结果取整数)?F E D CB A图1二、主体探索,合作交流,培养学生分析、解决问题的能力,锻炼学生思维的灵活性和深刻性活动1:对上述问题进行探究,表述自己的解答方案.学生活动设计:学生首先独立思考,在独立思考的基础上进行合作交流.对于探究1:学生分析题意,发现存在这样的相等关系:(1)30只大牛1天所需饲料+15只小牛1天所需饲料=1天的饲料总量;(2)42只大牛1天所需饲料+20只小牛1天所需饲料=后来1天的饲料总量.根据上述相等关系,可以设未知数列出方程组(比如可以设平均每只大牛和每只小牛1天各需饲料约x kg 、y kg ,有方程组⎩⎨⎧=+=+94020426751530y x y x ),求出解后要对解进行检验,说明李大叔的估计的准确性.对于探究2:学生自己画出示意图,找出一种种植方案(近似,然后通过计算确定数据),根据学生思维的特点,可能有如下种植方案,此时可以设AE =x ,BE =y ,然后根据问题中的产量、长度找到相等关系,列出方程组⎩⎨⎧==+4:3150:100200y x y x ,解出方程组的解后解释具体方案. 教师活动设计:本节课的主要目的,是使学生在探究如何用方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性的能力,同时这些问题要比以前的问题更接近现实,因此分析、解决的难度也要大一些.对于这些问题不能像对待前面的例题一样,应充分发挥学生的自主学习的积极性,引导学生先独立探究,再进行合作交流.探究1是有关牛饲料的问题,学生分析解决问题后要对李大叔的估计作出判断,从而要求进行精确计算.探究2是一个开放性的问题,其解决方法不止一种,通过此问题的解决,让学生体会一题多解的问题情境,学习从多角度考虑问题;分析这个问题,提醒学生注意:(1)要把这个长方形分成两个长方形;(2)两块地分别种甲、乙两种作物,它们的产量比是3:4.首先可以考虑前一个要求,容易想到划分的方法是沿这块土地的边的方向画线.在此基础上考虑另一要求,这就与长方形面积以及两种作物的产量比有关了.(注意此时得到的答案不是整数值,为了符合要求需要取近似值.)最后引导学生归纳:方程组是解决含有多个未知数问题的重要工具,列出方程组要根据问题中的数量关系,得出方程组的解后要进一步考虑它是否符合问题的实际意义.三、问题解决,在交流解法的过程中培养学生的语言表述能力以及交流能力. 〔解答〕探究1:设平均每只大牛和每只小牛各需饲料约x kg 、y kg ,则⎩⎨⎧=+=+94020426751530y x y x ,解得⎩⎨⎧==520y x . 因此饲养员李大叔对大牛的食量估计较为准确,而对小牛的食量的估计偏高.探究2:如图这种种植方案,设AE =x ,BE =y ,则⎩⎨⎧==+4:3150:100200y x y x , 解得⎪⎪⎩⎪⎪⎨⎧==172941715105y x , 由于结果要取整数,可以确定这种种植方案是:过长方形土地的长边上离一端约为106米处,把这个长方形分为两个长方形.较大的一块种甲种农作物,较小的一块种乙种农作物.四、归纳小结、布置作业.小结:本节你遇到了哪些问题?你是怎样解决的?作业:习题 8.3.。
二元一次方程教案

二元一次方程教案教学目标:1. 理解二元一次方程的定义和性质。
2. 掌握解二元一次方程的方法。
3. 能够应用二元一次方程解决生活中的实际问题。
教学重点:1. 解二元一次方程。
2. 运用解二元一次方程解决实际问题。
教学难点:运用解二元一次方程解决实际问题。
教学准备:1. 教师准备演示材料,包括黑板或白板、彩色粉笔或白板笔。
2. 学生准备纸和笔。
教学过程:Step 1:引入讨论教师可以通过提问的方式引导学生思考:什么是二元一次方程?有什么特点?我们能够应用它解决哪些问题?Step 2:解二元一次方程1. 观察和分析给定的二元一次方程。
2. 使用“消元法”或“代入法”解决方程,得到解集。
3. 检验解集是否满足原方程。
Step 3:应用解二元一次方程解决实际问题教师出示或讲解一些实际生活中涉及到二元一次方程的问题,如两个人的年龄、两个商品的价格等等。
学生可以运用所学的解二元一次方程的方法解决这些问题。
Step 4:巩固练习教师布置一些练习题,让学生独立或小组完成,并核对答案。
可以将解题过程和答案展示在黑板或白板上,便于学生理解和学习。
Step 5:总结与评价教师与学生一起总结解二元一次方程的要点和方法,并对学生的学习进行评价和反馈。
Step 6:拓展延伸教师可以提供更多的实际问题,让学生运用解二元一次方程的方法解决,进一步巩固和应用所学知识。
教学结束提示:为了让学生更好地理解和应用解二元一次方程的方法,教师可以设计一些实际例题,让学生进行解答和思考。
同时,鼓励学生多加练习,提高解问题的能力。
二元一次方程大班教案

二元一次方程大班教案教学目标:1. 理解二元一次方程的概念和表示方法;2. 学会解二元一次方程;3. 能够应用解二元一次方程解决实际问题。
教学准备:1. 教师准备PPT或者黑板,用于呈现教学内容;2. 教师准备练习题,用于学生课堂练习。
教学过程:一、导入(5分钟)1. 教师通过提问的方式,复习一元一次方程的知识点,引导学生回忆并巩固已学内容;2. 教师介绍二元一次方程的概念,并与一元一次方程进行对比,激发学生的学习兴趣。
二、概念解释与示例(10分钟)1. 教师以具体的例子说明二元一次方程的表示方法,例如:2x + 3y = 8;2. 教师解释方程中的未知数、系数及常数项的意义;3. 教师给出几个实际问题,引导学生将问题转化为二元一次方程,并解释方程的含义。
三、解二元一次方程的方法(15分钟)1. 教师介绍两种解二元一次方程的方法:代入法和消元法;2. 教师以示例详细讲解代入法和消元法的步骤和注意事项;3. 教师鼓励学生多思考、多练习,熟练掌握解二元一次方程的方法。
四、课堂练习(15分钟)1. 教师出示多个二元一次方程的实际问题,让学生运用所学知识解题;2. 学生独立完成练习题,教师巡视并指导学生的解题思路;3. 教师选取几道典型题目,与学生一起讨论解题过程。
五、实际应用(10分钟)1. 教师以实际生活中的应用问题,如购买文具、购买食物等,引导学生运用所学知识解决问题;2. 学生积极参与,提出解题思路和答案,教师引导学生深入思考并给予认可。
六、拓展延伸(10分钟)1. 教师介绍更高级的二元一次方程,如含参数的二元一次方程等;2. 学生思考高级问题,并与同学一起合作解决;3. 教师提供实际生活中更复杂的二元一次方程问题,并鼓励学生尝试解决。
七、总结归纳(5分钟)1. 教师带领学生总结本节课学到的知识要点,并进行复习;2. 学生积极回答教师提问,巩固所学内容;3. 教师对学生的学习表现给予肯定和鼓励。
七年级数学下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组(第1课时)教案 新人教版

8.3 实际问题与二元一次方程组第1课时【教学目标】知识技能目标1.能够找出实际问题中的已知数和未知数,分析它们之间的等量关系,列出方程组,并解决生活中一些实际问题.2.在列方程组的建模过程中,强化方程的模型思想.过程性目标让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,培养学生数学应用能力.情感态度目标通过列方程组解决实际问题,培养应用数学意识,提高学习数学的趣味性、现实性、科学性.【重点难点】重点:根据简单应用题的题意列出二元一次方程组.难点:将实际情景中的数量关系抽取出来,并用二元一次方程组表示.【教学过程】一、创设情境知识回顾:列二元一次方程组解决实际问题的一般步骤是什么?进一步提问:如何解二元一次方程组的应用问题?解决实际问题的基本思路:二、新知探究探究点1:和差倍分问题例题讲解例1 (教材P99【探究1】)请同学们讨论以下各题:(1)你有什么办法检验李大叔估计的值是否准确?(2)问题中有几个未知数?(3)能写出题目中的等量关系吗?(4)能用等式表示出来吗?引导学生独立思考,培养学生自主学习的能力.让学生自己动手解答问题,检验知识的掌握情况.【方法指导】解答“和、差、倍、分”问题要善于抓关键词,如“谁比谁大、小、多、少,谁是谁的几倍或几分之几.在谁的基础上增加或减少”等,分析题意,准确找出等量关系.探究点2:行程问题例2 1.(教材P101习题8.3 T2变形)一艘轮船顺流航行时,每小时行32 km;逆流航行时,每小时行28 km,则轮船在静水中的速度是每小时行_______km.(轮船在静水中的速度大于水流速度)2.甲乙两人在400 m的环形跑道上练习赛跑,如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过250秒甲第一次追上乙.则甲、乙两人的平均速度分别是每秒_______m.要点归纳:环形问题的等量关系1.同时同地反向跑:(v甲+v乙)×t相遇=环长.2.同时同地同向跑:(v甲-v乙)×t追上=环长.解决顺逆流(风)行程问题常用的两个等量关系1.往返路程相等,即顺流(风)速度×顺流(风)时间=逆流(风)速度×逆流(风)时间.2.轮船(飞机)本身速度不变,即顺流(风)速度-水(风)速度=逆流(风)速度+水(风)速度.【方法技巧】行程问题中的两个重要相等关系(1)相遇问题:两人各自走的路程之和等于两地间的距离.(2)追及问题:两人同地不同时,同向而行,直至后者追上前者,两人所走路程相等;两人同时不同地,同向而行,直至后者追上前者,两人所走路程差等于两地的距离.例3 (教材P99探究2)问题1:本题研究的是长方形面积的分割问题,你能画出示意图帮助自己理解吗?问题2:长度涉及的数量关系?问题3:产量比与种植面积的比有什么关系?问题4:你能根据数量关系列出方程组,并解决这个问题吗?问题5:你还能设计其他种植方案吗?三、检测反馈1.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A. B.C. D.2.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是 ( )A. B.C. D.3.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y 组,则列方程组为( )A. B.C. D.4.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则每个小长方形瓷砖的面积是( )A.175 cm2B.300 cm2C.375 cm2D.336 cm25.某校去年有学生1000名,今年比去年增加5.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x名,走读学生y名,则可列出方程组为_______.6.一个两位数,个位上的数字比十位上的数字大4,交换位置后,所得的新两位数比原两位数的4倍少9,则原两位数是_______.7.为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林、还草”,其补偿政策如表(一);某农户承包了一片山坡地种树种草,所得到国家的补偿如表(二),问:该农户种树、种草各多少亩?表(一)种树、种草每亩每年补粮补钱情况表表(二)该农户收到乡政府下发的种树种草亩数及年补偿通知单8.甲、乙两人从相距36 km的两地相向而行,如果甲比乙先动身2 h,那么他们在乙动身2.5 h后相遇;如果乙比甲先动身2 h,那么他们在甲动身3 h后相遇,问甲、乙两人每小时各走多少km?四、本课小结这节课学了什么知识?列二元一次方程组解决实际问题的一般步骤(1)审题.(2)设两个未知数,找两个等量关系.(3)根据等量关系列方程,联立方程组.(4)解方程组.(5)检验并作答.五、布置作业课本第101页第1,2,3题六、板书设计七、教学反思在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题.(比如92页例2、95页例4).这一节安排了两个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些.这节课更为关注建立二元一次方程组数学模型的“探索”过程.它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据.所以设计本节课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用.教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想.在教学中应发挥学生自主学习的积极性,引导学生先独立探究,再进行合作交流.如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。
数学用方程解决问题教案(3篇)

数学用方程解决问题教案(3篇)数学用方程解决问题教案 1【学习目标】1、掌握列二元一次方程组解应用题的基本方法。
2、培养学生__思考、积极参与的学__惯,帮助学生了解数学知识在生活中的应用价值。
【重点难点】分析题意,列二元一次方程组解简单的实际问题【课前预习】【探索新知】香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了9千克,付款33元。
香蕉和苹果各买了多少千克?想一想:你能找出题目中的两个数量关系吗?做一做:你能用二元一次方程组解决这个问题吗?讨论:列二元一次方程组解应用题的一般步骤是什么?【例题教学】例1、有大小两种货车,2辆大车与3辆小车一次可以运货15。
50吨,5辆大车与6辆小车一次可以运货35吨。
求:3辆大车与5辆小车一次可以运货多少吨?例2、一个两位数,其个位与十位的`数字之和为6,现把十位数字与个位数字对调,产生的新的两位数比原来的两位数大18,求原来的两位数。
例3、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售。
该公司的加工能力是:每天可以精加工6吨或者粗加工16吨。
现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2023元,那么该公司出售这些加工后的蔬菜共可获利多少元?【课堂检测】1、已知甲、乙两数之和为40,甲数的2倍等于乙数的3倍,求甲、乙两数。
可设甲数为x,乙数为y,可得方程组()A、B、C、D、2、已知钢笔每支4元,圆珠笔每支2元,一共买了10支笔,共用去26元,问买钢笔、圆珠笔各多少支?可设买钢笔x 支,圆珠笔y支,可列方程组正确的是()A、B、C、D、3、48人去某水利工地挖土和运土,如果每人每天平均挖土5,或运土3,应怎样分配挖土和运土的人数,正好能够使挖出的土及时运走?4、一个学生有__邮票和外国邮票共325张,__邮票的张数比外国邮票的张数的2倍少2张,这个学生有__邮票和外国邮票各多少张?【课后巩固】1、某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了枚,80分的邮票买了枚。
实际问题与二元一次方程组教学设计教案

实际问题与二元一次方程组渗透法制教育教学设计掌布中学:杨胜丽一、教学目标(一)知识与技能1、会用二元一次方程组解决实际问题;2、用方程组的数学模型刻画现实生活中的实际问题。
(二)过程与方法1、培养学生应用方程解决实际问题的意识和应用数学的能力;2、将解方程组的技能训练与解决实际问题融为一体,进一步提高解方程组的技能。
(三)情感态度与价值观1、体会方程组是刻画现实世界的有效模型,培养应用数学的意识。
2、在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。
3、结合实际问题,向学生渗透废电池对生态环境的危害、我国的《计划生育》法中的第一、二、十五条。
在教学中有机适度的渗透法制教育,增强学生的法制意识,提高学生的法律素养,让学生重视数学知识在实际生活中与法律的联系。
(四)教学重点:1、探索用方程组解决实际问题的过程;2、进一步体会数学的方程建模方法,培养学生的数学应用能力。
教学难点:难点:分析、理解题意,把实际问题转化为数学问题,列出二元一次方程组。
(五)教学过程:1、复习引入简单复习一下二元一次方程组的解法,然后引入生活中的实际问题。
2、例1;为保护环境,某校环保小组成员收集废旧电池,第一天收集5节1号电池,6节5号电池,总质量为500克;第二天收集3节1号电池,4节5号电池,总质量为310克,1节1号电池和1节5号电池的质量分别是多少解:1节1号电池的质量为X 克,1节5号电池的质量为y 克,依题意得:解这个方程组得: 答:1节1号电池的质量为70克,1节5号电池的质量为25克。
学生观察此题结果数据,再由教师讲解,并渗透环保教育相关知识。
你知道废电池的危害吗废电池中所含铅等重金属对土壤、水源的污染只是一种短期内的危害,对生态环境的危害却是潜在性的长期危害,土壤具有一定的孔隙,对有机物或含碳、氧、磷、硫等化合物进行降解后,可生成无毒或低毒物质,表现出一定的自净能力,但是汞、铅、镉等重金属进入环境后,却不易被除解,长期蓄积在土壤中。
8.3.1实际问题与二元一次方程组教案

本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑思维能力:通过将实际问题转化为二元一次方程组,让学生学会分析问题,培养其逻辑思维和推理能力;
2.提升解决问题的策略与方法:使学生掌握求解二元一次方程组的不同方法,如代入法、消元法等,并能灵活运用解决实际问题;
3.增强数学建模能力:培养学生从现实问题中抽象出数学模型,即二元一次方程组,并能够运用数学知识解决现实问题;
本节课将通过以下案例进行教学:
(1)购物问题:小华去超市购物,已知购买苹果和香蕉的总价与购买橘子和葡萄的总价相等,求苹果、香蕉、橘子、葡萄的单价。
(2)行程问题:小明和小红同时从同一地点出发,分别向相反方向行走,已知小明速度较快,小红速度较慢,经过一段时间后,两人相距一定距离,求两人的速度。
二、核心素养目标
1.加强对方程组列出的方法和技巧的讲解,让学生在实际问题中更加熟练地运用;
2.在实践活动和小组讨论中,注重对学生的引导和启发,帮助他们提高发现问题和解决问题的能力;
3.关注学生的总结能力,培养他们在课堂学习过程中及时总结、归纳所学知识;
4.针对不同学生的学习情况,进行有针对性的辅导,提高他们的学习效果。
(4)解决实际问题时的数据分析;
-学生在分析数据时可能会出现偏差,需要教师引导学生关注细节,提高数据分析能力。
在教学过程中,教师要针对重点内容进行详细讲解和强调,同时关注学生的难点,采取适当的教学方法,如举例、互动、小组讨论等,帮助学生突破难点,确保他们对核心知识理解透彻。
实际问题与二元一次方程组(七年级数学教案)

七年级数学教案实际问题与二元一次方程组目的要求:通过教学使学生能理解用二元一次方程组解决实际问题的方法,体会数学建模思想培养学生的数学应用意识重点与难点:重点:让学生经历和体验把实际问题转化为二元一次方程组的过程,用二元一次方程组解决实际问题难点:把实际问题转化为二元一次方程组教学过程:创设情境,导入新课1.实际例子(1)有两袋大米第二袋比第一袋多40千克,如果从第二袋中取出大米5千克倒入第一袋,这时第二袋大米的重量正好是第一袋的3倍原来两袋大米的重量各是多少?(2)某校七年级共有244人,男生人数比女生人数的2倍少2人,问男、女各有多少人?A.学生思考回答:以上两个实际问题中各存在几个相等关系分别是什么?B.点拨:(1)题:一袋大米的重量+40千克=第二袋大米的重量第二袋大米的重量-5千克=3×(第一袋的重量+5千克)(2)题:男生人数+女生人数=244男生人数=2×女生人数-2C指名上板.解以上两个实际问题(二元一次方程组)二.合作交流解读探究课本P105探究一1. 引导学生熟读探究(一)并摘录此实际问题中的已知条件及要求的问题条件摘录:A养牛场原有30只大牛和15只小牛,每天约用饲料675kgB又购进12只大牛和5只小牛每天约用饲料940kg 求:李大叔的两种估计是否准确?A每只大牛每天约需饲料18-20kgB每只小牛每天约需饲料7-8kg2.引导学生分析:(1)解决本题的关键是什么?(2)本题中的相等关系有哪些?(3)30只大牛的每天用料+15只小牛的每天用料=675(4)(30+12)只大牛的每天用料+(15+5)只小牛每天用料=940(5)设哪两个量指名回答以上问题3.用方程组解答以上探究题解:设平均每只大牛和每只小牛1天分别需用饲料为X kg,ykg 30x+15y=675 解这个方程组得:x=20(30+12)x+(15+5)y=940 y=5用计算的结果对李大叔的估计进行说明(作答)4.归纳列方程(组)解应用题的步骤:(1)弄清题意、找出相等关系(2)设未知数列方程(3)解这个方程组(4)检验.(是否符合实际、方程组的解是否正确)(5)导出解答(作答)三.练习巩固1.某班共用学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课前检查作业评改完成况质量完成未完成
优
良
中
差
上节课知识点复习及检查
授课内容及安排
教学过程
一、情景复习,引出课题
情景导入(南非世界杯主题曲),引出下问题:
“足球表面是由一些呈正五边形和正六边形皮块缝合而成的,共计有32块,已知正五边形块数比正六边形块数的一半多2,问两种皮块各有多少?”
二、深化问题,探究讨论
1.(探究):养牛场原有30只大牛和15只小牛,每天约用饲料675kg;一周后又购进12只大牛和5只小牛,这时每天约用饲料940kg.饲养员李大叔估计每只大牛每天约用饲料18~20kg,每只小牛每天约用饲料7~8kg.你认为他的估计正确吗?
(1)题目要求我们解决什么问题?(检验李大叔估计是否正确)想知道李大叔估计的是否正确,我们应怎么办?(也就是说问题转化为求每只大牛和每只小牛1天约用饲料多少kg)
课后作业
另附
教案检查
学生评估
合格
不合格
满意
不满意
18
16
零售价(单位:元/kg)
26
25
说明:(1)老师通过引导,让学生明确问题转化为求“烤鸡”和“烤鸭”各批发了多少千克;(2)由学生上黑板板书解题;(3)如何找到等量关系列方程要多问,突破难点。
四、课堂练习
1、端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设王老师买荷包x个,五彩绳y个,根据题意,下面列出的方程组正确的是()
A、 B、 C、 D、
2、某中学初三(1)班的一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男、生的人数之比为()
A、 ︰ B、 ︰ C、 ︰ D、 ︰
3一个两位数的个位数字与十位数字的和是8,把这个两位数加上18,结果恰好成为数学对调后组成两位数,求这个两位数.设个位数字为x,十位数学为y,所列的方程组正确的是()
根据题意得
(提示学生要检验)
这就是说,每只大牛每天约用饲料20千克,每只小牛每天约用饲料5千克。因此,李大叔对大牛的食量估计较准确,对小牛的食量估计偏高。
3.我们来回顾整个解题过程
引导学生学会如何分析并解决一个实际问题;第一,明确题目要求,如……;第二,找出题目中的已知量和未知量;(在这过程中可以列表帮助分析)如……;第三,根据已知条件找等量关系;第四,设未知数,用数学式子表示出上述关系,列方程(组)解决问题,还要检验是否符合实际。
A、 B、 C、 D、
五、归纳总结,深化目标
1.请同学们总结一下本节课分析解决实际问题的基本过程
第一,明确题目要求;第二,找出题目中的已知量和未知量;(在这过程中可以列表帮助分析)第三,根据已知条件找等量关系;第四,设未知数,用数学式子表示出上述关系,列方程(组)解决问题,注意要检验。
课堂小结
通过本节课的学习,我们学会了利用二元一次方程组解决实际问题,其关键是找准等量关系,列方程组。
三、练习巩固,板演评议
(下面请同学们用我们刚刚分析问题的方法解决以下两个问题:)
1.一天,某经营户用1720元钱购进了一批烤鸡和烤鸭共100kg到市场去卖,“烤鸡”和“烤鸭”该天的进货价与零售价如下表所示。若他当天按市场零售价卖完这批“烤鸡”和“烤鸭”,能赚多少钱?
品名
烤鸡
烤鸭
进货价(单位:元/kg)
教师授课教案
日期
学生姓名
性别
年级
学校
授课教师
辅导科目
授课时间
2013-2-28
贾淳
男
五年级
下关四中
米亚娜
数学
教学目标
1、熟练掌握列方程组解实际问题的方法及一般步骤。
2、体会数学与现实生活的紧密联系,增强应用意识。
3提高学生运用方程组模型分析并解决实际问题能力,发展符号感。
重难点
教学重点:分析实际问题,找等量关系并列二元一次方程组解决。
(1)用什么方法解决这个问题呢?(列方程组)
(2)列二元一次方程组解应用题的一般步骤是什么?
第一,理解题意并设未知数;(怎么设?)
第二,找等量关系并列方程组;(怎么列?为什么?)
第三,解方程组,检验是否符合实际;(为什么要检验?)
第四,回答实际问题。
这节课,我们在此基础上进一步研究实际问题与二元一次方程组。
(2)以上两个量是未知量,题目中还出现了哪些量?
(3)(列表)根据已知条件,这些未知量和已知量之间存在什么关系?
(4)以上关系能用数学式子表示出来吗?你打算如何解决题目中所提出的问题?
2.请同学们先思考,后动手,相互交流讨论。老师板书讲解。
解:设每只大牛每天约用饲料x千克,每只小牛每天约用饲料y千克,