九年级数学 旋转 第二讲 旋转典型例题解析(上)
中考数学 旋转问题的题型与解法探析

人教版数学九年级上册旋转问题的题型与解法探析一、联系生活欣赏扑克牌中的旋转例1现有如图1所示的四张牌,若只将其中一张牌旋转180后得到图2,则旋转的牌是()分析:解这类问题时,同学们不妨采用“局部透视整体法”即通过观察整体中某一个部分,按照题目的要求进行相应的变化后,所遵循的规律,或者说所引起的变化,则图形的整体变化也遵循同样的规律.梅花5的图形“梅花”是个轴对称图形,所以旋转180º后得到的图形要发生变化,原来向下的梅花的小尾巴,要变成向上;原来向上梅花顶要变成向下.这是第一张牌的特点;红桃5的图形“红桃”是个轴对称图形,所以旋转180º后得到的图形要发生变化,原来向上的红桃的尖,要变成向下.这是第二张牌的特点;黑桃5的图形“黑桃”是个轴对称图形,所以旋转180º后得到的图形要发生变化,原来向下的黑桃的尖,要变成向上.这是第三张牌德特点;方块5中的图形“方块”是菱形,而菱形是中心对称图形,所以旋转180º后得到的图形还是菱形,也就是说在变化前后,图形的方向、位置、形状都不会发生变化.而图2中的变化特点是:第一张牌发生变化,第二张牌没有变化,第三张牌没有变化,第四张牌没有变化,因此我们选B.解:选B.二、坐标系中以原点为中心旋转180º后求坐标例2如图3,△PQR是△ABC经过某种变换后得到的图形.如果△ABC中任意一点M的坐标为(a,b),那么它的对应点N的坐标为.分析:仔细观察图形中每一对对应点的坐标变化规律,确定其中的变化规律.因为点A 的坐标为(4,3),变化后点P 的坐标为(-4,-3),所以这个变化是旋转变化,且旋转角为180º,所以这是一个中心对称图形.因为点M 的坐标为(a ,b ),所以它的对应点N 的坐标为(-a ,-b ).解:应该填(-a ,-b ).三、坐标系中旋转90º后求坐标例3正方形ABCD 在坐标系中的位置如图4所示,将正方形ABCD绕D 点顺时针方向旋转90º后,B 点的坐标为( )A .(-2,2)B .(4,1)C .(3,1)D .(4,0)分析:在坐标系中,经常遇到多边形旋转一定角度后求某一点的坐标问题.在解答这类问题时,如果把问题的焦点聚焦到这个点身上,思路往往打不开,但是当我们换一个角度,把点的旋转问题转化成某一个三角形的旋转问题,思路就会豁然开朗了.如图5将蓝色的三角形按照要求旋转后落到了红色三角形的位置上,这样就比较容易确定点B 的坐标了,仔细观察不难发现旋转后点B 的对应点的坐标为(4,0).解:选择D .四、坐标系中绕某一定点旋转180º后求坐标例4)如图6,将△ABC 绕点C (0,-1)旋转180°得到△B A ''C ,设点A 的坐标为),(b a 则点A '的坐标为( )(A )),(b a -- (B ))1.(---b a (C ))1,(+--b a (D ))2,(---b a分析:为了完成问题的解答,我们可以平移x 轴的办法.如图7所示,因为旋转的中心在点C (0,-1),我们不容易求解,所以我们可以将x 轴向下平移一个单位,把问题转化成以点C 位旋转中的旋转问题,但是向下平移时是要加上的,这样在新的坐标系中,点A 的坐标变成了(a ,b+1),所以此时A '的坐标为(-a ,-b-1),分别将A 和A '的坐标向上平移一个单位就回到了原来的坐标系,但是向上时时要减去的,所以点A '的坐标为(-a ,-b-2). 解:选D .五 正方形背景下选定旋转中心旋转90º后求线段长例5)如图8,已知正方形ABCD 的边长为3,E 为CD 边上一点, DE=1.以点A 为中心,把△ADE 顺时针旋转90º,得△AB E ',连接E E ',则E E '的长等于 .分析:旋转前后两个图形是全等的,这是旋转的一个非常重要的性质.同学们必须牢牢记住. 所以△ADE ≌△AB E ',所以B E '=DE ,所以EC=CD=DE=3-1=2,E 'C=B E '+BC=1+3=4, 在直角三角形E E 'C 中,E E '=204222=+=+'CE C E =52.解:填52.六 正方形背景下探求旋转后对应点到某一定点的距离例6 (上海)已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1,如图9所示 ,把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为_____.分析:题目里只说“旋转”,并没有说顺时针还是逆时针,所以需要分类求解.说的是“直线BC 上的点”,没有说明是在线段BC 上,还是在BC 的延长线上,所以也需要分类求解,所以有两种情况如图10所示:顺时针旋转得到2F 点,则2F B=DE=2,2F C=2F B+BC=2+3=5; 逆时针旋转得到1F 点,则1F C=1.解:应该填1或5.七、坐标系中线平移后旋转90º求点的坐标例7 (莱芜)在平面直角坐标系中,以点A(4,3),B(0,0),C(8,0)为顶点的三角形向上平移3个单位,得到△1A 1B 1C (点1A ,1B ,1C 分别为点A,B,C 的对应点),然后以点1C 为中心将△1A 1B 1C 顺时针旋转90º,得到△2A 2B 1C (点2A ,2B 分别是点1A ,1B 的对应点),则点2A 的坐标是 .分析:在坐标系中,正确的利用数形结合的思想,准确做出变化前后的图形,是解题的关键. 如图11所示,仔细做出符合题意的图形,不难发现2A 的坐标是(11,7).八 在作图中探求线段的大小,并求角的度数例8如图12在△ABC 和△CDE 中,AB=AC=CE ,BC=DC=DE ,AB>BC ,∠BAC=∠DCE=∠α,点B 、C 、D 在直线l 上,按下列要求画图(保留画图痕迹);(1)画出点E 关于直线l 的对称点E ',连接C E ' 、D E ';(2)以点C 为旋转中心,将(1)中所得△CD E ' 按逆时针方向旋转,使得C E '与CA 重合,得到△C D 'E ''(a ).画出△C D 'E ''(b )解决下面问题:①线段AB 和线段C D '的位置关系是 .理由是:②求∠α的度数.分析:使得C E'与CA重合,是旋转作图的关键要素.它提示了你图形要旋转的角度.解:(1)如图13,所示;(2)E''实际上就是点A;(a)线段AB和线段C D'的位置关系是平行;因为∠DCE=∠DC E'=∠D'CA=∠α,因为∠BAC=∠DCE=∠α,所以∠BAC=∠D'CA,所以AB∥C D';(b)因为四边形ABC D'是等腰梯形,所以∠ABC=∠D'AB=2∠α,因为AB=AC,所以∠ABC=∠ACB=2∠α.在三角形ABC中,因为∠ABC+∠ACB+∠BAC =180º,所以2∠α+2∠α+∠α=180º,解得∠α=36º.九、探求符合一定条件的最小旋转角例9 已知两个全等的直角三角形纸片ABC、DEF,如图14放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90º,∠E=∠ABC=30º,AB=DE=4.(1)求证:△EGB是等腰三角形;(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小_____度时,四边形ACDE成为以ED为底的梯形如图15,求此梯形的高.分析:最小的旋转角从何处入手求解呢?对,从梯形的入手,AC,DE变成了梯形的底,所以二者一定是平行的,所以同旁内角一定是互补的,而∠C=90º,∠EDF=60º,其和为150º,所以还差30º就满足互补的条件了.因此这就是所求得最小角.解:略同学们自己来完成余下步骤的补充吧.。
中考经典几何题讲义系列:旋转、翻折问题

∴AE=EF,∠EAF=∠EFA= =22.5°。∴∠FAB=67.5°。
2
设 AB=x,则 AE=EF= 2 x,
∴an67.5°=tan∠FAB=t FB 2x+x 2 1。故选 B。 AB x
4. (广东河 源 3 分)如图,在折纸活动中,小明制作了一张△ABC 纸片,点 D、E 分别在边 AB、 AC 上,将△ABC 沿着 DE 折叠压平,A 与 A′重合.若∠A=75º,则∠1+∠2=【 】
∴BC=CM。
设 CF=x,D′F=DF=y, 则 BC=CM=CD=CF+DF=x+y。∴FM=CM+CF=2x+y,
在 Rt△D′FM 中,tan∠M=tan30°= DF y 3 ,∴ x 3-1 y 。
FM 2x y 3
2
∴ CF x 3-1 。故选 A。 FD y 2
3. (江苏连云港 3 分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片 ABCD 沿过点 B 的直线折叠, 使点 A 落在 BC 上的点 E 处,还原后,再沿过点 E 的直线折叠,使点 A 落在 BC 上的点 F 处,这样就可以求出 67.5° 角的正切值是【 】
A.150º
B.210º
C.105º
D.75º
【答案】A。
【考点】折叠的性质,平角的定义,多边形内角和定理。
【分析】根据折叠对称的性质,∠A′=∠A=75º。
根据平角的定义和多边形内角和定理,得
∠1+∠2=1800-∠ADA′+1800-∠AEA′=3600-(∠ADA′+∠AEA′)=∠A′+∠A=1500。
(1)如图 1,当点 D 与点 C 位于直线 AB 的两侧时,a=b=3,且∠ACB=60°,则 CD=
2022-2023学年九年级上数学:旋转(附答案解析)

2022-2023学年九年级上数学:旋转
一.选择题(共5小题)
1.下列图形中,是中心对称图形的是()
A .
B .
C .
D .
2.下列所说的图形中,不是中心对称图形的是()
A.菱形B.等边三角形C.矩形D.正方形
3.如图,在正方形ABCD中,AB=4,E为AB边上一点,点F在BC边上,且BF=1,将点E绕着点F顺时针旋转90°得到点G,连接DG,则DG的长的最小值为()
A.2B.2C.3D .
4.由圆和正五边形所组成的图形如图所示,那么这个图形()
A.是轴对称图形但不是中心对称图形
B.是中心对称图形但不是轴对称图形
C.既是中心对称图形又是轴对称图形
D.既不是中心对称图形也不是轴对称图形
5.如图,将△ABC绕点A顺时针旋转α,得到△ADE,若点D恰好在CB的延长线上,则∠CDE等于()
第1页(共19页)。
人教版初三数学旋转模型(含详细解析)

又∵∠1+∠2+∠EAB=90°
∴∠3+∠2+∠EAB=90°
∴∠F'AE+∠2=90°
又∵∠AFD+∠1=90°
∴∠AF'B+∠1=90°
∵∠1=∠2
∴∠F'AE=∠AF'B
∴AE=F'E=F'B+BE=FD+BE
例6、如图,P是正方形ABCD内一点,将△ABP绕点B顺时针旋转90°,使AB与CB重合,BP到达BP'处,AP到达CP'处,若AP的延长线正好经过P',求∠APB的度数。
4.如图,在△ABC中,∠BAC=90°,AB=AC,D、E在BC上,∠DAE=45°,求证: .
5、如图正方形ABCD中, ,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°,求△AEF的面积.
【分析】:由于要证的3条线段AB、BE、DF分散在两个三角形中,可利用旋转变换,将其放到一个三角形中。
【解析】:把△ADF绕点A顺时针旋转90°,则点D转到了点B的位置,点F转到了点F'的位置,根据旋转的性质得:
∠3=∠1,F'B=FD,∠AF'B=∠AFD
∵ABCD为正方形
∴∠D=∠ABF'=90°
∴∠2=∠4
由∠1=∠2+∠3
∴∠1=∠4+∠3=60°
(2)同理可得:∠GMH=∠MGH=60°
∴△GMH是等边三角形
观察思考:旋转是几何变换中的基本变换,它一般先对给定的图形或其中一部分,通过旋转,改变位置后得新组合,然后在新的图形中分析有关图形之间的关系,进而揭示条件与结论之间的内在联系,找出证题途径。
∴△AEP中,AE=PE
九年级上册数学旋转必做大题附答案详解

九年级上册数学旋转必做大题附答案详解九年级上册数学旋转必做大题附答案1、已知:P为正方形ABCD内一点,且PA=1,PB=2,PC=3,求∠APB大小。
2、在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG 且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.3、如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO绕点B逆时针旋转60°得到线段BO′.(1)求点O与O′的距离;(2)证明:∠AOB=150°;(3)求四边形′的面积.(4)直接写出△AOC与△AOB的面积和4、(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.5、正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是,∠AFB=∠(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.6、已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F 分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD 三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.7、如图,P是等边△ABC内的一点,且PA = 5,PB =12,PC = 13,若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为 .8、已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(6分)(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(2分)(3)如图3,当点D在线段BC的反向延长线上时,且点A,F 分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;(2分)新课标第一网②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.(5分)9、(1)问题发现如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC 上,且∠DAE=45°,猜想BD、DE、EC满足的等量关系,并写出推理过程.参考答案一、简答题1、135°(用旋转三角形解决绕点B顺时针旋转三角形BAP得到三角形BCE,连接PE)2、解:(1) EG=CG,EG⊥CG.(2分)(2)EG=CG,EG⊥CG.(2分)证明:延长FE交DC延长线于M,连MG.∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,∠EMC=90°,又∵BE=EF,∴EF=CM.∵∠EMC=90°,FG=DG,∴MG=FD=FG.∵BC=EM,BC=CD,∴EM=CD.∵EF=CM,∴FM=DM,∴∠F=45°.又FG=DG,∠CMG=∠EMC=45°,∴∠F=∠GMC.∴△GFE≌△GMC.∴EG=CG,∠FGE=∠MGC.(2分)∵∠FMC=90°,MF=MD,FG=DG,∴MG⊥FD,∴∠FGE+∠EGM=90°,∴∠MGC+∠EGM=90°,即∠EGC=90°,∴EG⊥CG.(2分)3、解:(1)∵等边△ABC,∴AB=CB,∠ABC=600。
九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习

九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习 -九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习图形的旋转这一章节是初中几何内容中非常重要的一个章节,对于图形的运动的形式和规律以及旋转的性质都是我们在对几何的初步认识当中的一个过程,掌握其重要的性质之后,对于几何综合题型当中辅助线的运用起到了非常重要的作用。
并且图形的旋转加上已经学习过的平移和轴对称。
对几何图形的变化有充分地了解,建立几何空间思维的正确认识,对于几何空间能力的提升起到了非常重要的促进作用。
首先,在学习图形的旋转这一章节我们主要围绕以下两个重要的内容来展开:第一,掌握图形的旋转和中心对称的概念;第二,掌握旋转的本质。
这也是我们学习过程中的重点和难点内容。
因为在旋转前后的两个图形中,对应点与旋转中心之间的距离总是相同的,所以对应点必然分别在以旋转中心为圆心,以对应点到旋转中心的距离为半径的一组同心圆上,对应点与旋转中心连线所成的角等于且等于旋转角。
唐老师提醒大家,旋转过程中保持静止的点就是旋转的中心,不变的量就是对应的元素。
其次,旋转的三个要素:旋转中心、旋转的角度和旋转方向.第三,旋转的性质:(1)图形中的每一点都绕着旋转中心旋转了同样大小的连线所成的角度;—整体角度(2)对应点到旋转中心的距离相等;(3)对应线段相等,对应角相等;——局部角度(4)图形的形状和大小都没有发生变化,即旋转不改变图形的形状和大小.—变换结果.第四,简单图形的旋转作图:(1)确定旋转中心;(2)确定图形中的关键点;(3)将关键点沿指定的方向旋转指定的角度;(4)连接这些点,得到原始图形的旋转图形。
(以上四个步骤是我们在制作简单旋转图的过程中应该遵循的步骤。
按照以上步骤画图,可以提高大家的学习效率,保证其在画图过程中的正确率。
)第五,旋转对称图形:平面图形绕某点旋转一定角度(小于圆角)后,可以与自身重叠。
九年级数学上学期同步讲解图形的旋转含解析新版新人教版

图形的旋转一、知识点1、旋转把一个平面图形绕着平面内的一点O 转动一个角度。
(旋转中心:O 点,旋转角:转动的角度)2、性质①对应点到旋转中心的距离相等②对应点到旋转中心所连线段的夹角等于旋转角③旋转前后的图形全等二、标准例题:例1:如图,ABC ∆逆时针旋转一定角度后与ADE ∆重合,且点C 在AD 上.(1)指出旋转中心;(2)若21B ︒∠=,26ACB ︒∠=,求出旋转的度数;(3)若5AB =,3CD =,则AE 的长是多少?为什么?【答案】(1)A;(2)133︒;(3)2【解析】解:(1)中心为点A(2)∵21B ︒∠=,26ACB ︒∠=1802126133BAC ︒︒︒︒∠=--=∴旋转的度数为133︒(3)由旋转性质知:AE AC =,AD AB =∴2AE AB CD -==总结:本题考查旋转,熟练掌握旋转的性质是解题关键.例2:在平面直角坐标系中,O为坐标原点.(1)已知点A(3,1),连接OA,作如下探究:探究一:平移线段OA,使点O落在点B,设点A落在点C,若点B的坐标为(1,2),请在图①中作出BC,点C 的坐标是__________.探究二:将线段OA绕点O逆时针旋转90°,设点A落在点D,则点D的坐标是__________;连接AD,则AD =________(图②为备用图).(2)已知四点O(0,0),A(a,b),C,B(c,d),顺次连接O,A,C,B,O,若所得到的四边形为平行四边形,则点C的坐标是____________.【答案】(1)探究一图见解析;(4,3);探究二(-1,3);(2)(a+c,b+d)【解析】解:(1)探究一:∵点A(3,1),连接OA,平移线段OA,使点O落在点B.设点A落在点C,若点B的坐标为(1,2),则C的坐标为(4,3), 作图如图①所示.探究二:∵将线段OA绕点O逆时针旋转90度,设点A落在点D.则点D的坐标是(-1,3),如图②所示,由勾股定理得:OD2=0A2=12+32=10,AD(2)(a +c,b +d)∵四点O(0,0),A(a,b),C,B(c,d),顺次连接O,A,C,B,O,所得到的四边形为平行四边形,∴OA 綊BC.∴可以看成是把OA 平移到BC 的位置.∴点C 的坐标为(a +c,b +d).总结:本题考查坐标与图形的变换、平行四边形的性质等知识,综合性比较强,要求学生熟练掌握相关的基础知识才能很好解决这类问题.例3:如图,点O 是等边ABC ∆内一点,110AOB ∠=︒,BOC α∠=,将CO 绕点C 顺时针方向旋转60︒得到CD ,连接AD ,OD .(1)当150α=︒时,判断AOD ∆的形状,并说明理由;(2)求DAO ∠的度数;(3)请你探究:当α为多少度时,AOD ∆是等腰三角形?【答案】(1)AOD ∆为直角三角形,理由见解析;(2)50DAO ∠=︒;(3)当α为125︒或110︒或140︒时,AOD ∆为等腰三角形.【解析】解:(1)AOD ∆为直角三角形,理由如下: CO 绕C 顺时针旋转60︒得到CD ,OCD ∴∆和ABC ∆均为等边三角形,BC AC =,OC CD =,60BCO ACO ∠+∠=︒,60ACD ACO ∠+∠=︒BCO ACD ∴∠=∠BOC ADC ∴∆≅∆150ADC BOC ∴∠=∠=︒,90ADO ADC ODC ∴∠=∠-∠=︒AOD ∴∆为直角三角形;(2)由(1)知:BOC ADC ∆≅∆,DAC CBO ∴∠=∠,60CBO ABO ∠=︒-∠,60CAO BAO ∠=︒-∠DAO DAC CAO CBO CAO ∴∠=∠+∠=∠+∠=()(6060)ABO BAO ︒-∠+︒-∠=(20)1ABO BAO ︒-∠+∠18011070ABO BAO ∠+∠=︒-︒=︒,1207050DAO ∴∠=︒-︒=︒;(3)∵∠AOB=110°,∠BOC=α∴∠AOC=250°-a .∵△OCD 是等边三角形,∴∠DOC=∠ODC=60°,∴∠ADO=a -60°,∠AOD=190°-a,当∠DAO=∠DOA 时,2(190°-a )+a-60°=180°,解得:a=140°当∠AOD=ADO 时,190°-a=a-60°,解得:a=125°,当∠OAD=∠ODA 时,190°-a+2(a-60°)=180°,解得:a=110°∴α=110°,α=140°,α=125°.总结:本题考查了等边三角形的判定与性质的运用,旋转的性质的运用,直角三角形的判定,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.三、练习1.综合性学习小组设计了如图1所示四种车轮,车轮中心的初始位置在同一高度,现将每种车轮在水平面上进行无滑动...滚动,若某个车轮中心的运动轨迹如图2所示,请利用刻度尺、量角器等合适的工具作出判断,该轨迹对应的车轮是( )【答案】B【解析】解:圆的中心在运动过程中位置始终不变,正方形中心的变化每90︒循环一次,五边形中心的变化每108︒循环一次,六边形中心的变化每120︒循环一次,用量角器量得图2中一个弧所对的圆心角为90︒,故该轨迹对应的车轮为正方形的.故答案为B∆按顺时针方向转动一个角度后2.如图所示,正方形ABCD中,E在BC上,F在AB上,且45FDE︒∠=.DEC∆.成为DGA问:(1)图中哪一个点是旋转中心?(2)DGA ∆是由DEC ∆旋转了多少度形成的?(3)指出图中的对应点、对应线段和对应角.(4)求GDF ∠的度数.【答案】(1)点D ; (2)90°; (3)详见解析; (4)45°.【解析】(1)D 点是旋转中心;(2)旋转了90°;(3)对应点:D 对D,G 对E,A 对C ;对应线段:DG 对DE,DA 对DC,AG 对CE ;对应角:∠CDE 对∠ADG ,∠CED 对∠AGE ,∠C 对∠DAG;(4)∵△DGA 是△DEC 绕点D 旋转得来的,且旋转角为90°,∴∠GDE=90°,又∵∠FDE=45°,∴∠GDF=45°.3.如图,在等边∆ABC 中,D 是边AC 上一点,连接BD .将∆ BCD 绕点B 逆时针旋转60°得到∆ BAE,连接ED .若BC=10,BD=9,求∆ AED 的周长。
武汉为明实验学校九年级数学上册-2.3-旋转类中考题的解法PPT课件

D
H
o
B
C
G
-
4
F
(二)走进中考,可要认真观察哦:
(2006河北课改实验区)如图13-1,一等腰 直角三角尺GEF的两条直角边与正方形 ABCD的两条边分别重合在一起.现正方 形ABCD保持不动,将三角尺GEF绕斜 边EF的中点O
(点O也是BD中点) 按顺时针方向旋转.
-
5
(1)如图13-2,当EF与AB相交于点 M,GF与BD相交于点N时,通过观察或 测量BM,FN的长度,猜想BM,FN满 足的数量关系,并证明你的猜想
-
19
(3)将图3中线段绕点C顺时 针旋转60°到(如图4),连 结,
求证:P2P3 ⊥AB.
-
20
-
21
D
C
G
F
AE B
-
图1
15
(2) 若将正方形AEFG绕点A按顺时
针方向旋转, 连结DG,在旋转的过程
中,你能否找到一条线段的长与线段
DG的长始终相等.并以图2为例说明
理由.
D
C
G F
A
B
-
E
16
如图,E、F、G、H分别为正方形
ABCD四条边的中点,图中的阴影
部分的面积为5,则正方形ABCD
的边长为
-
6
(2)若三角尺GEF旋转到如图13-3所
示的位置时,线段FE的延长线与AB的
延长线相交于点M,线段BD的延长线与
GF的延长线相
交于点N,此
时(1)中的
猜想还成立吗
?若成立,请
证明;若不成
立,请说明理
由.
-
7
观察、操作、测量、探究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能力提升
例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶
点B对应点的位置,以及旋转后的三角形.
A
D (A′)
【点拨】旋转角为∠ACD
对应点与旋转中心所连线段的
B
C
夹角等于旋转角
∠BCB′=∠ACD
例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶
点B对应点的位置,以及旋转后的三角形.
旋转的决定因素有: ①旋转中心; ②旋转方向; ③旋转角.
D
C
L
M
K
A
B
知识点三 以旋转为背景的四边形问题
A
B
E
(1)
A F
F
N
C BM P
C
(2) E
知识点三 以旋转为背景的四边形问题
【点拨】 △ABM≌△AFN
∠BAM=∠FAN 旋转的性质
AB=AF ∠B=∠F
A
B
E
(1)
A F
F
N
C BM P
C
(2) E
例3.(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?
D
C
L
M
K
A
B
例2.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,
使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK
与DM的关系.
D
C
说明:∵四边形ABCD、四边形AKLM是正方形,
L
∴AB=AD,AK=AM,
M
K
∠BAK=90°-∠DAK, ∠DAM=90°-∠DAK, A
并说明理由.
【点拨】 (2)∠FAB=120°
∠B=60°
AF∥BP AB∥FP
四边形ABPF 是平行四边形
一组邻边相等
四边形ABPF是菱形
120°
A 30° F N
60°
BM
P
C
E (2)
例3.(1)求证:AM=AN; 【证明】
∴AB=AF,∠BAM=∠FAN, 在△ABM和△AFN中,
∴△ABM≌△AFN(ASA), ∴AM=AN.
旋转典型例题解析(上)
课标引路
学习目 标
2.会利用旋转的性质证明两线段的关系; 3.会解以旋转为背景的四边形问题;
知识梳理
注意:正确运用直尺和圆规.
欲证明
转化 证明两线段所
两条线段相等
在三角形全等旋转的性质: (1)对应点到旋转中心的距离相等; (2)对应线段的长度、对应角的大小相等; (3)旋转前后图形的大小和形状没有改变.
L
∴AB=AD,AK=AM,
M
K
∠BAK=90°-∠DAK, ∠DAM=90°-∠DAK, A
B
∴∠BAK=∠DAM,∴△ABK≌△ADM.
∴△ABK与△ADM的形状和大小相同.
∴把△ABK绕A逆时针旋转90°后与△ADM重合.
例2.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,
使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK
用旋转的方法解答本题,
D
C
L
M
K
A
B
将△ABK绕A点逆时针旋转90° 就与△ADM重合,
可证明△ABK≌△ADM, BK和DM是对应边,
得出BK与DM的关系.
例2.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,
使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK
与DM的关系. 【解析】解:BK与DM的关系是互相垂直且相等.
与DM的关系.
D
C
说明:∵四边形ABCD、四边形AKLM是正方形,
L
∴AB=AD,AK=AM,
M
K
∠BAK=90°-∠DAK, ∠DAM=90°-∠DAK, A
B
∴∠BAK=∠DAM,∴△ABK≌△ADM.
∴△ABK与△ADM的形状和大小相同.
∴把△ABK绕A逆时针旋转90°后与△ADM重合.
例2.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,
使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK
与DM的关系.
D
C
说明:∵四边形ABCD、四边形AKLM是正方形,
L
∴AB=AD,AK=AM,
M
K
∠BAK=90°-∠DAK, ∠DAM=90°-∠DAK, A
B
∴∠BAK=∠DAM,∴△ABK≌△ADM.
∴△ABK与△ADM的形状和大小相同.
例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶
点B对应点的位置,以及旋转后的三角形.
A
D (A′)
【点拨】旋转角为∠ACD
对应点与旋转中心所连线段的 夹角等于旋转角
B
C
∠BCB′=∠ACD
例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶
点B对应点的位置,以及旋转后的三角形.
B
∴∠BAK=∠DAM,∴△ABK≌△ADM.
∴△ABK与△ADM的形状和大小相同.
∴把△ABK绕A逆时针旋转90°后与△ADM重合.
例2.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,
使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK
与DM的关系.
D
C
说明:∵四边形ABCD、四边形AKLM是正方形,
A
D (A′)
【点拨】旋转角为∠ACD
对应点与旋转中心所连线段的 夹角等于旋转角
B
C
∠BCB′=∠ACD
例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶
点B对应点的位置,以及旋转后的三角形.
A
D (A′)
【点拨】旋转角为∠ACD
对应点与旋转中心所连线段的 夹角等于旋转角
B
C (C′)
B
∴∠BAK=∠DAM,∴△ABK≌△ADM.
∴△ABK与△ADM的形状和大小相同.
∴把△ABK绕A逆时针旋转90°后与△ADM重合.
例2.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,
使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK
与DM的关系. 说明:∴BK=DM且BK⊥DM.
E (2)
【点评】
此题主要考查了平行四边形的判定以及菱形的 判定和全等三角形的判定等知识;
根据“旋转前后图形大小不发生变化”得出 是解题关键.
指点迷津
【错解】
BC
【误区分析】误把∠BOC当作旋转角.
D
产生错误的原因是不理解旋转角的定义.
A
O
确定旋转角,先确定“旋转中心”和“对应点”,
旋转中心与对应点所连线段的夹角就是旋转角. 本题中的点A和点C是对应点,所以∠AOC是对应角. 【正解】
A
D (A′)
【点拨】旋转角为∠ACD
对应点与旋转中心所连线段的
B
C
夹角等于旋转角
∠BCB′=∠ACD
例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶
点B对应点的位置,以及旋转后的三角形.
A
D (A′)
【点拨】旋转角为∠ACD
对应点与旋转中心所连线段的 夹角等于旋转角
B
C
∠BCB′=∠ACD
∠BCB′=∠ACD
对应点到旋转中心
的距离相等
CB=CB′
确定B′的位置 C(C′) D(A′)
旋转后的三角形
例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶
点B对应点的位置,以及旋转后的三角形.
E
【解析】 解:
B′ A D
(1)连结CD;
(2)以CB为一边作∠BCE,使得∠BCE=∠ACD; B
C
(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;
(4)连结DB′,则△DB′C就是△ABC绕C点旋转后的图形.
例2.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,
使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK
与DM的关系.
【点拨】用旋转中心、旋转角、对应点、对应线段 的知识来说明.
∴把△ABK绕A逆时针旋转90°后与△ADM重合.
例2.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,
使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK
与DM的关系.
D
C
说明:∵四边形ABCD、四边形AKLM是正方形,
L
∴AB=AD,AK=AM,
M
K
∠BAK=90°-∠DAK, ∠DAM=90°-∠DAK, A
A F
N
BM P
C
(2) E
知识点三 以旋转为背景的四边形问题
【解析】解:当旋转角α=30°时,四边形ABPF是菱形.
理由:连接AP,∵∠α=30°, ∴∠FAN=30°, ∴∠FAB=120°,
∴AF∥BP,
A
F
∴∠F=∠FPC=60°,
N
∴∠FPC=∠B=60°,
BM
P
C
∴AB∥FP,∴四边形ABPF是平行四边形, ∵AB=AF,∴平行四边形ABPF是菱形.