初中数学旋转经典例题含答案,九上数学旋转典型题专题训练带答案解析

合集下载

(必考题)初中九年级数学上册第二十三章《旋转》经典测试题(含答案解析)

(必考题)初中九年级数学上册第二十三章《旋转》经典测试题(含答案解析)

一、选择题1.下面四个图案是常用的交通标志,其中为中心对称图形的是( )A .B .C .D .C 解析:C【分析】根据中心对称图形的概念进行判断即可;【详解】A 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;B 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;C 、图形旋转180度之后能与原图形重合,故是中心对称图形;D 、图形旋转180度之后不能与原图形重合,故不是中心对称图形;故选:C .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合;2.如图,在ABC 中,75CAB ∠=︒,在同一平面内,将ABC 绕点A 旋转到AB C ''△的位置,使得CC //AB ',则BAB '∠=( )A .30B .35︒C .40︒D .50︒A解析:A【分析】 旋转中心为点A ,B 与B′,C 与C′分别是对应点,根据旋转的性质可知,旋转角∠BAB′=∠CAC′,AC=AC′,再利用平行线的性质得∠C′CA=∠CAB ,把问题转化到等腰△ACC′中,根据内角和定理求∠CAC′,即可求出∠BAB′的度数.【详解】解:∵CC′∥AB ,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C 、C′为对应点,点A 为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°-2∠C′CA=30°.故选:A .【点睛】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了平行线的性质.3.道路千万条,安全第一条,下列交通标志是中心对称图形的为( )A .B .C .D .D解析:D【分析】根据中心对称图形定义可得答案.【详解】解:A 、不是中心对称图形,故此选项不合题意;B 、不是中心对称图形,故此选项不合题意;C 、不是中心对称图形,故此选项不合题意;D 、是中心对称图形,故此选项符合题意;故选:D .【点睛】本题考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.4.如图,在平面直角坐标系中,点A 的坐标为(3,1)-,将OA 绕原点O 按顺时针方向旋转90︒得到OA ',则点A '的坐标为( )A .(3,1)B .(3,1)-C .(1,3)--D .(1,3)D解析:D【分析】 根据绕原点顺时针旋转90︒的点坐标变换规律即可得.【详解】绕原点顺时针旋转90︒的点坐标变换规律:先将横、纵坐标互换位置,再将纵坐标变为相反数,A-,(3,1)A,(1,3)故选:D.【点睛】本题考查了绕原点顺时针旋转90︒的点坐标变换规律,熟练掌握绕原点顺时针旋转90︒的点坐标变换规律是解题关键.5.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.D解析:D【分析】根据轴对称图形的定义和中心对称图形的定义逐一判断即可.【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项不符合题意;B选项不是轴对称图形,是中心对称图形,故本选项不符合题意;C选项不是轴对称图形,是中心对称图形,故本选项不符合题意;D选项既是轴对称图形,也是中心对称图形,故本选项符合题意.故选D.【点睛】此题考查的是轴对称图形的识别和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.6.下列图形:线段、等边三角形、平行四边形、矩形、菱形、正方形、直角梯形,既是轴对称图形又是中心对称图形的个数是()A.6 B.5 C.4 D.3C解析:C【分析】根据轴对称图形与中心对称图形的定义解答即可.【详解】解:线段,既是中心对称图形,又是轴对称图形;等边三角形,不是中心对称图形,是轴对称图形;平行四边形,是中心对称图形,不是轴对称图形;矩形,既是中心对称图形,又是轴对称图形;菱形,既是中心对称图形,又是轴对称图形;正方形,既是中心对称图形,又是轴对称图形;直角梯形,既不是中心对称图形,又不是轴对称图形;所以,既是中心对称图形,又是轴对称图形的有:线段,矩形,菱形,正方形共4个.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 7.如图,将△ABC 绕点C (0,-1)旋转180°得到△A′B′C ,设点A 的坐标为(-3,-4)则点A′的坐标为A .(3,2)B .(3,3)C .(3,4)D .(3,1)A解析:A【解析】 试题分析:根据A 与A′关于C 点对称,设A′的坐标为(a ,b ),可知302a -+=,412b -+=-,解得a=3,b=2,因此可知A′点的坐标为(3,2). 故选A考点:中心对称8.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A .(﹣4,﹣23B .(﹣4,﹣3C .(﹣2,﹣3)D .(﹣2,﹣23)D解析:D【解析】 解:作AD ⊥BC ,并作出把Rt △ABC 先绕B 点顺时针旋转180°后所得△A 1BC 1,如图所示.∵AC =2,∠ABC =30°,∴BC =4,∴AB 3∴AD =AB AC BC ⋅=3243∴BD =2AB BC 223().∵点B 坐标为(1,0),∴A 点的坐标为(4,3).∵BD =3,∴BD 1=3,∴D 1坐标为(﹣2,0),∴A 1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A ′的坐标为(﹣2,﹣3﹣2).故选D .点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.9.如图,Rt OCB ∆的斜边在y 轴上,3OC =,含30︒角的顶点与原点重合,直角顶点C 在第二象限,将Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',则B 点的对应点B ′的坐标是( )A .(3,1)-B .(1,3)-C .(2,0)D .(3,0)A解析:A【分析】 如图,利用含30度的直角三角形三边的关系得到1BC =,再利用旋转的性质得到3,1,90OC OC B C BC B C O BCO ====∠''''=='∠︒,然后利用第四象限点的坐标特征写出点B ′的坐标.【详解】如图,在Rt OCB ∆中,30BOC ∠=︒,333133BC OC ∴===, Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',3,1,90OC OC B C BC B C O BCO ∴====''''∠'=∠=︒,∴点B ′的坐标为(3,1)-.故选A .本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30456090180︒︒︒︒︒,,,,. 10.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .D解析:D【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、是轴对称图形,但不是中心对称图形,故本选项错误;C 、是轴对称图形,但不是中心对称图形,故本选项错误;D 、既是轴对称图形,又是中心对称图形,故本选项正确.故选D .二、填空题11.如图,在平面直角坐标系xOy 中,若点A 的坐标为(3,33),经过点A ,作AB x ⊥轴于点B ,将ABO 绕点B 逆时针旋转60︒得到CBD ,则点C 的坐标为______,D 点坐标为______.()【分析】如图作CE ⊥x 轴于E 点过点D 作DF ⊥x 轴于F 根据A 点坐标可得OBAB 的长利用旋转的性质得到BC =BABD=OB ∠ABC =60°∠OBD=60°则∠CBE =30°然后根据含30°角的直角三解析:33,322⎛⎫-⎪⎝⎭(32,332-) 【分析】 如图,作CE ⊥x 轴于E 点,过点D 作DF ⊥x 轴于F ,根据A 点坐标可得OB 、AB 的长,利用旋转的性质得到BC =BA ,BD=OB ,∠ABC =60°,∠OBD=60°,则∠CBE =30°,然后根据含30°角的直角三角形三边的关系,在Rt △CBE 中计算出CE 和BE 的长,进而求出OE 的长,从而可得到C 点坐标;根据等边三角形的性质可得∠ODF=30°,根据含30°角的直角三角形的性质求出DF 、OF 的长即可得得D 坐标. 【详解】如图,作CE x ⊥于点E ,∵(3,33)A ,AB x ⊥轴,∴33AB =OB=3,由旋转性质得:33BC AB ==60ABC ∠=︒,BD=OB=3,∠OBD=60°,∴30CBE ∠=︒,∴CE=123322BC CE -92=, ∴32OE BE OB =-=, ∴33322C ⎛- ⎝. ∵∠OBD=60°,OB=BD ,∴△OBD 是等边三角形,∵DF ⊥x 轴,∴∠ODF=12∠ODB=30°, ∴OF=12OB=32,22OD OF -33 ∵将ABO 绕点B 逆时针旋转60︒得到CBD ,∴点D 在第四象限,∴点D 坐标为(32,332-), 故答案为:33,322⎛⎫- ⎪⎝⎭,(32,332-) 【点睛】本题考查了坐标与图形变换−旋转、等边三角形的判定与旋转及含30°角的直角三角形的旋转;图形或点旋转之后对应边相等、对应角相等;30°角所对的直角边等于斜边的一半;熟练掌握旋转的旋转是解题关键.12.有两个直角三角板,其中45E ∠=︒,30C ∠=︒,按图①的方式叠放,先将ABC 固定,再将AED 绕顶点A 顺时针旋转,使//BC DE (如图②所示),则旋转角BAD ∠的度数为______.【分析】先根据直角三角形的性质可得再根据平行线的性质可得然后根据直角三角形的性质即可得【详解】由题意得:和都是直角三角形故答案为:【点睛】本题考查了直角三角形的两锐角互余平行线的性质图形的旋转熟练掌解析:30【分析】先根据直角三角形的性质可得60B ∠=︒,再根据平行线的性质可得AD BC ⊥,然后根据直角三角形的性质即可得.【详解】由题意得:ABC 和ADE 都是直角三角形,30C ∠=︒,9060B C ∴∠=︒-∠=︒,//,BC DE AD DE ⊥,AD BC ∴⊥,9030BAD B ∴∠=︒-∠=︒,故答案为:30.【点睛】本题考查了直角三角形的两锐角互余、平行线的性质、图形的旋转,熟练掌握平行线的性质是解题关键.13.如图,在平面直角坐标系中,若△ABC ≌△DEF 关于点H 成中心对称,则对称中心H 点的坐标是_________.(2-1)【分析】连接对应点ADCF 根据对应点的连线经过对称中心则交点就是对称中心H 点在坐标系内确定出其坐标【详解】解:如图连接ADCF 则交点就是对称中心H 点观察图形可知H (2-1)故答案为:(2- 解析:(2,-1)【分析】连接对应点AD 、CF ,根据对应点的连线经过对称中心,则交点就是对称中心H 点,在坐标系内确定出其坐标.【详解】解:如图,连接AD 、CF ,则交点就是对称中心H 点.观察图形可知,H (2,-1).故答案为:(2,-1).【点睛】本题考查了中心对称的性质:对应点的连线经过对称中心,且被对称中心平分.确定H 点位置是解决问题的关键.14.如图,在边长为1的正方形网格中,()1,7A ,()5,5B ,()7,5C ,()5,1D .线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为______.或【分析】连接两对对应点分别作出连线的垂直平分线其交点即为所求【详解】解:如图所示旋转中心P 的坐标为(33)或(66)故答案为(33)或(66)【点睛】本题主要考查了利用旋转变换进行作图根据旋转的性解析:()3,3或()6,6【分析】连接两对对应点,分别作出连线的垂直平分线,其交点即为所求.【详解】解:如图所示,旋转中心P 的坐标为(3,3)或(6,6).故答案为(3,3)或(6,6).【点睛】本题主要考查了利用旋转变换进行作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.15.在平面直角坐标系中,△OAB 的位置如图所示,将△OAB 绕点O 顺时针旋转90°得△OA 1B 1;再将△OA 1B 1绕点O 顺时针旋转90°得△OA 2B 2;再将△OA 2B 2绕点O 顺时针旋转90°得△OA 3B 3;……依此类推,第2020次旋转得到△OA 2020B 2020,则项点A 的对应点A 2020的坐标是_______.(12)【分析】根据旋转的概率即可得出每旋转4次一个循环进而得到第2020次旋转得到△OA2020B2020则顶点A 的对应点A2020的坐标与点A4的坐标相同【详解】解:将△OAB 绕点O 顺时针旋转9 解析:(1,2)【分析】根据旋转的概率,即可得出每旋转4次一个循环,进而得到第2020次旋转得到△OA 2020B 2020,则顶点A 的对应点A 2020的坐标与点A 4的坐标相同.【详解】解:将△OAB 绕点O 顺时针旋转90°得△OA 1B 1;此时,点A 1的坐标为(2,-1); 再将△OA 1B 1绕点O 顺时针旋转90°得△OA 2B 2;此时,点A 2的坐标为(-1,2); 再将△OA 2B 2绕点O 顺时针旋转90°得△OA 3B 3;此时,点A 3的坐标为(-2,1); 再将△OA 3B 3绕点O 顺时针旋转90°得△OA 4B 4;此时,点A 4的坐标为(1,2); ∴每旋转4次一个循环,…依此类推,第2020次旋转得到△OA 2020B 2020,则顶点A 的对应点A 2020的坐标与点A 4的坐标相同,为(1,2);故答案为:(1,2).【点睛】本题考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.16.如图,小正方形方格的边长都是1,点A 、B 、C 、D 、O 都是小正方形的顶点.若COD 是由AOB 绕点O 按顺时针方向旋转一次得到的,则至少需要旋转______°.90【分析】由△COD 是由△AOB 绕点O 按顺时针方向旋转而得到再结合已知图形可知旋转的角度是∠BOD 的大小然后由图形即可求得答案【详解】解:∵△COD 是由△AOB 绕点O 按顺时针方向旋转而得∴OB=O 解析:90【分析】由△COD 是由△AOB 绕点O 按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠BOD 的大小,然后由图形即可求得答案【详解】解:∵△COD 是由△AOB 绕点O 按顺时针方向旋转而得,∴OB=OD ,∴旋转的角度是∠BOD 的大小,∵∠BOD=90°,∴旋转的角度为90°,故答案为: 90.【点睛】本题考查了旋转的性质.解题的关键是理解△COD 是由△AOB 绕点O 按顺时针方向旋转而得的含义,找到旋转角.17.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.-12【分析】两个点关于原点对称时它们的横坐标互为相反数纵坐标也互为相反数直接利用关于原点对称点的性质得出mn 的值进而得出答案【详解】∵点B(5)与点A (4)关于原点成中心对称∴∴∴故答案为:【点睛解析:-12【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m ,n 的值,进而得出答案.【详解】∵点B (3n +,5)与点A (4,m )关于原点成中心对称,∴34n +=-,5m =-,∴5m =-,7n =-,∴()5712m n +=-+-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称点的坐标性质,正确记忆关于原点对称点的坐标性质是解题关键.18.如图,在△ABC 中,∠C =90°,BC =3,AC =5,点D 为线段AC 上一动点,将线段BD 绕点D 逆时针旋转90°,点B 的对应点为E ,连接AE ,则AE 长的最小值为_____.【分析】由旋转的性质可知BD =DE ∠C =90°则容易想到构造一个直角三角形与Rt △BCD 全等即过E 点作EH ⊥AD 于点H 设CD =x 则可用x 表示AE 的长从而判断什么时候AE 取得最小值【详解】设CD =x 则 解析:2【分析】由旋转的性质可知BD =DE ,∠C =90°,则容易想到构造一个直角三角形与Rt △BCD 全等,即过E 点作EH ⊥AD 于点H ,设CD =x ,则可用x 表示AE 的长,从而判断什么时候AE 取得最小值.【详解】设CD =x ,则AD =5﹣x ,过点E 作EH ⊥AD 于点H ,如图:由旋转的性质可知BD =DE ,∵∠ADE +∠BDC =90°,∠BDC +∠CBD =90°,∴∠ADE =∠CBD ,又∵∠EHD =∠C ,∴△BCD ≌△DHE ,∴EH =CD =x ,DH =BC =3.∵AD =5﹣x ,∴AH =AD ﹣DH =5﹣x ﹣3=2﹣x ,∵在Rt △AEH 中,AE 2=AH 2+EH 2=(2﹣x )2+x 2=2x 2+4x +4=2(x ﹣1)2+2,所以当x =1时,AE 2取得最小值2,即AE 取得最小值2.故答案是:2.【点睛】考查了全等三角形的性质和判定,解此题的关键灵活其相关的知识点进行推理证明. 19.如图,将矩形ABCD 绕点A 顺时针旋转90°后,得到矩形AB′C′D′,若CD =2,DA=2,那么CC′=____________.4【分析】根据矩形的性质可以得到再由旋转的性质可得最后根据勾股定理即可求得的长度【详解】解:∵CD=2DA=2∴根据矩形的性质可得由旋转的性质可得:∴故答案为4【点睛】本题考查旋转性质及勾股定理的综解析:4【分析】根据矩形的性质可以得到22AC =290AC CAC ︒'=∠=',,最后根据勾股定理即可求得 CC '的长度. 【详解】解:∵CD=2,DA=2,∴根据矩形的性质可得222222AC =+=由旋转的性质可得:290AC AC CAC ==∠'=︒',, ∴()()222222224CC AC AC '+=+'==,故答案为4.【点睛】本题考查旋转性质及勾股定理的综合应用,根据旋转性质得到直角三角形的基础上应用勾股定理求出边的长度是解题关键.20.点)1,5A a -与点()2,5B b +-关于原点对称,则(a +b )2 020=____ .【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出ab 的值然后相加计算即可得解【详解】∵点与点关于原点对称∴∴∴故答案为1【点睛】本题考查了关于原点对称的点的坐标关于原点的对称点横纵坐标都解析:1【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出a 、b 的值,然后相加计算即可得解.【详解】∵点()1,5A a -与点()2,5B b +-关于原点对称 ∴1+2=0a b -+ ∴1,2a b ==- ∴()()2 020 2 020211a b =++=- 故答案为1.【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数. 三、解答题21.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (4,0),C (5,2).将△ABC 绕着点A 按逆时针方向旋转90︒后得到△AB 1C 1. (1)请画出△AB 1C 1;(2)写出点B 1,C 1的坐标;(3)求出线段1BB 的长.解析:(1)见解析;(2)11(13)(14)B C -,,,;(3)1BB =32【分析】 (1)根据旋转的性质确定点B 1、C 1的位置,顺次连线即可得到图形;(2)依据(1)即可得到答案;(3)根据勾股定理计算得出答案.【详解】解:(1)如图(2)由(1)可知:11(13)(14)B C -,,,; (3)由勾股定理可得:22133BB=+=32. 【点睛】此题考查旋转画图,旋转的性质,根据点在直角坐标系中的位置确定坐标,勾股定理,正确画出旋转图形是解题的关键.22.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为(5,1)A -,(2,2)B -,(1,4)C -,请按下列要求画图:(1)画出ABC 关于x 轴对称得到的111A B C △,并写出1B 的坐标;(2)画出与ABC 关于原点O 成中心对称的222A B C △,并写出点2A 的坐标; (3)若x 轴上有一点P ,到1B 、2A 的距离和最短,在平面直角坐标系内确定点P 的位置,并求点P 的坐标.解析:(1)见解析,1B 的坐标为(-2,-2);(1)见解析,点2A 的坐标为(5,-1);(3)见解析.点P 的坐标为(223,0). 【分析】(1)分别作出A ,B ,C 三点关于x 轴对称的点A 1,B 1,C 1,顺次连接即可,从而可写出1B 的坐标;(2)分别作出A ,B ,C 三点原点O 对称的点A 2,B 2,C 2,顺次连接即可,写出点2A 的坐标;(3)作A 2点关于x 轴对称的点A 3,连接A 3B 1交x 轴于一点,这点即为所求.【详解】解:(1)如图所示,1B 的坐标为(-2,-2);(2)如图所示,点2A 的坐标为(5,-1);(3)如图所示,点P 即为所求作.设B 1A 3的解析式为y=kx+b ,由对称性知A 3的坐标为(5,1),把A 3(5,1),B 1(-2,-2)代入B 1A 3的解析式,得5122k b k b +=⎧⎨-+=-⎩, 解得,3787k b ⎧=⎪⎪⎨⎪=-⎪⎩∴B 1A 3的解析式为3877y x =-, 令y=0,则x=223, ∴点P 的坐标为(223,0). 【点睛】此题主要考查了复杂作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.23.如图,在平面直角坐标系中有一个直角AOB ,已知90OAC ∠=︒,且点B 的坐为()3,2(1)画出OAB 绕原点O 逆时针旋转90︒后的11OA B ;(2)点1B 关于原点O 对称的点2B 的坐标为________.解析:(1)作图见解析;(2)()22,3.B -【分析】(1)利用网格特点和旋转的性质,画出点A 、B 的对称点11,A B ,即可得到11OA B ; (2)先写出1B 点的坐标,然后根据关于原点对称的点的坐标特征写出点2B 的坐标.【详解】解:(1)如图,11OA B 为所作;(2)1B 点的坐标为(-2,3),所以点1B 关于原点O 对称的点2B 的坐标为(2,-3).【点睛】本题考查了作图旋转变换,根据旋转的性质,可以作相等的角,在角的边上截取相等的线段,找到对应点,顺次连接得出旋转后的图形.24.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-1,1)、B (-3,1)、C (-1,4).(1)画出△ABC 绕点C 顺时针旋转90°后得到的△A 1B 1C ;(2)画出△ABC 关于点P (1,0)对称的△A 2B 2C 2.解析:(1)见解析;(2)见解析【分析】(1)分别作出点A、B绕点C顺时针旋转90°后得到的对应点,再顺次连接可得;(2)分别作出点A、B、C关于点P的对称点,再顺次连接可得.【详解】(1)如图,△A1B1C即为所求;(2)如图,△A2B2C2即为所求.【点睛】本题考查了作图-旋转变换,中心对称等知识,解题的关键是熟练掌握旋转变换的定义和性质.网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的25.如图,在97A B C E F均为格点,请按要求仅用一把无刻度的直尺作图.顶点称为格点,,,,,(1)将ABC ∆绕点O 旋转180︒得到BAD ∆,请画出点O 和BAD ∆;(2)将格点线段EF 平移至格点线段MN (点,E F 的对应点分别为,M N ),使得MN 平分四边形ABCD 的面积,请画出线段MN ;(3)在线段AD 上找一点P ,使得AOP BOD ∠=∠,请画出点P .解析:(1)如图所示,见解析;(2)如图所示,见解析;(3)如图所示,见解析.【分析】(1)依据旋转方向,旋转角度以及旋转中心,即可得到△BAD .(2)依据平移的方向和距离,即可得到MN ;(3)延长QO 与AD 的交点即为点P .【详解】解:(1)如图所示.(2)如图所示;(3)如图所示.【点睛】本题主要考查了利用平移变换以及旋转变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照几何变换确定对应点后,再顺次连接对应点即可得到几何变换后的图形.26.如图,等边△ABC 中,P 是BC 边上任意一点,将△ABP 绕点A 逆时针旋转60°.(1)请用圆规和无刻度的直尺作出旋转后的三角形(保留作图痕迹,不写作法和证明); (2)记点P 的对应点为P ʹ,试说明△APP ʹ的形状,并说明理由解析:(1)见解析;(2)△APP ʹ是等边三角形,理由见解析.【分析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)根据“含有60°角的等腰三角形是等边三角形”进行判断△APP ʹ的形状.【详解】解:(1)如图所示,(2)△APP ʹ是等边三角形,如图,连接PP ʹ,根据作图得∠PAP ʹ=60°,AP =AP ʹ,∴△APP ʹ是等边三角形.【点睛】本题考查的是作图-旋转变换和等边三角形的判断,熟知图形旋转的性质及等边三角形的判定定理是解答此题的关键.27.已知:点D 是等腰直角三角形ABC 斜边BC 所在直线上一点(不与点B 重合),连接AD .(1)如图1,当点D 在线段BC 上时,将线段AD 绕点A 逆时针方向旋转90︒得到线段AE ,连接CE .求证:,BD CE BD CE =⊥;(2)如图2,当点D 在线段BC 延长线上时,将线段AD 绕点A 逆时针方向旋转90︒得到线段AE ,连接CE ,请画出图形.上述结论是否仍然成立,并说明理由;(3)根据图2,请直接写出,,AD BD CD 三条线段之间的数量关系.解析:(1)证明见解析;(2)图见解析,结论仍然成立,理由见解析;(3)2222AD BD CD =+.【分析】(1)先根据等腰直角三角形的定义可得,90,45AB AC BAC ABC ACB =∠=︒∠=∠=︒,再根据旋转的性质可得,90AD AE DAE =∠=︒,然后根据角的和差可得BAD CAE ∠=∠,最后根据三角形全等的判定定理与性质、垂直的定义即可得证;(2)先根据旋转的定义画出图形,再根据旋转的性质可得,90AD AE DAE =∠=︒,然后根据角的和差可得BAD CAE ∠=∠,最后根据三角形全等的判定定理与性质、垂直的定义即可得证;(3)如图(见解析),先在Rt ADE △中,根据勾股定理可得222DE AD =,再在Rt CDE △中,根据勾股定理可得22222DE CE CD BD CD =+=+,由此即可得出答案.【详解】(1)ABC 是等腰直角三角形,,90,45AB AC BAC ABC ACB ∴=∠=︒∠=∠=︒,由旋转的性质得:,90AD AE DAE =∠=︒,BAC CAD DAE CAD ∴∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,,45BD CE ACE ABD ∴=∠=∠=︒,90BCE ACB ACE ∴∠=∠+∠=︒,BD CE ∴⊥;(2)成立,理由如下:由题意,画出图形如下:由旋转的性质得:,90AD AE DAE =∠=︒,BAC CAD DAE CAD ∴∠+∠=∠+∠,即BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,,45BD CE ACE ABD ∴=∠=∠=︒,90BCE ACB ACE ∴∠=∠+∠=︒,BD CE ∴⊥;(3)如图,连接DE ,,90AD AE DAE =∠=︒,∴在Rt ADE △中,22222=+=DE AD AE AD ,由(2)可知,,BD CE BD CE =⊥,∴在Rt CDE △中,22222DE CE CD BD CD =+=+,2222AD BD CD ∴=+,即,,AD BD CD 三条线段之间的数量关系为2222AD BD CD =+.【点睛】本题考查了等腰直角三角形的性质、旋转的性质、勾股定理、三角形全等的判定定理与性质等知识点,熟练掌握旋转的性质是解题关键.28.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,平行四边形ABCD的顶点在格点上.仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)将线段AD绕点A逆时针旋转90°,画出对应线段AE;(2)过点E画一条直线把平行四边形ABCD分成面积相等的两部分;(3)过点D画格点线段DP,使得DP⊥BC于点M,垂足为M;(4)过点M画线段MN,使得MN//AB,MN=AB.解析:(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据旋转的性质直接作图即可;(2)连接AC、BD,交于一点O,然后连接EO即可得出图形;(3)把线段AD绕点D顺时针旋转90°,即可得到线段DP⊥BC,与BC交于一点M,即可得出答案;(4)根据平行四边形是中心对称图形,点O是对称中心,设EO与D点所在网格线交于点Q,连接MQ并延长交于AD于点N,MN即为所求.【详解】解:(1)(2)(3)如图所示:(4)根据平行四边形是中心对称图形,点O是对称中心,设EO与D点所在网格线交于点Q,连接MQ并延长交于AD于点N,MN即为所求,如图所示:【点睛】本题主要考查旋转的性质、平行四边形的性质及中心对称图形,熟练掌握旋转的性质、平行四边形的性质及中心对称图形是解题的关键.。

人教版初中九年级数学上册第二十三章《旋转》经典练习(含答案解析)

人教版初中九年级数学上册第二十三章《旋转》经典练习(含答案解析)

一、选择题1.如图,在ABC 中,75CAB ∠=︒,在同一平面内,将ABC 绕点A 旋转到AB C ''△的位置,使得CC //AB ',则BAB '∠=( )A .30B .35︒C .40︒D .50︒2.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D . 3.如图,OAB 绕点O 逆时针旋转80°到OCD 的位置,已知45AOB ∠=︒,则AOD ∠等于( )A .45°B .35°C .25°D .15°4.如图,在等边△ABC 中,AC=8,点O 在AC 上,且AO=3,点P 是边AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( ).A .4B .5C .6D .85.以下四幅图案,其中图案是中心对称图形的是( )A .B .C .D .6.如图,已知平行四边形ABCD 中,AE BC ⊥于点,E 以点B 为中心,取旋转角等于,ABC ∠把BAE △顺时针旋转,得到BA E '',连接DA '.若60,50ADC ADA '∠=︒∠=︒,则DA E ''∠的大小为( )A .130︒B .150︒C .160︒D .170︒7.下列四个图案中,是中心对称图形的是( )A .B .C .D .8.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP ',则PP '的长为( )A .22B .23C .3D .32 9.如图,将ABC 绕点C 顺时针旋转80°,得到DEC ,若3120B A ∠=∠=︒,则α∠的度数是( )10.下列命题的逆命题是真命题的是()A.等边三角形是等腰三角形B.若22>,则a bac bc>C.成中心对称的两个图形全等D.有两边相等的三角形是等腰三角形11.如图,点E,F,G,H分别为四边形ABCD四条边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的是()A.不是平行四边形B.不是中心对称图形C.一定是中心对称图形D.当AC=BD时,它为矩形12.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60 °B.75°C.85°D.90°13.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种14.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有( )个是正确的.①∠DAF=45° ②△ABE≌△ACD ③AD平分∠EDF ④222+=BE DC DE15.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP 的长是()A.4 B.5 C.6 D.8第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题16.如图,将边长为6的正方形ABCD绕点A逆时针方向旋转30︒后得到正方形'''',则图中阴影部分面积为____________.A B C D17.如图,线段BC为一个通信公司,该公司与两个通信点,A D恰好围成一个正方形的ABCD公司BC长度为100米,公司准备在正方形ABCD内要建设一个通信中转站点,P,在通信公司的BC边上架设一个通讯中心点Q,在通信中转站点P到两个通信点,A D和通讯中心点Q之间铺设通信光缆,则铺设光缆的最短长度为________米.DE=,把ADE绕点A 18.如图,在正方形ABCD中,3AB=,点E在CD边上,1△,连接EE',则线段EE'的长为______.顺时针旋转90°,得到ABE'19.在Rt ABC △中,90ACB ∠=︒,将ABC 绕顶点C 顺时针旋转得到A B C '',点M 是BC 的中点,点P 是A B ''的中点,连接PM .若4BC =,30A ∠=︒,则在旋转一周的过程中线段PM 长度的最大值等于_____.20.如图,在Rt ABC 中,90CAB ∠=︒,点P 是ABC 内一点,将ABP △绕点A 逆时针旋转后能与ACP '△重合,如果5AP =,则PP '的长为______.21.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转得到△A′OB′,若∠A′=40°,则∠B′= °,∠AOB= .22.如图,平行四边形ABCD 的两条对角线AC 与BD 相交于直角坐标系的原点.若点A 的坐标为(-2,3),则点C 的坐标为___________.23.如图,在Rt △ABC 中,已知∠C=90°,∠A=60°,AC=3cm ,以斜边AB 的中点P 为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt △A′B′C′,则旋转前后两个直角三角形重叠部分的面积为______________.24.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________. 25.如图,在Rt ABC 中,∠C =90°,AC =6cm ,BC =8cm .将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连结BB ',则BB '的长度为_________.26.一副直角三角尺叠放,如图①所示,现将含45°角的三角尺ADE 固定不动,将含30°角的三角尺ABC 绕顶点A 顺时针转动(旋转角不超过180度),使两个三角尺有一组边互相平行.例如图②,当∠BAD =15°时,BC ∥DE ,当90°<∠BAD <180°时,∠BAD 的度数为___.三、解答题27.如图,△ABC 中A (2-,3),B (3-,1),C (1-,2).(1)将△ABC 绕原点O 顺时针旋转180°,在坐标系中画出旋转后的△A 1B 1C 1; (2)写出的△A 1B 1C 1的顶点B 1的坐标 .28.如图,△ABC 在平面直角坐标系中,每个小正方形网格的边长都是1个单位长度. (1)画出ABC 关于x 轴的对称图形111A B C △,并写出点1A 的坐标;(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的222A B C △,并写出A 2的坐标. (3)直接写出12B B 的长度.29.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 绕着点A 顺时针旋转90 ,画出旋转后得到的△AB 1C 1;直接写出点B 1的坐标;(2)作出△ABC关于原点O成中心对称的△A2B2C2,并直接写出点B2的坐标.30.如图所示,△ ABC和△ AEF为等边三角形,点 E 在△ ABC 内部,且 E 到点 A、B、C 的距离分别为 3、4、5,求∠AEB的度数.。

九年级数学上册第二十三章旋转必须掌握的典型题(带答案)

九年级数学上册第二十三章旋转必须掌握的典型题(带答案)

九年级数学上册第二十三章旋转必须掌握的典型题单选题1、如图,将△ABC绕点A逆时针旋转40°得到△ADE,AD与BC相交于点F,若∠E=80°且△AFC是以线段FC 为底边的等腰三角形,则∠BAC的度数为()A.55°B.60°C.65°D.70°答案:B分析:由旋转的性质得出∠E=∠C=80°,∠BAD=40°,由等腰三角形的性质得出∠C=∠AFC=80°,求出∠CAF=20°,根据∠BAC=∠BAD+∠CAF即可得出答案.解:∵将△ABC绕点A逆时针旋转40°得到△ADE,且∠E=80°,∴∠E=∠C=80°,∠BAD=40°,又∵△AFC是以线段FC为底边的等腰三角形,∴AC=AF,∴∠C=∠AFC=80°,∴∠CAF=180°−∠C−∠AFC=180°−80°−80°=20°,∴∠BAC=∠BAD+∠CAF=40°+20°=60°,故选:B.小提示:本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.2、如图,△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)()A.90°+12αB.90°−12αC.180°−32αD.32α答案:C分析:根据旋转的性质可得,BC=DC,∠ACE=α,∠A=∠E,则∠B=∠BDC,利用三角形内角和可求得∠B,进而可求得∠E,则可求得答案.解:∵将△ABC绕点C顺时针旋转得到△EDC,且∠BCD=α∴BC=DC,∠ACE=α,∠A=∠E,∴∠B=∠BDC,∴∠B=∠BDC=180°−α2=90°−α2,∴∠A=∠E=90°−∠B=90°−90°+α2=α2,∴∠A=∠E=α2,∴∠EFC=180°−∠ACE−∠E=180°−α−α2=180°−32α,故选:C.小提示:本题考查了旋转变换、三角形内角和、等腰三角形的性质,解题的关键是掌握旋转的性质.3、如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为()A.65°B.70°C.75°D.80°答案:C分析:由旋转的性质可得∠BAD=55°,∠E=∠ACB=70°,由直角三角形的性质可得∠DAC=20°,即可求解.解:∵将△ABC绕点A逆时针旋转55°得△ADE,∴∠BAD=55°,∠E=∠ACB=70°,∵AD⊥BC,∴∠DAC=20°,∴∠BAC=∠BAD+∠DAC=75°.故选C.小提示:本题考查了旋转的性质,掌握旋转的性质是本题的关键.4、下列四个银行标志中,是中心对称图形的标志是()A.B.C.D.答案:A分析:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.据此即可判断.解:A.是中心对称图形,故此选项符合题意;B.不是中心对称图形,故此选项不合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:A.小提示:本题主要考查了中心对称图形定义,关键是找出对称中心.5、如图,在ΔABC中,AB=2,BC=3.6,∠B=60∘,将ΔABC绕点A顺时针旋转度得到ΔADE,当点B的对应点D 恰好落在BC边上时,则CD的长为()A.1.6B.1.8C.2D.2.6答案:A分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.由旋转的性质可知,AD=AB,∵∠B=60∘,AD=AB,∴ΔADB为等边三角形,∴BD=AB=2,∴CD=CB−BD=1.6,故选A.小提示:此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB6、如图,将ΔABC绕点C顺时针旋转得到ΔDEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC答案:D分析:利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出∠A=∠EBC,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=1800-∠ACB判断选项B不一定正确即可.解:∵ΔABC 绕点C 顺时针旋转得到ΔDEC ,∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180°−∠ACD 2;∠EBC=∠BEC=180°−∠BCE 2,∴选项A 、C 不一定正确,∴∠A =∠EBC ,∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=1800-∠ACB 不一定等于900,∴选项B 不一定正确;故选D .小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.7、如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说法中错误的是( )A .AD//EF,AB//GFB .BO =GOC .CD =HE,BC =GH D .DO =HO答案:D分析:中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.A .∵AD 与EF 关于点O 成中心对称,∴AD //EF ,同理可得AB //GF ,正确;B .∵点B 与点G 关于点O 成中心对称,∴BO =GO ,正确;C .∵CD 与HE 关于点O 成中心对称,∴CD=HE,同理可得BC=GH,正确;D.∵点D与点E关于点O成中心对称,∴DO=EO,∴DO=HO错误,故选:D.小提示:本题考查中心对称图形的性质,是基础考点,掌握相关知识是解题关键.8、某校举办了“送福迎新春,剪纸庆佳节”比赛.以下参赛作品中,是中心对称图形的是().A.B.C.D.答案:D解:选项A,B,C中的图形不是中心对称图形,选项D中的图形是中心对称图形,故选D小提示:本题考查的是中心对称图形的识别,中心对称图形的定义:把一个图形绕某点旋转180°后能够与自身重合,则这个图形是中心对称图形,掌握“中心对称图形的定义”是解本题的关键.9、下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.答案:C分析:根据轴对称图形和中心对称图形的概念逐项判断即可.A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.小提示:本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.10、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°答案:C分析:根据图形的对称性,用360°除以3计算即可得解.解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.小提示:本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.填空题11、在平面直角坐标系中,点A(a,2)与点B(6,b)关于原点对称,则ab=________.答案:12分析:根据关于原点对称的两点坐标关系:横、纵坐标均互为相反数,即可求出a和b的值,从而求出结论.解:∵点A(a,2)与点B(6,b)关于原点对称,∴a=-6,b=-2∴ab=12所以答案是:12.小提示:此题考查的是根据两点关于原点对称,求参数的值,掌握关于原点对称的两点坐标关系是解题关键.12、镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是.答案:6秒或19.5秒分析:设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),∴t≤45﹣12,即t≤33.由题意,满足以下条件时,两灯的光束能互相平行:①如图,∠MAM'=∠PBP',12t=4(12+t),解得t=6;②如图,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;综上所述,满足条件的t的值为6秒或19.5秒.所以答案是:6秒或19.5秒.小提示:本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13、如图,在矩形ABCD中,对角线AC、BD的交点为O,矩形的长、宽分别为7cm、4cm,EF过点O分别交AB、CD于E、F,那么图中阴影部分面积为___cm2.答案:7分析:先根据矩形的性质可得OA=OC,AB∥CD,S▭ABCD=28cm2,再根据平行线的性质可得∠OAE=∠OCF,∠OEA=∠OFC,然后根据三角形全等的判定定理证出△AOE≅△COF,根据全等三角形的性质可得S△AOE=S△COF,由此即可得.解:∵四边形ABCD是矩形,且长、宽分别为7cm、4cm,∴OA=OC,AB∥CD,S▭ABCD=7×4=28(cm2),∴∠OAE=∠OCF,∠OEA=∠OFC,在△AOE和△COF中,{∠OAE=∠OCF∠OEA=∠OFCOA=OC,∴△AOE≅△COF(AAS),∴S△AOE=S△COF,则图中阴影部分面积为S△AOE+S△DOF=S△COF+S△DOF=S△COD=14S▭ABCD=7cm2,所以答案是:7.小提示:本题考查了矩形的性质、三角形全等的判定与性质等知识点,熟练掌握三角形全等的判定与性质是解题关键.14、如图,△ABC与△DEF关于O点成中心对称.则AB________DE,BC//________,AC=________.答案: = EF DF分析:利用关于某点对称的图形全等,这样可以得出对应边与对应角之间的关系,进而解决.∵△ABC与△DEF关于O点成中心对称,∴△ABC≌△DEF,∴AB=DE,AC=DF,∠ABC=∠DEF∴∠CBO=∠FEO,∴BC//EF.所以答案是:=,EF,DF.小提示:此题主要考查了关于某点对称的图形之间的关系,涉及全等三角形,难度不大,熟练掌握中心对称图形的定义是解题的关键.15、以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.答案:(2,﹣1)分析:根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.解:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),所以答案是:(2,﹣1).小提示:此题考查中心对称图形的顶点在坐标系中的表示.解答题16、如图1,在等腰Rt△ABC中,∠A=90°,点D、E分别在边AB、AC上,AD=AE,连接,点M、P、N分别为DE、DC、BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是______,位置关系是______;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,求△PMN面积的最大值.答案:(1)PM=PN,PM⊥PN(2)△PMN是等腰直角三角形,理由见解析(3)492分析:(1)利用三角形的中位线定理得出PM=12CE,PN=12BD,进而得出BD=CE,即可得出结论,再利用三角形的中位线定理得出PM∥CE,再得出∠DPM=∠DCA,最后利用互余得出结论;(2)先判断出△ABD≌△ACE(SAS),得出BD=CE,同(1)的方法得出PM=12CE,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)由等腰直角三角形可知,当PM最大时,△PMN面积最大,而BD的最大值是AB+AD=14,即可得出结论.(1)解:∵P、N分别为DC、BC的中点,∴PN∥BD,PN=12BD,∵点M、P分别为DE、DC的中点,∴PM∥CE,PM=12CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,PM∥CE,∴∠DPN=∠ADC,∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN.所以答案是:PM=PN,PM⊥PN.(2)解:△PMN是等腰直角三角形,理由如下.由旋转可知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,由三角形的中位线定理得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法可得,PM∥CE,PN∥BD,∠DPM=∠DCE,∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC,=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形.(3)解:由(2)可知,△PMN是等腰直角三角形,PM=PN=12BD,∴当PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=12PM2=12×72=492.小提示:本题综合考查了三角形全等的判定与性质、旋转的性质及三角形的中位线定理,熟练应用相关知识是解决本题的关键.17、如图,在等边△ABC中,D为BC边上一点,连接AD,将△ACD沿AD翻折得到△AED,连接BE并延长交AD的延长线于点F,连接CF.(1)若∠CAD=20°,求∠CBF的度数;(2)若∠CAD=a,求∠CBF的大小;(3)猜想CF,BF,AF之间的数量关系,并证明.答案:(1)20°;(2)∠CBF=α;(3)AF=CF+BF,理由见解析分析:(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∠ABE=∠AEB=1(180°−∠BAE)=80°,∠CBF=∠ABE-2∠ABC=20°;(2)同(1)求解即可;(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,∴∠ABE=∠AEB=1(180°−∠BAE)=80°,2∴∠CBF=∠ABE-∠ABC=20°;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=α,AC=AE,∴∠BAE=∠BAC−∠EAD−∠CAD=60°−2α,AB=AE,∴∠ABE=∠AEB=12(180°−∠BAE)=60°+α,∴∠CBF=∠ABE−∠ABC=α;(3)AF=CF+BF,理由如下:如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG在△AEF和△ACF中,{AE=AC∠EAF=∠CAF AF=AF,∴△AEF≌△ACF(SAS),∴∠AFE=∠AFC,∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,∴F、C、G三点共线,∴△AFG是等边三角形,∴AF=GF=CF+CG=CF+BF.小提示:本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.18、马老师在带领学生学习《正方形的性质与判定》这一课时,给出如下问题:如图①,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′O与正方形ABCD的边长相等.在正方形A′B′C′O绕点O旋转的过程中,OA′与AB相交于点M,OC′与BC相交于点N,探究两个正方形重叠部分的面积与正方形ABCD的面积有什么关系.(1)小亮第一个举手回答“两个正方形重叠部分的面积是正方形ABCD面积的______”;请说明理由.(2)马老师鼓励同学们编道拓展题,小颖编了这样一道题:如图②,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,求四边形ABCD的面积.请你帮小颖解答这道题.答案:(1)14,见解析(2)18,见解析分析:(1)只需要证明△MOB≌△NOC得到S△MOB=S△NOC,即可求解.(2)过A作AE⊥AC,交CD的延长线于E,证明△EAD≌△CAB得到S△ABC=S△ADE,AE=AC=6,则S△AEC=12×6×6=18S四边形ABCD =S△ACD+S△ABC=S△ACD+S△ADE=S△EAC=12AE⋅AC=18.(1)解:∵四边形ABCD是正方形,四边形OA′B′C′是正方形,∴AC⊥BD,OB=OC,∠OBM=∠OCN=45°,∠A′OC′=90°,∴∠BOC=∠A′OC′=90°,∴∠BOM=∠CON,∴△BOM≌△CON(ASA),∴S△BOM=S△CON,∴S四边形OMBN =S△OBC=14S正方形ABCD.答案为:14;(2)过A作AE⊥AC,交CD的延长线于E,∵AE⊥AC,∴∠EAC=90°,∵∠DAB=90°,∴∠DAE=∠BAC,∵∠BAD=∠BCD=90°,∴∠ADC+∠B=180°,∵∠EDA+∠ADC=180°,∴∠EDA=∠B,∵AD=AB,在△ABC与△ADE中,{∠EAD=∠CABAD=AB∠EDA=∠B,∴△ABC≌△ADE(ASA),∴AC=AE,∵AC=6,∴AE=6,∴S△AEC=12×6×6=18,∴S四边形ABCD=18.小提示:本题主要考查了正方形的性质,全等三角形的性质与判定,四边形内角和,熟知全等三角形的性质与判定是解题的关键.。

初三上旋转试题及答案

初三上旋转试题及答案

初三上旋转试题及答案一、选择题1. 将一个图形绕着某一点旋转一定角度后,旋转前后图形的对应点与旋转中心的连线所成的角相等,对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形全等。

这个说法是正确的吗?A. 正确B. 错误答案:A2. 旋转变换只改变图形的位置,不改变图形的形状与大小,下列说法错误的是:A. 旋转变换前后图形全等B. 旋转变换前后图形的对应线段相等C. 旋转变换前后图形的对应角相等D. 旋转变换前后图形的对应点到旋转中心的距离不相等答案:D3. 将一个图形绕着某一点旋转一定角度后,下列说法正确的是:A. 旋转前后图形的对应点与旋转中心的连线所成的角不相等B. 旋转前后图形的对应点到旋转中心的距离不相等C. 旋转前后图形的对应线段的长度不相等D. 旋转前后图形全等答案:D二、填空题4. 一个图形绕着某一点旋转180°后,旋转前后图形的对应点与旋转中心的连线所成的角是______。

答案:180°5. 一个图形绕着某一点旋转90°后,旋转前后图形的对应点到旋转中心的距离是______。

答案:相等6. 一个图形绕着某一点旋转后,旋转前后图形的对应线段的长度是______。

答案:相等三、解答题7. 如图所示,点A绕点O旋转后得到点A',若∠AOA'=90°,OA=OA',求证:△AOA'是等腰直角三角形。

证明:∵点A绕点O旋转后得到点A',∴OA=OA',∵∠AOA'=90°,∴∠AOA'=90°,∴△AOA'是等腰直角三角形。

8. 如图所示,点A绕点O旋转后得到点A',若∠AOA'=120°,OA=OA',求证:△AOA'是等边三角形。

证明:∵点A绕点O旋转后得到点A',∴OA=OA',∵∠AOA'=120°,∴∠AOA'=120°,∴△AOA'是等边三角形。

九年级数学旋转经典题含答案

九年级数学旋转经典题含答案

1、在△ABC中,∠CAB=700,在同一平面内,△将ABC试点A旋试到△AB′C′的位置,使得CC′∥AB,试∠BAB′=()A. 300B. 350C. 400D. 5002、△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP'重合,如果AP=3,那么线段PP'的长等于_________________________.3、在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,则BB′的长度为___4、已知∠AOB=90°,点A绕点0顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依此作法,则∠AA n A n+1等于_____度.(用含n的代数式表示,n为正整数)5、已知△ABC是正三角形,OC⊥OB,OC=OB,将△ABC绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是_____________________.6、如图,P点是正方形ABCD内一点,△ABP经旋转后与△CBP'重合,旋转中心是点_____________,旋转了____________度,若PB=3,则△PBP/ 面积是_______________.7、如图,在平面内将Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC,若AB=√5,BC=1,则线段BE的长为_____________.8、在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转一定角度后得到△EDC,此时点D在AB 边上,斜边DE交AC边于点F.则DC的长____________;旋转的角度_______________;图中阴影部分的面积________________..9、将边长为√3的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为______10、如图是由三个叶片组成的,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为 cm2.如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.(1)请画出旋转后的图形,并说明此时△ABP以点B为旋转中心旋转了多少度?(2)求出PG的长度;(3)请你猜想△PGC的形状,并说明理由.答案(找作业答案--->>上魔方格)解:(1)旋转后的△BCG如图所示,旋转角为∠ABC=90°;(2)连接PG,由旋转的性质可知BP=BG,∠PBG=∠ABC=90°,∴△BPG为等腰直角三角形,又BP=BG=2,∴PG==2;(3)由旋转的性质可知CG=AP=1,已知PC=3,由(2)可知PG=2,∵PG2+CG2=(2)2+12=9,PC2=9,∴PG2+CG2=PC2,∴△PGC为直角三角形.马上分享给同学1C 2、3倍根号2 3、根号3 4 180度减去2的n次幂分之90 5、150度6、B,90 45 7、3 8、2分之根号3 9、根号3 10、5。

九年级数学旋转经典题含答案

九年级数学旋转经典题含答案

1、在厶ABC 中,/ CAB=70°,在同一平面内,△将ABC 试点A 旋试到△ AB C 的位置,使得CC // AB,试/ BAB =()A. 300 B. 35 0 C. 40 0 D. 50 °2、A ABC 是等腰直角三角形,BC 是斜边,将△ ABP 绕点A 逆时针旋转后,能与厶ACP'重合,如果AP=3,那么线段 PP'的长等于 _______________________________________ .3、在 Rt △ ABC 中,/ ACB=9 0°,/ ABC=3 0 °, AC=1,将△ ABC 绕点 C 逆时针旋转至△ A ' B ' C ,使得点 A '恰 好落在AB 上,连接BB ',贝U BB '的长度为 —14、已知/ AOB=90,点A 绕点0顺时针旋转后的对应点A i 落在射线OB 上,点A 绕点A i 顺时针旋转后的对应点 A 落在射线OB 上,点A 绕点A 顺时针旋转后的对应点 A 落在射线OB 上,…,连接AA ,AA 2,AA 3…,依此作法,则/ AAA n+i等于 _____ 度.(用含n 的代数式表示,n 为正整数)9、将边长为"3的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形 A'B'C'D ',则图中阴影部分面积为 _______________ 5、已知△ ABC 是正三角形,OCLOB OC=OB 将厶ABC 绕点O 按逆时针方向旋转,使得 OA 与 OC 重合,得到△ OCD 则 旋转的角度是 _________________________ .,旋转了7、如图,在平面内将长为 ______________ . 8 在 Rt △ ABC 中,/ 边上,斜边DE 交AC 边于点F . ACB=9C °, 绕着直角顶点 C 逆时针旋转90°得到Rt △ EFC ,若AB =V 5,BC=1,则线段BE 的/ A=30°,BC=2将厶ABC 绕点C 顺时针旋转一定角度后得到△ EDC 此时点D 在AB则DC 的长 ____________ ;旋转的角度 _______________ ;图中阴影部分的面积 Rt △ ABC则图中阴影部分的面积之和为cm 2.如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.(1 )请画出旋转后的图形,并说明此时△ ABP以点B为旋转中心旋转了多少度?(2)求出PG的长度;(3)请你猜想厶PGC的形状,并说明理由.答案(找作业答案--->> 上魔方格)解:(1 )旋转后的厶BCG如图所示,旋转角为/ ABC=90 ° ;(2)连接PG,由旋转的性质可知BP=BG,Z PBG= Z ABC=90•;ZBPG为等腰直角三角形,又BP=BG=2 ,.•.PG八/阴5坯I ;(3)由旋转的性质可知CG=AP=1 ,已知PC=3,由(2)可知PG=2 亘IT PG2+CG 2(2進)2+1 2=9,PC2=9,Z.PG2+CG 2=PC2,.ZPGC为直角三角形.马上分享给同学1C 2、3倍根号2 3、根号3 4 180 度减去2的n次幕分之90 5、150度6、B,90 45 7、3 8、2分之根号 3 9、根号3 10、5。

九年级上册数学旋转必做大题附答案详解

九年级上册数学旋转必做大题附答案详解

九年级上册数学旋转必做大题附答案详解九年级上册数学旋转必做大题附答案1、已知:P为正方形ABCD内一点,且PA=1,PB=2,PC=3,求∠APB大小。

2、在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG 且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.3、如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO绕点B逆时针旋转60°得到线段BO′.(1)求点O与O′的距离;(2)证明:∠AOB=150°;(3)求四边形′的面积.(4)直接写出△AOC与△AOB的面积和4、(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.5、正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是,∠AFB=∠(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.6、已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F 分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD 三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.7、如图,P是等边△ABC内的一点,且PA = 5,PB =12,PC = 13,若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为 .8、已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(6分)(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(2分)(3)如图3,当点D在线段BC的反向延长线上时,且点A,F 分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;(2分)新课标第一网②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.(5分)9、(1)问题发现如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC 上,且∠DAE=45°,猜想BD、DE、EC满足的等量关系,并写出推理过程.参考答案一、简答题1、135°(用旋转三角形解决绕点B顺时针旋转三角形BAP得到三角形BCE,连接PE)2、解:(1) EG=CG,EG⊥CG.(2分)(2)EG=CG,EG⊥CG.(2分)证明:延长FE交DC延长线于M,连MG.∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,∠EMC=90°,又∵BE=EF,∴EF=CM.∵∠EMC=90°,FG=DG,∴MG=FD=FG.∵BC=EM,BC=CD,∴EM=CD.∵EF=CM,∴FM=DM,∴∠F=45°.又FG=DG,∠CMG=∠EMC=45°,∴∠F=∠GMC.∴△GFE≌△GMC.∴EG=CG,∠FGE=∠MGC.(2分)∵∠FMC=90°,MF=MD,FG=DG,∴MG⊥FD,∴∠FGE+∠EGM=90°,∴∠MGC+∠EGM=90°,即∠EGC=90°,∴EG⊥CG.(2分)3、解:(1)∵等边△ABC,∴AB=CB,∠ABC=600。

初三旋转考试题及答案

初三旋转考试题及答案

初三旋转考试题及答案初三数学旋转考试题及答案一、选择题(每题3分,共15分)1. 在平面直角坐标系中,点P(3,4)绕原点O逆时针旋转90°后,新坐标为:A. (4,3)B. (-3,4)C. (3,-4)D. (4,-3)2. 一个正方形绕其中心点旋转45°后,其边长不变,面积不变,以下说法正确的是:A. 形状不变B. 形状改变C. 面积改变D. 形状和面积都改变3. 一个圆心在原点的圆,半径为r,绕原点旋转任意角度后,其半径:A. 变大B. 不变C. 变小D. 无法确定4. 若点A(1,2)绕点B(2,3)旋转30°,旋转后的点A'坐标为:A. (1.5, 3.5)B. (1.5, 2.5)C. (2.5, 3.5)D. 无法确定5. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状:A. 不变B. 变为等边三角形C. 变为等腰三角形D. 变为直角三角形二、填空题(每题2分,共10分)6. 一个矩形绕其中心点旋转180°后,其形状________。

7. 点P(2,-1)绕原点O逆时针旋转45°后,新坐标的横坐标为________。

8. 若一个圆绕其圆心旋转任意角度,其周长________。

9. 一个平行四边形绕其对角线交点旋转90°后,其形状变为________。

10. 一个等边三角形绕其一边的中点旋转60°,旋转后的图形与原图形________。

三、解答题(共25分)11. (5分)若点M(-1,1)绕点N(1,1)旋转60°,求点M'的坐标。

12. (10分)一个边长为4的正方形ABCD,以点A为旋转中心,逆时针旋转30°,求旋转后正方形A'B'C'D'的顶点坐标。

13. (10分)一个圆心在原点,半径为5的圆,绕原点旋转60°,求旋转后圆上任意一点P(x,y)的新坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档