5马尔可夫链6

合集下载

5马尔可夫链(精品PPT)

5马尔可夫链(精品PPT)
所以{Xn,n≥0}是马尔可夫链,且
pij P( X n 1 j X n i ) P( f i, Yn 1 j ) P( f i, Y1 j )
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
i S , 有 aij 1
例5 Polya(波利亚)模型
罐中有b只黑球及r只红球,每次随机地取出一只后 把原球放回,并加入与抽出球同色的球c只,再第二次 随机地取球重复上面步骤进行下去,{Xn=i}表示第n回 摸球放回操作完成后,罐中有i只黑球这一事件,所以
i b r nc , i P X n 1 j X n i 1 , b r nc 0,
x
j i 1
( j i 1)!
dG x ,
j i 1, i 1 其它
Pij 0,
例3 G / M /1排队系统 来到时间间隔分布为G,服务时间分布为指数分布,参 数为 ,且与顾客到达过程独立。 Xn-----第n个顾客来到时见到系统中的顾客数(包括 该顾客),则{Xn,n≥1}是马尔可夫链。记
jS
显然马尔可夫链{Xn,n≥0}的一步转移概率矩阵P为 随机矩阵。 2,n步转移概率 定义:设{Xn,n≥0}是一马尔可夫链,称
n pij P X n m j X m i ,
n 0, i, j 0
为马尔可夫链{Xn,n≥0}的n步转移概率。记
i (n) P X n i ,
j ic j i else
这是一个非齐次的马尔可夫链,在传染病研究中有用。
下面的定理提供了一个非常有用的获得马尔可夫链的方 法,并可用于检验一随机过程是否为马尔可夫链。

概率论中的马尔可夫链

概率论中的马尔可夫链

马尔可夫链是概率论中的一个重要内容,它是一种统计模型,也是一种离散时间的随机过程。

马尔可夫链具有许多重要的特性和应用,包括在自然语言处理、金融市场、排队论和信号处理等方面。

马尔可夫链的最大特点是具有马尔可夫性质,即未来状态只依赖于当前状态,而与过去的状态无关。

这个性质使得马尔可夫链在实际应用中具有广泛的适用性。

我们可以把马尔可夫链看作是一个随机漫步过程,其中的每个状态都有一定的概率转移到其他状态。

这种随机漫步的特性,使得马尔可夫链可以用来描述许多随机现象,如天气预报、股票市场和电力系统等。

马尔可夫链由状态空间和状态转移矩阵所组成。

状态空间包括了所有可能的状态,每个状态之间存在一定的概率转移关系。

状态转移矩阵描述了在某一个状态下转移到其他状态的概率。

通常情况下,状态转移概率是固定的,但也可以是随机的,这取决于具体的问题。

马尔可夫链的状态转移概率具有马尔可夫性质,即与时间无关。

通过迭代状态转移矩阵,我们可以得到马尔可夫链的平稳分布。

平稳分布是指当时间趋于无穷大时,马尔可夫链在各个状态上停留的概率。

平稳分布在许多问题中都具有重要的意义,例如在排队论中可以用来计算系统的稳定性和响应时间等指标。

马尔可夫链的平稳分布可以通过状态转移矩阵的特征向量求解得到。

除了平稳分布,马尔可夫链还有其他重要的性质和应用。

例如,我们可以使用马尔可夫链来进行模拟和预测。

通过观察和记录马尔可夫链的状态转移过程,我们可以了解到系统的行为规律,从而对未来的状态进行预测。

这在金融市场和天气预报等领域具有重要的应用价值。

此外,马尔可夫链还可以用来解决一些优化问题,如最优路径求解和资源分配等。

在实际应用中,马尔可夫链的建模和求解是一个复杂而困难的问题。

因为马尔可夫链的状态空间可能非常庞大,状态转移矩阵的维度也会非常大。

此外,状态转移概率的估计也可能存在误差。

针对这些问题,研究者们提出了许多有效的方法和算法,如马尔可夫链的蒙特卡洛模拟和马尔可夫链的马尔科夫蒙特卡洛方法等。

马尔可夫链的基本概念

马尔可夫链的基本概念

马尔可夫链的基本概念马尔可夫链是一种特殊的随机过程,广泛应用于统计学、机器学习、经济学、计算机科学等多个领域。

为了深入理解马尔可夫链的概念,我们先从基本定义开始,再逐步探讨其性质、分类、应用及实例分析。

一、马尔可夫链的定义马尔可夫链是一种具有“无记忆”特性的随机过程,即在给定当前状态的前提下,未来状态与过去状态无关。

换句话说,系统的未来发展只依赖于当前的状态,而不依赖于以前的状态。

这一特性通常被称为“马尔可夫性”,是马尔可夫链最大的特点。

在形式上,我们可以定义一个离散时间的马尔可夫链为一个由状态集合 ( S ) 组成的序列,其中 ( S ) 可能是有限的也可能是无限的。

设 ( X_n ) 为在时间 ( n ) 时刻该过程所处的状态,若满足条件:[ P(X_{n+1} = j | X_n = i, X_{n-1} = k, , X_0 = m) =P(X_{n+1} = j | X_n = i) ]其中,( P ) 是条件概率,这就表明该过程符合马尔可夫性质。

二、马尔可夫链的基本组成要素状态空间:状态空间是指系统所有可能的状态集合,通常用集合 ( S ) 表示。

例如,一个简单天气模型可以将状态空间定义为 ( S = {晴天, 雨天} )。

转移概率:马尔可夫链中的转移概率是指从一个状态转移到另一个状态的概率。

对于有限状态空间,转移概率通常用转移矩阵表示,其元素 ( P_{ij} ) 表示从状态 ( i ) 转移到状态 ( j ) 的概率。

初始分布:初始分布描述了系统在时间 ( t=0 ) 时,各个状态出现的概率。

通常用一个向量表示,如 ( _0(i) ) 代表在初始时刻处于状态 ( i ) 的概率。

三、马尔可夫链的性质马尔可夫链具有许多重要的性质,其中最为关键的是遍历性和极限性。

遍历性:如果一个马尔可夫链在长期运行后,将以一种稳定的方式达到各个状态,并且这个稳态与初始选择无关,那么我们称它为遍历。

换句话说,一个遍历性的马尔可夫链在达到平稳分布后,各个状态出现的概率将保持不变。

马尔可夫链的基本概念

马尔可夫链的基本概念

马尔可夫链的基本概念马尔可夫链是一种数学模型,用于描述具有马尔可夫性质的随机过程。

马尔可夫性质指的是在给定当前状态的情况下,未来状态的概率只与当前状态有关,与过去状态无关。

马尔可夫链由一组状态和状态之间的转移概率组成,可以用于模拟和预测各种随机过程,如天气变化、股票价格波动等。

一、马尔可夫链的定义马尔可夫链由状态空间和转移概率矩阵组成。

状态空间是指所有可能的状态的集合,用S表示。

转移概率矩阵是一个n×n的矩阵,其中n 是状态空间的大小。

转移概率矩阵的元素表示从一个状态转移到另一个状态的概率。

二、马尔可夫链的性质1. 马尔可夫性质:在给定当前状态的情况下,未来状态的概率只与当前状态有关,与过去状态无关。

2. 遍历性:从任意一个状态出发,经过有限步骤后可以到达任意一个状态。

3. 周期性:一个状态可以分为周期为k的状态和非周期状态。

周期为k的状态在经过k步后才能返回原状态,非周期状态的周期为1。

4. 不可约性:如果一个马尔可夫链中的任意两个状态都是可达的,那么该马尔可夫链是不可约的。

5. 非周期马尔可夫链的收敛性:如果一个马尔可夫链是非周期的且不可约的,那么它具有收敛性,即在经过足够多的步骤后,状态分布会趋于稳定。

三、马尔可夫链的应用马尔可夫链在许多领域都有广泛的应用,包括自然语言处理、机器学习、金融市场分析等。

1. 自然语言处理:马尔可夫链可以用于语言模型的建立,通过分析文本中的词语之间的转移概率,可以预测下一个词语的出现概率,从而实现自动文本生成、机器翻译等任务。

2. 机器学习:马尔可夫链可以用于序列数据的建模和预测,如音频信号处理、图像处理等。

通过分析序列数据中的状态转移概率,可以预测下一个状态的出现概率,从而实现序列数据的预测和分类。

3. 金融市场分析:马尔可夫链可以用于分析金融市场的波动性和趋势。

通过分析股票价格的状态转移概率,可以预测未来股票价格的走势,从而指导投资决策。

四、马尔可夫链的改进和扩展马尔可夫链的基本概念可以通过改进和扩展来适应更复杂的问题。

5马尔可夫链模型

5马尔可夫链模型

马尔可夫链模型在考察随机因素影响的动态系统时,常常碰到这样的情况,系统在每个时期所处的状态是随机的,从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率,与以前各时期的状态无关。

这种性质称为无后效性或马尔可夫性。

通俗的说就是已知现在,将来与历史无关。

具有马氏性的,时间、状态无为离散的随机转移过程通常用马氏链(Markov Chain)模型描述。

马氏链模型在经济、社会、生态、遗传等许多领域中有着广泛的应用。

值得提出的是,虽然它是解决随机转移过程的工具,但是一些确定性系统的状态转移问题也能用马氏链模型处理。

马氏链简介:马氏链及其基本方程:按照系统的发展,时间离散化为0,1,2,n =,对每个n ,系统的状态用随机变量nX 表示,设nX 可以取k 个离散值1,2,,nX k= ,且nXi=的概率记作()ian ,称为状态概率,从nXi=到1n Xj+=的概率记作ijp ,称为转移概率。

如果1n X+的取值只取决于nX 的取值及转移概率,而与12,,n n XX --的取值无关,那么这种离散状态按照离散时间的随机转移过程称为马氏链。

由状态转移的无后效性和全概率公式可以写出马氏链的基本方程为1(1)()1,2,,ki jijj a n an p i k=+==∑并且()ian 和ijp 应满足11()10,1,2,;0;11,2,,kkjij ij j j an n p p i k====≥==∑∑引入状态概率向量和转移概率矩阵12()((),(),,()){}k ij ka n a n a n a n P p ==则基本方程可以表为1(1)()(0)n a n a n Pa P++==例1:某商店每月考察一次经营情况,其结果用经营状况好与孬表示。

若本月经营状况好,则下月保持好的概率为0.5,若本月经营状况不好,则下月保持好的概率为0.4,试分析该商店若干时间后的经营状况。

马尔可夫链▏小白都能看懂的马尔可夫链详解

马尔可夫链▏小白都能看懂的马尔可夫链详解

马尔可夫链▏小白都能看懂的马尔可夫链详解1.什么是马尔可夫链在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。

马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。

该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。

这种特定类型的“无记忆性”称作马尔可夫性质。

马尔科夫链作为实际过程的统计模型具有许多应用。

在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。

状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。

随机漫步就是马尔可夫链的例子。

随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。

2.一个经典的马尔科夫链实例用一句话来概括马尔科夫链的话,那就是某一时刻状态转移的概率只依赖于它的前一个状态。

举个简单的例子,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。

这么说可能有些不严谨,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等。

假设状态序列为由马尔科夫链定义可知,时刻Xt+1 的状态只与Xt 有关,用数学公式来描述就是:既然某一时刻状态转移的概率只依赖前一个状态,那么只要求出系统中任意两个状态之间的转移概率,这个马尔科夫链的模型就定了。

看一个具体的例子。

这个马尔科夫链是表示股市模型的,共有三种状态:牛市(Bull market), 熊市(Bear market)和横盘(Stagnant market)。

《马尔可夫链讲》课件

《马尔可夫链讲》课件
平稳分布的概率分布函数与时间无关,只与系统的状态空间和转移概率矩阵有关。
在平稳分布下,系统的各个状态之间转移的次数趋于平衡,每个状态的平均逗留时 的 马尔可夫链,都存在至少一个平
稳分布。
存在性定理的证明基于遍历理论 ,即如果马尔可夫链是遍历的,
那么它必然存在平稳分布。
根据接受概率判断是否接受样本的技 术,可以提高样本的质量和效率。
接受-拒绝抽样技术
接受概率
根据目标分布和当前状态计算出的概率,用于判断是否接受当前状态 转移为下一个状态。
拒绝概率
根据当前状态和接受概率计算出的概率,用于判断是否拒绝当前状态 转移为下一个状态。
接受-拒绝抽样过程
根据当前状态和接受概率计算出接受该状态的概率,如果该概率大于 随机数,则接受该状态作为下一个状态,否则拒绝并重新抽样。
详细描述
马尔可夫链定义为一个随机过程,其 中每个状态只与前一个状态有关,当 前状态只依赖于前一时刻的状态,不 受到过去状态的影响。
马尔可夫链的应用场景
总结词
马尔可夫链在多个领域有广泛应用。
详细描述
在自然语言处理中,马尔可夫链可以用于生成文本、语言模型等;在金融领域 ,马尔可夫链可以用于股票价格预测、风险评估等;在物理学中,马尔可夫链 可以用于描述粒子运动、化学反应等。
模型训练与预测
模型选择
根据数据特点和业务需求选择合适的马尔可 夫链模型。
模型训练
使用历史数据训练马尔可夫链模型。
参数设置
根据经验和业务理解设置模型参数。
预测与推断
基于训练好的模型对未来或未知数据进行预 测和推断。
结果评估与优化
评估指标
选择合适的评估指标(如准确率、召回率、F1值等)对预测结果进行评估。

马尔可夫链名词解释

马尔可夫链名词解释

马尔可夫链名词解释
嘿,你知道马尔可夫链吗?这玩意儿可有意思啦!就好像是生活中
的一场奇妙冒险。

比如说,你今天心情超好,那明天心情继续好的概率就可能比较大,这就有点像马尔可夫链啦!它说的是在给定当前状态的情况下,未来
的状态只与当前状态有关,而不依赖于过去的历史。

这多神奇啊!
想象一下,你在走一个迷宫,每一步的选择只取决于你现在所处的
位置,而不是你之前怎么走来的,这就是马尔可夫链的感觉呀!它就
像是一个有着特定规则的游戏。

咱再举个例子,天气的变化也有点类似马尔可夫链呢。

今天是晴天,那明天是晴天、阴天或下雨的概率是有一定规律的,而且只和今天的
天气有关。

在很多领域都能看到马尔可夫链的身影呢!像统计学、概率论、机
器学习等等。

它能帮助我们理解和预测很多复杂的现象。

哎呀,难道你不觉得这马尔可夫链很神奇吗?它就像一个隐藏在各
种现象背后的秘密武器,等待着我们去发现和运用它。

它能让我们更
清楚地看到事物的规律和趋势,让我们在面对不确定的时候能有一些
依据去做出判断。

总之,马尔可夫链真的是个超级有趣又超级有用的东西啊!它让我
们对世界的理解又多了一层,让我们能更好地应对生活中的各种情况。

所以,可别小看了这小小的马尔可夫链哦!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= P( U ( X 0 = i0 ), X t1 + m = i1 , X t2 + m = i2 ,L , X tn + m = in )
i0 ∈S
随机过程——西安电子科技大学数学系 冯海林
= ∑ P( X 0 = i0 , X t1 + m = i1 , X t2 + m = i2 ,L , X tn + m = in )
思考:一个重要的问题: 齐次马尔可夫链是否存在平稳分布? 如果存在, 是否唯一? 如何计算?
按照以下情况分别讨论 不可约的遍历链 不可约的正常返的马氏链 一般的齐次马氏链
随机过程——西安电子科技大学数学系 冯海林
齐次马尔可夫链是不可约的遍历链
设X={ X n , n = 0,1,L}是不可约的遍历链,则X存在 唯一的极限分布{π j = 1
k∈S
随机过程——西安电子科技大学数学系 冯海林
2) 再证{π j , j ∈ S }满足 ∑ π j = 1.
反复利用 π j = ∑ π k pkj 可以得到
k∈S
j∈S
π j = ∑ π k pkj = ∑(∑ π i pik ) pkj = L = ∑ π i pi(jn )
k∈S k∈S i∈S i∈S
解 易知是不可约链,且为遍历链. 故其平稳分布存在且唯一.
⎧ π=πP ⎨ ⎩π 0 + π 1 + π 2 + π 3 + π 4 = 1
1 π0 = 31
平稳分布为

2 π = 4 8 16 π1 = π3 = 2 π4 = 31 31 31 31
π={ , , , }
1 31 2 4 31 31 8 16 31 31
= P ( X t1 = i1 , X t2 = i2 ,L , X tn = in )
随机过程——西安电子科技大学数学系 冯海林
定理说明:若马氏链存在平稳分布,则以平稳分布作为 初始分布,就有以下结论: (1)马氏链的绝对分布是确定的,保持不变. (2)该马氏链是一个严平稳时间序列.
随机过程——西安电子科技大学数学系 冯海林
2 平稳分布
定义6.4.2 称概率分布{π j , j ∈ S }是齐次马氏链X的 一个平稳分布,如果有
π j = ∑ π i pij ,
i∈S
j∈S
或矩阵形式为
π=πP
其中π ={π 1 , π 2 ,L}, P = ( pij )为X的转移概率矩阵。
随机过程——西安电子科技大学数学系 冯海林
显然 若概率分布{π j , j ∈ S }是马氏链X的平稳分布 则也有
⇒ ∑πi = 1
i∈S
3) {π j , j ∈ S }唯一性的证明与6.4.2类似.
随机过程——西安电子科技大学数学系 冯海林
一般齐次马尔可夫链X
定理6.4.5 设X的状态空间S = D U C 0 U C1 UL
记 是正常返状态的不可约闭集, H = U k ≥1 C k,则
其中D是
非常返状态集,C0是零常返状态集, C m ( m = 1, 2,L)
随机过程——西安电子科技大学数学系 冯海林
齐次马尔可夫链是不可约的正常返链
定理6 .4.4 设 X = { X n , n = 0,1,L}是不可约齐次马氏链
其状态空间S中的每个状态都是正常返状态. 1 则X有唯一的平稳分布: j = {π , j ∈ S }. µ jj
平稳分布通过求解方程组
⎧ π j = ∑ π k pkj , j ∈ S ⎪ k∈S ⎨ ⎪∑ π k=1 ⎩ k∈S
(1)
1 2
2 3
0
0⎞ ⎟ ⎟ 1 ⎟ 3⎟ ⎟ ⎟ 2 ⎟ ⎟ 3⎠
(2)
⎛ 12 P2 = ⎜ ⎜1 ⎜ 2 ⎝
(2)
⎞ ⎟ ⎟ 1 ⎟ ⎟ 2⎠
1 2
P3 = (1)
⎧ π =π P 1 ⎨ (1) (1) π 1 + π 2 + π 3(1) = 1 ⎩
⎧ π =π P2 ⎨ (2) (2) π1 + π 2 = 1 ⎩
随机过程——西安电子科技大学数学系 冯海林
1) 先证{π j , j ∈ S }满足方程组π j = ∑ π i pij , j ∈ S
i∈S
对任意正整数n,由C-K方程,有 1 n ( m +1) 1 n 1 n (m) ( pij = ∑ (∑ pikm ) pkj ) =∑ ( ∑ pik ) pkj ∑1 n m= n m =1 k∈S k∈S n m =1
µ jj
, j ∈ S }.
且此时的极限分布就是平稳分布.
平稳分布可通过求解下列方程组得到
⎧ π j = ∑ π k pkj , j ∈ S ⎪ k∈S ⎨ ⎪∑ π k=1 ⎩ k∈S
随机过程——西安电子科技大学数学系 冯海林
例 1 设状态空间为S={0,1,2,}的马尔可夫链, 其一步 转移概率矩阵为
⎧π (3)=π (3)P3 ⎨ π 1(3) = 1 ⎩
π
(1)
={ , , }
2 8 3 8 3 8
π
(2)
={ , }
1 2 1 2
π
λ2 2
(3)
= {1}
平稳分布为 π = {
2λ1 8
,
3λ1 8
,
3λ1 8
, , , λ3 , 0}
λ2 2
1 2 3 1 随机过程——西安电子科技大学数学系 冯海林
λ + λ + λ = 1,λ ,λ2,λ3 ≥ 0
(3) P ( X n+ 2 = 1 X n = 0) = p
(2) 01
1 1 1 2 7 = × + × = 2 2 2 3 12
P ( X n + 2 = 2 X n = 0) = p
( 2) 02
1 1 1 = × = 2 3 6
随机过程——西安电子科技大学数学系 冯海林
令n → ∞,由法都引理以及引理6.4.1 1 n (m) ( π j ≥ ∑ lim inf ∑ pik )pkj = ∑ π k pkj n →∞ n m =1 k∈S k∈S
随机过程——西安电子科技大学数学系 冯海林
而上式对一切j ∈ S等号成立.
因此对于一切j成立有 π j = ∑ π k pkj j ∈ S
( )X不存在平稳分布的充要条件是H=Φ 1 (2)X存在唯一平稳分布的重要条件是只有一个个以上正常返的不可约闭集。
随机过程——西安电子科技大学数学系 冯海林
例3 设有状态空间S={0,1,2,3,4,5,6}的齐次马尔可夫链 其一步转移概率矩阵为
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ P = ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 3 1 3 0 0 0 2 3 0 1 3 0 0 0 2 3 0 1 3 0 0 0 2 3 0 1 3 ⎤ 0 ⎥ ⎥ 0 ⎥ ⎥ ⎥ 0 ⎥ ⎥ 2 ⎥ ⎥ 3 ⎥ 2 ⎥ ⎥ 3 ⎥ ⎦
分析平稳分布存在?并计算
随机过程——西安电子科技大学数学系 冯海林
i0 ∈S
= ∑ π i0 pi(0ti11+ m ) pi(1ti22 −t1 ) L pi(nt−n1i−ntn−1 )
i0 ∈S
= π i1 pi(1ti22 −t1 ) L pi(nt−n1i−ntn−1 )
= P ( X t1 = i1 ) P ( X t2 = i2 X t1 = i1 )L P ( X tn = in X tn−1 = in −1 )
⎧π=πP ⎨ ⎩ π 0 + π1 + π 2 = 1

21 π = 23 18 π0 = π2 = 1 62 62 62
21 23 18 ⇒ π =(π 0 , π 1 , π 2 ) = ( , , ) 62 62 62
随机过程——西安电子科技大学数学系 冯海林
例2 设齐次马尔可夫链的状态空间S={0,1,2,3,4},其 一步转移概率矩阵为
⎛0.5 0.4 0.1⎞ ⎟ ⎜ ⎟ ⎜ ⎟ P = ⎜0.3 0.4 0.3⎟ ⎜ ⎟ ⎜ ⎜0.2 0.3 0.5⎟ ⎟ ⎟ ⎜ ⎝ ⎠
试分析它的极限分布,平稳分布是否存在? 并计算
随机过程——西安电子科技大学数学系 冯海林
解 易知此链为不可约遍历链. 故极限分布存在,平稳分布存在唯一,且 平稳分布就是其极限分布。
∀0 ≤ t1 < L < tn和∀i1 , i2 ,L , in ∈ S , 有
P ( X t1 + m = i1 , X t2 + m = i2 ,L , X tn + m = in ) = P ( X t1 = i1 , X t2 = i2 ,L , X tn = in )
证明 (2) P ( X t1 + m = i1 , X t2 + m = i2 ,L , X tn + m = in )
3
1 2
4
1 2
(1)
S = D∪C ∪C ∪C
1 3
+ 1
+ 2
+ 3
= {6} ∪ {0,1, 2} ∪ {3, 4} ∪ {5}
(2) 由(1)知,该链有三个不同的正常返不可约闭集
随机过程——西安电子科技大学数学系 冯海林
所以平稳分布不唯一 三个闭集对应的转移概率矩阵分别为
解方程组
(1)
⎛ 12 ⎜ ⎜ P =⎜0 ⎜ 1 ⎜ ⎜1 ⎜ 3 ⎝
作业: 2, 4, 8, 9, 11,(2)(4) ,12, 13,(1)(4), 19.
随机过程——西安电子科技大学数学系 冯海林
(1)试对S进行分类,并说明各状态类型 (2) 求平稳分布,其平稳分布是否唯一?为什么? (3) 求 P ( X n+ 2 = 1 X n = 0), P ( X n+ 2 = 2 X n = 0)
相关文档
最新文档