盆形零件铸造工艺设计

合集下载

毕业设计塑料盆的塑料成型与模具设计说明

毕业设计塑料盆的塑料成型与模具设计说明

职业技术学院毕业设计塑料盆的塑料成型与模具设计2013 届机械工程系专业模具设计与制造学号 3学生斌指导教师凤江完成日期 2013年1月8日摘要塑料盆的形状较为简单,在模具设计中要考虑的因素有很多,除考虑它的出模、分型面,还需考虑它成型的质量,表面光洁度等。

更重要的是考虑它的制造难度和成本。

所以我们设计应认真分析塑料制品的结构,寻求最佳的设计方案。

分型面的选择也很重要,分型面的选择既要考虑不影响制件表面的美观,又要达到结构要求。

由于制品体积比较大,所以浇注系统的设计也很重要,在此次设计中我选点浇口,推板推出机构,这就解决了制品出模的问题。

并详细叙述了通过PRO/E对模具成型零件的设计流程(设置收缩率,创建毛坯工件,设计分型面,创建模具体积块,创建模具元件,流道与浇口的设计,创建铸模,开模仿真)与用EMX来装配模架的流程。

关键词:分型面、模架、凸模、凹模、塑料盆。

目录第1章绪论 (1)1.1塑料与塑料工业的发展11.2我国塑料模具工业现状2第2章制品结构特征与成型工艺性分析 (3)2.1塑件材料分析 (3)2.2材料性能 (4)2.3塑件尺寸和精度分析 (4)2.4收缩率 (4)2.5塑件形状分析 (4)2.5.1塑件厚度42.5.2脱模斜度52.6塑件圆角 (5)2.7零件体积与质量估算 (5)第3章模具方案分析 (6)3.1分型面的确定 (6)3.2型腔数目的确定 (7)3.3浇注系统的设计 (8)3.4推出机构设计 (9)3.5冷却系统设计 (10)3.6确定标准模架尺寸 (11)第4章注塑机的设备选择 (12)4.1注塑机的分类 (12)4.2注塑机的主要参数 (13)4.3选择注塑机 (13)4.4注塑机的校核 (14)第5章成型零件设计与计算 (16)5.1成型零件工作尺寸计算 (16)5.2成型零件的设计 (16)5.2.1设置收缩率185.2.2创建毛坯工件185.2.3设计分型面185.2.4创建模具体积块195.2.5创建模具元件195.2.6流道与浇口设计195.2.7创建铸模205.2.8开模仿真20第6章导向机构设计 (22)6.1导向机构设计的原则 (22)6.2导柱、导套的结构设计 (22)6.2.1导柱的结构设计226.2.2导套的结构设计23第7章排气系统的设计 (24)第8章模架与其它模具零件设计 (25)8.1模架尺寸的计算 (25)8.2装配模架 (26)8.2.1新建组件项目268.2.2载入模具装配元件268.2.3定义模具模架278.2.4添加设备278.2.5加入复位销288.2.6在模座中挖出放置型腔的凹槽288.2.7设计冷却系统398.2.8加载所有组件31总结 (32)致 33参考资料34附录 (35)第1章绪论1.1 塑料与塑料工业的发展一提起塑料,留在很多人记忆中的,是孩提时代吃的糖果的包装纸,那些粗糙但花花绿绿的塑料糖果包装纸,成为孩子们难得的珍藏、甜蜜的回忆。

7.3铸造工艺设计解析

7.3铸造工艺设计解析

冒口




单件小批
中 下
放收缩率1% 余量:上面>侧面>下面
手工三箱造型 大批量
外 型 芯 块
两箱机器造型
7.3.5铸造工艺设计示例
例:支架零件如下图所示,材料为HT200, 单件、小批量生产工作时承受中等静载荷, 试进行铸造工艺设计。 1.零件结构分析:筒壁过厚,转角处未采用 圆角。修改后的结构如图b)所示。 2.选择铸造方法及造型方法 采用砂型铸造 (手工造型)中的两箱造型。 3.选择浇注位置和分型面
1.铸造工艺图: 利用各种的工艺符号,把制造模型和
铸型所需的资料直接绘在零件图上所得到 的图样。
即表示铸型浇注位置、分型面、浇冒口 系统、工艺参数、型芯结构尺寸、控制凝 固措施等的图样。
2. 铸件图:又称毛坯图,是反映铸件实际形 状、尺寸和技术要求的图样,也是铸造生产、 铸件检验与验收的主要依据。
(1)定义: 指铸件从线收缩开始温度冷却至室温时,
线尺寸的相对收缩量。 (2)选取: 大件、重要件不同部位可选取不同的收缩率; 一般件可选取同一收缩率。
4. 起模斜度
(1)定义:为了起模方便,在平行于起模方向的侧壁 加放的一定斜度。
(2)选取:对同一件,尽可能选用同一起模斜度; 立壁愈高,斜度应越小; 内壁的斜度值应大于外壁; 机器造型比手工造型斜度小; 金属模比木模斜度小。
3.铸型装配图:表示合型后铸型各组元之间
装配关系的工艺图。包括:浇注位置、型芯、 浇冒口系统和冷铁布置及砂箱结构和尺寸等。
7.3.2 铸造方法和造型方法选择
1.选择依据: 1)零件结构特点;2)合金种类; 3)生产批量等
2.选择原则: 单件、小批生产时一般采用砂型铸造

铸造工艺方案毕业设计

铸造工艺方案毕业设计

铸造工艺方案毕业设计摘要......................................... 错误!未定义书签。

Abstract..................................... 错误!未定义书签。

绪论 (1)1 零件材料性能分析 (2)2 零件结构的铸造工艺性分析 (3)3 铸造工艺方案的确定 (7)3.1分型的分析比较与选择 (7)3.1.1方案一 (7)3.1.2方案二 (8)3.1.3方案三 (9)3.2造型方案 (9)3.3造型(芯)方法的选择 (10)3.4铸型种类的选择 (10)3.5浇注位置的确定 (11)3.6砂箱中铸件数目的确定 (11)3.7 砂芯的设计 (11)3.7.1砂芯尺寸 (11)3.7.2下芯顺序 (12)4 铸造工艺参数的选择 (13)4.1铸件线收缩率 (13)4.2机械加工余量 (13)4.3起模斜度的选取 (14)5 铸件体积的计算 (15)5.1实体部分体积 (16)5.2去除部分体积 (18)5.3铸件与铸型的体积 (19)6 冒口的设计 (20)6.1热节分析及热节圆的计算 (20)6.2冒口的设计 (20)6.2.1初步方案 (20)6.2.2改进方案a (21)6.2.3改进方案b (21)6.2.4改进方案c (22)6.6冒口的验算 (23)7 浇注系统的设计 (24)7.1浇包的选择 (24)7.2浇注系统的设计 (25)7.3工艺出品率的验算 (26)8 补缩距离的计算与冷铁的安放 (27)8.1圆筒的补缩核算 (27)8.2圆筒的支撑壁的补缩核算 (27)9 铸造工艺装备设计 (28)9.1模板的设计 (28)9.2芯盒的设计 (28)10 总结 (29)致谢 (30)参考文献 (31)绪论铸造工艺设计就是根据铸造零件的结构特点,技术要求,生产批量和生产条件等,确定铸造工艺方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程。

精选铸造工艺学浇口设计

精选铸造工艺学浇口设计
3 横浇道发挥阻渣作用应具备的条件
(1) 横浇道应呈充满状态:内浇道的截面、位置; (2) 流速应尽量低;
(3)横浇道与内浇道的位置关系要正确; a 内浇道距离直浇道应足够远,使渣团能上浮到吸动区上部。 b 有正确的横浇道末端延长段,以容纳初流金属液;吸收液流
动能使金属液平稳;防止液流折返。
27
c 封闭式浇注系统的内浇道应 位于横浇道的下部,且和横 浇道具有同一底面;开放式 浇注系统的内浇道应重叠在 横浇道之上,且搭接面积要 小,但大于内浇道横截面积 。
第7章 浇注系统设计
浇注系统:铸型中液态金属流入型腔的通道。 组成:浇口杯(又称外浇口)、直浇道、横浇道、内浇道等。
1
浇注基本要求: (1)内浇道设置符合铸件凝固原则和补缩方法; (2)在规定的浇注时间内充满型腔; (3)提供必要的充型压头,保证铸件轮廓、棱角清晰; (4)使金属液流动平稳,防止紊流、卷气、金属氧化; (5)具有良好的阻渣能力; (6)金属液进入时速度不可过高,避免飞溅、冲刷; (7)保证金属液面有足够的上升速度,避免夹砂结疤、浇
P = Pα+ρg·h (2)伯努利(E.Bernoulli)方程(能量守衡定律)
在封闭系统中移动的流体由三种不同的能量组成: 位能:用位于距离基准面以上h处的单位体积的流体来表
示(基准面位置任选)。EP=h(m)
压能:作用在单位体积流体上的压力来表示。
EP=p/ρ(m) p 质量压力(kg/m2)
ρ金属密度(kg/m3)
动能:用单位体积的流体以速度v移动时的动量来表示。
EK=v2/2g
定理:在一封闭系统中,单位质量流体所携带的总能量是
不变的,但其位能、压能、动能可以互换。
h1+p1/γ+V12/2g=h2+p2/γ+v22/2g 伯努利方程 (3)托里拆利(Torricelli)定理

铸造工艺方案及工艺图示例PPT课件

铸造工艺方案及工艺图示例PPT课件

整理版课件
9
(2)方案Ⅱ 沿底面分型,铸件全 部位于下箱,为铸出 110 mm凹槽必须采用 挖砂造型。
方案Ⅱ克服了方案工的 缺点,但轴孔内凸台 妨碍起模,必须采用 两个活块或下型芯。 当采用活块造型时, φ30 mm轴孔难以下芯。
整理版课件
10
(3)方案Ⅲ 沿110 mm凹槽底面分 型。
优缺点与方案Ⅱ类同, 仅是将挖砂造型改用 分模造型或假箱造型, 以适应不同的生产条 件。
该方案只需制造 一个圆柱形内孔 型芯,利于减少 制模费用。
整理版课件
15
(2)大批生产工艺方案
方案(2)所示,采用一个分模面、两箱造型,轴孔处于 中间的浇注位置。该方案造型操作简便,生产效率高,但增 加了四个形成Φ16 mm圆形凸台的1#外型芯及一 个形成 长 方形凹坑的3#外型芯,因而增加制造芯盒及造芯的费用。 但由于批量大,该费用均分到每个铸件上的成本就较低,因 而是合算的。
零件的铸造工艺图的制定及铸件图举例(一) 首先应综合考虑浇注位置和分型面的确定,1 加工余 量、2 起模斜度,3 砂芯的部位,要画出砂芯的位置、 形状和芯头。
整理版课件
2
整理版课件
3
上 下
收缩率 1%
Φ150 Φ70
全部 M15×4均布
110
Φ50
Φ100
整理版课件
4
Φ80
收缩率1%
Φ50
Φ200
产效率高。
整理版课件
27
车床刀架转盘:
整理版课件
28
整理版课件
29
整理版课件
30
整理版课件
31
整理版课件
32
整理版课件
33
第四节 综合分析举例 砂铸工艺设计综合分析举例

铸造工艺设计

铸造工艺设计

铸造工艺设计
铸件成形工艺分析内容:
选择铸件浇注位置和分型面 确定工艺参数(起摸斜度、收缩量等) 型芯与芯头设计 浇注系统设计与计算 冒口与冷铁设计与计算
铸造工艺设计:在生产铸件之前,为了获得外形正确、
内部健全的铸件,减少制造铸型的工作量,降低铸件成 本,首先要编制出控制铸件生产工艺过程的技术文件。 包括:制定合理的铸造工艺方案,并绘制铸造工艺图。
注意事项
(1)每项工艺符号只在某一视图或剖视图上表示清 楚即可。不必在每个视图上反应所有工艺符号,以 免符号遍布图纸、互相重叠。
(2)加工余量的尺寸,如果顶面、孔内和底、侧 面数值相同时,图面上不标注尺寸,可填写在图纸 背面的“木模工艺卡”中,也可写在技术条件中。
(3)相同尺寸的铸造圆角、等角度的拔模斜度, 图形上可不标注,只写在技术条件中。
1~4 mm的间隙(S),以便于铸型的装配。
形式:上下都有芯头;只有下芯头,无上芯头; 上下都无芯头。
垂直型芯一般都有上、下芯头; 短而粗的型芯也可省去上芯头。
2)水平型芯
水平型芯及芯头
型芯头与铸型型芯座之间应有1~4 mm的间隙(S1), 以便于铸型的装配。 h=20~80mm。
芯头的形式
一、铸造工艺设计的依据
1、生产任务和技术要求
(1)审查零件图 (2)零件的技术要求 (3)生产类型及生产期限
2、车间生产条件
(1)设备状况 (2)车间原材料的供应情况 (3)工人的技术水平和生产条件 (4)模具及工装车间的加工能力及生产经验
3、设计、铸造工艺图:用各种符号在零件上表明铸造工艺方案。 如浇注位置、分型面、余量、斜度、收缩率、浇注系 统、冒口、冷铁等。
第二种方法是以铸件尺寸为基础,即标注铸 件尺寸,加工余量等则由铸件外廓尺寸线向内标 注尺寸。这种方法在个别大量生产工厂应用,而 大多数工厂应用前种方法。

盘体铸件低压铸造有限元模拟的开题报告

盘体铸件低压铸造有限元模拟的开题报告

盘体铸件低压铸造有限元模拟的开题报告一、研究背景随着工业技术的发展,盘体铸件在各种机械设备中得到了广泛的应用。

传统的盘体铸件制备方法是采用砂型铸造,这种方法生产周期长,成本高,且不适用于复杂结构的盘体铸件制备。

因此,低压铸造作为一种高效、经济、环保的新型盘体铸件制备技术,越来越受到人们的青睐。

低压铸造是一种将金属熔体从低压下灌入金属型腔中,靠自重充填型腔并完成凝固的铸造工艺。

低压铸造的优点主要在于生产周期短、成本低、质量高、表面光洁度好等方面,但同时也存在一些问题,如铸件形变、缩孔缩松、热裂纹等。

因此,为了能够保证盘体铸件的质量,提高低压铸造的生产效率,需要对低压铸造的各种成形过程进行全面的研究和优化。

在此基础上,开展盘体铸件低压铸造过程的有限元模拟,将有助于预测盘体铸件的变形和缺陷,指导实际生产,提高产品质量和全面技术水平。

二、研究目的和意义1. 目的本研究的主要目的是通过有限元模拟方法,对盘体铸件低压铸造过程进行建模和仿真,探讨影响盘体铸件低压铸造成形过程的各种因素,如型芯设计、金属液流模拟、热应力分析等,以期为盘体铸件低压铸造的实际生产提供科学依据和指导。

2. 意义(1)优化盘体铸件低压铸造工艺通过有限元模拟,可以更加精确地预测盘体铸件低压铸造的成形过程中所涉及到的各种因素,并对其进行优化和改进。

这可以为实际生产提供更加科学的依据和指导,提高盘体铸件低压铸造工艺的效率和质量。

(2)提高盘体铸件的质量和使用寿命盘体铸件在各种机械设备中扮演着非常重要的角色,其质量和使用寿命对设备的正常运行具有至关重要的影响。

通过有限元模拟,可以更加准确地预测盘体铸件在低压铸造过程中可能存在的变形和缺陷,并采取措施进行纠正和防止,从而提高盘体铸件的质量和使用寿命。

三、研究内容和方法1. 研究内容本研究的主要内容包括:(1)盘体铸件低压铸造工艺的分析和优化(2)盘体铸件低压铸造过程的有限元建模和仿真(3)盘体铸件低压铸造过程中铸件形变和缺陷的分析与优化2. 研究方法本研究主要采用以下方法:(1)对盘体铸件低压铸造工艺进行分析,探讨工业制造过程中可能存在的问题和改进方向。

铸造工艺设计

铸造工艺设计
结构斜度的大小,随垂直壁的高度而异。高度愈小,斜度 愈大;内侧面的斜度应大于外侧面的。
铸件的结构斜度与拔模斜度不同,前者由设计零件的人确 定,且斜度值较大;后者由铸造工艺人员在绘制铸造工艺 图时设计,且只对没有结构斜度的立壁给予较小的角度 (0.5~3.0°)。
铸件要有结构斜度
铸件上垂直于分型面的不加工表面,最好具有结构 斜度,这样起模省力,铸件精度高。
➢ 拔模斜度的大小取决于该垂直壁的高度、造型方法及表面 粗糙度等因素。
➢ 随垂直壁高度的增加,其拔模斜度应减小;机器造型的拔 模斜度较手工造型的小;外壁的拔模斜度也小于内壁的。
拔模斜度---为便于起模,凡垂直于分型面的立壁在制 造模型时必需留拔模斜度。
型芯头---型芯端头的延伸部位,芯头须留有一定斜 度。
顶盖铸件的设计
阀体铸件的设计
壁厚有差别时铸件的设计
铸 件 壁 厚 应 均 匀
图(a)所示各部分冷却速度不同,易形成热应力,致使铸 件簿壁与厚壁连接处产生裂纹。厚壁处易形成缩孔、缩松。
在设计铸件时,应尽可能使壁厚均匀,以防止上述缺陷 产生,如图(b)所示。
(二)铸件壁的连接
(2) 壁与壁之间应避免锐角连接,以减小热节和内应力。 (3) 厚壁与薄壁的连接应逐步过渡,以防止应力集中。 (4) 壁与壁之间应避免交叉。对中、小型铸件壁与壁的连
侧面,便于安放冒口,使铸件自下而上顺 序凝固。
在液体浇注过
程中,其中的
车 床
气体和熔渣往

上浮;

由于静压力较
小,使铸件上
部组织不如下
图中机床床身导轨是主要工 作面,浇注时应朝下。
部的致密。
卷 扬 筒
主要加工面为外圆柱面,采用立式 浇注,卷筒的全部圆周表面位于侧位。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盆形零件铸造工艺设计
工艺分析
1、零件基本信息
零件材料:HT150
生产批量:小批量生产
2、零件技术要求
铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。

3、选材的合理性
铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等,参考常
用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的种类、
牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。

4、审查铸件结构工艺性
铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。

二、工艺方案的确定
1、铸造方法的确定
铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择
(1)造型方法、造芯方法的选择
根据手工造型和机器造型的特点,选择手工造型
(2)铸造方法的选择
根据零件的各参数,对照表格中的项目比较,选择砂型铸造。

(3)铸型种类的选择
根据铸型的特点和应用情况选用自硬砂。

2、浇注位置的确定
根据浇注位置选择的4条主要规则,综合之下选择铸件开口处。

3、分型面的选择
本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即开口处。

三、工艺参数查询
1、加工余量的确定
根据造型方法、材料类型进行查询。

查得加工余量等级为11~13,
取加工余量等级为12。

根据零件基本尺寸、加工余量等级进行查询。

查得铸件尺寸公差数值为10。

根据零件尺寸公差、公差等级进行查询。

查得机械加工余量为5.5。

2、起模斜度的确定
该零件没有垂直于分型面的面,不需要另外确定起模斜度。

3、铸造圆角的确定
根据铸造方法和材料,查得最小铸造圆角半径为4。

4、铸造收缩率的确定
根据铸件种类查得:阻碍收缩率为0.8~1.0,自由收缩率为0.9~1.1。

5、最小铸造孔的选择
该零件没有铸造孔。

四、浇注系统设计
(一)、浇注位置的确定
根据内浇道的位置选择顶注式,
(二)、浇注系统类型选择
根据各浇注系统的特点及铸件的大小选用封闭式浇注系统。

(三)、浇注系统尺寸的确定
1、计算铸件质量:
按照铸件的基本尺寸(包括加工余量在内)计算出铸件的体积和铸件的质量。

其计算公式为:m=pv
式中 m --铸件质量(g):
p--金属材料的密度,对一般铸件可取p=7.2/cm3;
v--铸件的体积(cm3);
得到结果如下
铸件质量m=16.6032千克
铸件体积v= 2306180 立方毫米=2306cm3
铸件面积s=278631cm2
2、各个浇道的截面积计算
奥赞公式法
该方法利用力学公式先求出浇注系统的最小横截面积,再根据不同工艺条件下的浇注系统各组元截面比例,
确定其它的横截面积。

铸铁件浇注系统最小横截面积计算公式
式中s最小—最小横截面();
m—流过浇注系统最小横截面积的铸铁金属液总质量(kg);
t—浇注时间(s);
u —流量因数,量纲为1;
Hp —平均静压头(m);
式中个参数的确定方法如下
1. 金属液总质量m的确定
根据铸件质量和生产类型选择铸铁件浇注系统占的质量百分比为20%,
金属液总质量m=m0×(1+20%)=16.6032kg×1.20=19.92kg
2. 浇注时间t的确定
根据铸件壁厚取s1=2.2
浇注时间t=2.2×7.173=15.7s
对于具有水平面或结构复杂的薄壁铸件,应保证液面上升速度u上升足够大。

铸铁件按u上升大于4-3所列数
值,对型腔中的液面上升速度进行核算:
铸件在给定浇注位置高度c=0.171m
型腔中的液面上升速度u=0.171m/15.7s=1.09cm/s
U=1.09cm/s>0.8~1,满足要求。

3. 流量因数u的确定
根据铸型种类和阻力大小流量因数u取0.6
4.平均静压头Hp的确定
Hp可根据表4-6确定。

表中Ho为内浇道到浇口杯的距离,c为浇注位置时的铸件高度。

根据铸件重量m=16.6032千克,查得b=60,c=70.
由浇注方式为顶注式,则Hp=Ho-c/2=171+60-171/2=0.1455m
是否能完全充型校核:
Hm=500tg6=52.6mm
Ho=171+60=231mm
Ho=231mm>171+52.6=223.6mm
满足要求。

则铸铁件浇注系统最小横截面积
s=19.92/(0.31X10? X0.6X15.7X0.38)
s=0.00018m2=1.80cm2
按封闭式浇注系统各部分的截面积比例:
直浇道出口截面积大于横浇道截面积总和,横浇道出口截面积总和又大于内浇道截面积总和的浇注系统,
即A直>∑A横>∑A内。

其特点是挡渣能力强,但对铸型冲刷力大。

对中小型铸铁件,推荐采用封闭式浇注系
统。

其各部分截面比例为:∑A内:∑A横:∑A直=1:1.1:1.5
根据浇注系统最小横截面积,
取∑A内=2cm2. 查得a=26mm,b=23mm,c=8mm 。

则∑A横=2x1.1=2.2 cm2
取∑A横=2.52 cm2,查得a=16mm,b=12mm,c=18mm。

则∑A直=2x1.5=3 cm2
取∑A直=3.02 cm2,查得d=19.6mm。

(四)冒口的设计
M=2306cm3/3130cm2=0.737cm<1cm
灰铸铁壁厚均匀,在12mm以下,不需要补缩冒口。

七、热处理
灰口铸铁的热处理灰铸铁铸件一般不需进行热处理,通常对灰口铸铁进行热处理的目的是为了减少铸件中的内应力;消除薄壁铸件或铸件薄断面部分的白口组织;提高铸件工作表面的硬度和耐磨性等。

常用的热处理方法有时效处理、
降低硬度的退火、正火和表面淬火。

对于此灰铁铸件采用时效处理。

其目的是消除铸件冷却凝固过程中所产生的内应力,以防止铸件在后续工序中,由于内应力而引起变形和裂纹。

自然时效是将铸件在机械加工前放置六至十八个月左右,让其内应力自行消除。

此法的缺点是时间长、效果差,故目前很少应用。

人工时效又称低温退火。

它是将清砂后的铸件送入100-200℃的炉中,随炉升温至500-600℃。

保温较长时间后(一般为4—10小时),再以20-30℃/小时的冷却速度缓慢冷至200℃以下出炉空冷,从而消除其内应力。

相关文档
最新文档