高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)
高中数学必修一第二章基本初等函数单元测试题(含答案)

第二章综合测试题一、选择题1.有下列各式:①na n=a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43+y ;④3-5=6(-5)2.其中正确的个数是 ( ) A .0 B .1 C .2D .32.三个数log 215,20.1,20.2的大小关系是 ( )A .log 215<20.1<20.2B .log 215<20.2<20.1C .20.1<20.2<log 215D .20.1<log 215<20.23.(2016·山东理,2)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B = ( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)4.已知2x =3y ,则xy = ( )A.lg2lg3B.lg3lg2 C .lg 23D .lg 325.函数f (x )=x ln|x |的图象大致是 ( )6.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则 ( ) A .f (x )与g (x )均为偶函数B .f (x )为奇函数,g (x )为偶函数C .f (x )与g (x )均为奇函数D .f (x )为偶函数,g (x )为奇函数 7.函数y =(m 2+2m -2)x 1m -1是幂函数,则m = ( )A .1B .-3C .-3或1D .28.下列各函数中,值域为(0,+∞)的是 ( ) A .y =2-x 2B .y =1-2xC .y =x 2+x +1D .y =31x +19.已知函数:①y =2x;②y =log 2x ;③y =x-1;④y =x 12;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是 ( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ) (x <1)2x -1 (x ≥1),则f (-2)+f (log 212)= ( )A .3B .6C .9D .1211.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,(12)x -1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为 ( )A .(-∞,2)B .(-∞,138]C .(-∞,2]D .[138,2)12.(2016·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,可以是“好点”的个数为 ( )A .0个B .1个C .2个D .3个第Ⅱ卷(非选择题 共90分)二、填空题 三、13.已知a 12=49(a >0),则log 23a =________. 14.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (14))=________.15.若函数y =log 12(3x 2-ax +5)在[-1,+∞)上是减函数,则实数a 的取值范围是________.16.(2016·邵阳高一检测)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log 22x ,y =x 12,y =(22)x的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.四、解答题17.(本小题满分10分)计算:10.25+(127)-13 +(lg3)2-lg9+1-lg 13+810.5log 35.18.(本小题满分12分)已知函数f (x )=(12)ax ,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.19.(本小题满分12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值范围.20.(本小题满分12分)求使不等式(1a )x 2-8>a -2x 成立的x 的集合(其中a >0,且a ≠1).21.(本小题满分12分)(2016·雅安高一检测)已知函数f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2),(1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(本小题满分12分)若函数f (x )满足f (log a x )=a a 2-1·(x -1x )(其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围. 参考答案: 1.[答案] B[解析] ①na n=⎩⎪⎨⎪⎧|a |,n 为偶数,a ,n 为奇数(n >1,且n ∈N *),故①不正确.②a 2-a +1=(a -12)2+34>0,所以(a 2-a +1)0=1成立.③3x 4+y 3无法化简.④3-5<0,6(-5)2>0,故不相等.因此选B. 2.[答案] A[解析] ∵log 215<0,0<20.1<20.2,∴log 215<20.1<20.2,选A.3.[答案] C[解析] A ={y |y =2x ,x ∈R }={y |y >0}.B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B ={x |x >0}∪{x |-1<x <1}={x |x >-1},故选C. 4.[答案] B[解析] 由2x =3y 得lg2x =lg3y ,∴x lg2=y lg3, ∴x y =lg3lg2. 5.[答案] A[解析] 由f (-x )=-x ln|-x |=-x ln|x |=-f (x )知,函数f (x )是奇函数,故排除C ,D ,又f (1e )=-1e<0,从而排除B ,故选A.6.[答案] D[解析] 因为f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x =-g (x ),所以f (x )是偶函数,g (x )为奇函数,故选D.7.[答案] B[解析] 因为函数y =(m 2+2m -2)x 1m -1是幂函数,所以m 2+2m -2=1且m ≠1,解得m =-3.8.[答案] A [解析] A ,y =2-x 2=(22)x的值域为(0,+∞). B ,因为1-2x ≥0,所以2x ≤1,x ≤0, y =1-2x 的定义域是(-∞,0], 所以0<2x ≤1,所以0≤1-2x <1, 所以y =1-2x 的值域是[0,1).C ,y =x 2+x +1=(x +12)2+34的值域是[34,+∞),D ,因为1x +1∈(-∞,0)∪(0,+∞),所以y =31x +1的值域是(0,1)∪(1,+∞).9.[答案] D[解析] 根据幂函数、指数函数、对数函数的图象可知选D. 10.[答案] C[解析] f (-2)=1+log 2(2-(-2))=3,f (log 212)=2log 212-1=2log 26=6, ∴f (-2)+f (log 212)=9,故选C. 11.[答案] B[解析] 由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138],选B.12.[答案] C[解析] 设指数函数为y =a x (a >0,a ≠1),显然不过点M 、P ,若设对数函数为y =log b x (b >0,b ≠1),显然不过N 点,选C. 13.[答案] 4[解析]∵a 12=49(a >0), ∴(a 12)2=[(23)2]2,即a =(23)4,∴log 23 a =log 23 (23)4=4.14.[答案] 19[解析] ∵14>0,∴f (14)=log 214=-2.则f (14)<0,∴f (f (14))=3-2=19.15.[答案] (-8,-6][解析] 令g (x )=3x 2-ax +5,其对称轴为直线x =a 6,依题意,有⎩⎪⎨⎪⎧a 6≤-1,g (-1)>0,即⎩⎪⎨⎪⎧a ≤-6,a >-8. ∴a ∈(-8,-6]. 16.[答案] (12,14)[解析] 由图象可知,点A (x A,2)在函数y =log 22x 的图象上,所以2=log 22x A ,x A =(22)2=12. 点B (x B,2)在函数y =x 12的图象上,所以2=x B 12,x B =4.点C (4,y C )在函数y =(22)x的图象上, 所以y C =(22)4=14. 又x D =x A =12,y D =y C =14,所以点D 的坐标为(12,14).17.[解析] 原式=10.5+(3-1)-13 +(lg3-1)2-lg3-1+(34)0.5log 35=2+3+(1-lg3)+lg3+32log 35 =6+3log 325=6+25=31.18.[解析] (1)由已知得(12)-a =2,解得a =1.(2)由(1)知f (x )=(12)x ,又g (x )=f (x ),则4-x -2=(12)x ,即(14)x -(12)x -2=0,即[(12)x ]2-(12)x -2=0,令(12)x =t ,则t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即(12)x =2,解得x =-1.19.[解析] (1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数,因此当x =3时,f (x )最小值为2. 当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x ) 当a >1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧ 1+x >1-x 1+x >01-x >0∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧1+x <1-x 1+x >01-x >0∴-1<x <0综上a >1时,解集为{x |0<x <1} 0<a <1时解集为{x |-1<x <0}. 20.[解析] ∵(1a )x 2-8=a 8-x 2,∴原不等式化为a 8-x 2>a-2x.当a >1时,函数y =a x 是增函数, ∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x 是减函数, ∴8-x 2<-2x ,解得x <-2或x >4. 故当a >1时,x 的集合是{x |-2<x <4}; 当0<a <1时,x 的集合是{x |x <-2或x >4}. 21.[解析] (1)∵f (x )=2x , ∴g (x )=f (2x )-f (x +2)=22x -2x +2.因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1.于是g (x )的定义域为{x |0≤x ≤1}.(2)设g (x )=(2x )2-4×2x =(2x -2)2-4. ∵x ∈[0,1],∴2x ∈[1,2],∴当2x =2,即x =1时,g (x )取得最小值-4; 当2x =1,即x =0时,g (x )取得最大值-3. 22.[解析] (1)令log a x =t (t ∈R ),则x =a t , ∴f (t )=a a 2-1(a t -a -t ). ∴f (x )=a a 2-1(a x -a -x )(x ∈R ).∵f (-x )=a a 2-1(a -x -a x )=-a a 2-1(a x -a -x )=-f (x ),∴f (x )为奇函数.当a >1时,y =a x为增函数,y =-a -x为增函数,且a 2a 2-1>0,∴f (x )为增函数.当0<a <1时,y =a x为减函数,y =-a -x为减函数,且a 2a 2-1<0,∴f (x )为增函数. ∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数, 只需f (2)-4≤0,即aa 2-1(a 2-a -2)≤4. ∴a a 2-1(a 4-1a2)≤4, ∴a 2+1≤4a ,∴a 2-4a +1≤0, ∴2-3≤a ≤2+ 3.又a ≠1,∴a 的取值范围为[2-3,1)∪(1,2+3].。
高一必修(第一册)基本初等函数复习(含答案)

咼一升咼—基本初等函数复习设 a =0.6°.4, b =0.4°.6, c=0.4°.4,则 a , b , c 的大小关系为()A . a ::: b ::: cB . b ::: c a C. c ::: a ::: bD. c :::b ::: a已知函数f (x^a x- 3(a =0),贝U f(x)的图象过定点()A . (0,4) B. (2,4) C. (0,3) D. (4,3) 已知2a =3b =6,则a , b不可能满足的关系是()2 2C . (a -1) (b -1) :::22已知x^4,贝U x等于()1A .B . _88f (x) =x 一4 + 9 , x € (0,4),当x=a 时,f (x)取得最小值b,则函数g(x)=a|x^ x +1A.(」:,2] B . [2,::) C . [-2 ,亠)D.(」:,-2]1 函数f(x)=()41x,(2)x -1, [0, :)的值域为()5A.(一;,1]45B . H- , 1]4c . ( -1,1]D.[-1 , 1]已知a =(-2)0'3,0 3b = g 0.3 ,c =03,贝U2a, b,c的大小关系是( )A . a : b :: cB . c :a :::bC . a ■■ c :: b D.b ■c ■■a1 ln2 lg2 -lg 5 -e1 ____________-(丄)_ ..(-2)2的值为(4)1. 2. 3. 4.5.6. 7. & 9.D ._2已知函数9A. -11B .—2C . 3D._510.若幕函数 2f(x)的图象过点(4,2),则f (a )=(B.—a C. _a D. |a|11.已知函数 f (x) = (m22m -2 m 3-m -1)x _ 是幕函数,且其图象与两坐标轴都没有交点,则实A. -13曲线G , C2, C3, C4的n依次为(22C.14.对于幕函数4f(x) =x5,若0 ::x ::X2,则f( X1 X22占大小关系是(f (X i X 2)f (X i ) f (X 2)2 X i X 2f(x i ) f(X 2)f (h^D .无法确定15.若函数f(x) =x a 满足f (3) = 9,那么函数g(x) =|log a (x 1)|的图象大致为()216.若函数y =log 2(kX4kX 5)的定义域为R ,则k 的取值范围()55A . (0,—)B . [0,-)4 455C . [0 , ]D .(-二,0)-(,::)4417.已知函数f(x)=lg(ax 2 -2x a)的值域为R ,则实数a 的取值范围为()A . [-1 , 1]B . [0 , 1]C . (-: - , -1) - (1, : :)D . (1,::)18.函数f(x)=2X -s inx 在区间[-10二,10二]上的零点的个数是()A . 10B . 20C . 30D . 4011119 .若 15a =5b =3° =25,贝U ---—一二 _______a b c 20 .方程4X -10L2X *16 =0的解集是 ________f (宁)严)仏) 2x 1 x 221 .已知函数f(x^ a (X 0)是(-::,;)上的增函数,那么实数a的取值范围、ax +3a —8 (x, 0)是____ .22. 已知函数f(x)的图象与函数g(x)=2关于直线y=x对称,令h(x)=f(仁|x|),则关于函数h(x)有以下命题:(1)h(x)的图象关于原点(0,0)对称;(2)h(x)的图象关于y轴对称;(3)h(x)的最小值为0;(4)h(x)在区间(_1,0)上单调递增.中正确的是 __________________ .b 2x23. 已知函数f(x) 二为定义在区间[-2a , 3a -1]上的奇函数,贝V a・b= .2x+13 324. _________________________________________________________________ 已知实数a满足(2a_1)P (a 1)^,则实数a的取值范围是 ____________________________________ .25•已知函数f(x) =2工ax 3(1 )当a =0时,求函数f(x)的值域;(2)若A={x|y =lg(5—x)},函数f(x)=2」也奉在A内是增函数,求a的取值范围.x6 / 18a _2x 26. 已知定义域为R 的函数f(x)=市是奇函数 (1 )求a ,b 的值.(2) 判断f(x)的单调性,并用定义证明(3) 若存在r R,使f(k t ) f (4^2t ) :::0成立,求k的取值范围.27. 利用换底公式求log? 25Jog3 4」og5 9的值.28. 设f (x) =log a(j x) log a(3-x)(a 0 , a=1),且f (1) = 2 .(1 )求a的值及f (x)的定义域.3(2 )求f(x)在区间[0 ,-]上的值域.229.已知函数 f (x) =log2 x的定义域是[2 ,16].设g(x)二f(2x) -[f(x)]2.(1)求函数g(x)的解析式及定义域;2)求函数g(x) 的最值.。
基本初等函数-人教A版高中数学必修1课时训练(含答案)

解析 令 x-1=0,得 x=1, 此时 y=2+1=3,∴图象恒过定点(1,3). 答案 C 8.函数 f(x)= 1-2x的定义域是( A.(-∞,0] B.[0,+∞) ).
C.(-∞,0) D.(-∞,+∞) 解析 要使函数有意义,则 1-2x≥0,即 2x≤1,∴x≤0.
答案 A 5 3 9.已知函数 f(x)是指数函数,且 f-2= 25 ,则 f(3)=________.
1 2x+1x<-1, = + x≥-1. 2x 1 1 其图象分成两部分,一部分是将 y1=2x+1(x<-1)的图象作出,而它的图象可以 1 看作将 y=2x 的图象沿 x 轴的负方向平移一个单位而得到, 另一部分是将 y=2x
解析 原式= 答案 0
综合提高
7.下列说法中,正确说法的个数为(
限时25分钟
).
n ① an=a;②若 a∈R,则(a2-a+1)0=1; 3 ③ x4+y3= 3 6 +y;④ -5= -52. D.3
A.0 B.1 C.2
解析 ①中,若 n 为偶数,则不一定成立,故①是错误的;②中,因为 a2-a+1 1 3 =a-22+4≠0,所以(a2-a+1)0=1 是正确的;③是错误的;④左边为负数, 而右边为正数,是错误的,故选 B. 答案 B
+1
(x≥-1)的图象作出, 而它的图象可以看作将 y=2x 的图象沿 x 轴的负方向平移
一个单位而得到,如图所示.
法二 先作出 y=2x(x≥0)的图象,再关于 y 轴对称即得 y=2|x|的图象,再将 y= 2|x|的图象左移一个单位即可得到 y=2|x+1|的图象,如法一中图所示.
2.1.2 指数函数的性质的应用 双基达标
高中数学必修一第二章 基本初等函数 2-1 指数函数课时提升作业及解析

a>0 且 a≠1.
(1)求 a 的值.
(2)求函数 y=f (x≥0)的值域.
【解析】(1)函数图象经过点
,所以 a2-1= ,则 a= .
,其中
(2)由(1)知函数为 f(x)=
(x≥0),由 x≥0,得 x-1≥-1.于是 0<
≤
=2,所以函数的值域为(0,2].
(20 分钟 40 分) 一、选择题(每小题 5 分,共 10 分) 1.(2015·南昌高一检测)函数 f(x)=ax-b 的图象如图所示,其中 a,b 均为常数,则 下列结论正确的是 ( )
【解题指南】从直线位置得出 b 与 1 的大小及 a 的正负,从而判断 y=bax 的增减性. 【解析】选 A.选项 A 中,由直线位置可知 a>0,0<b<1,所以 y=bax 为减函数,故 A 正确.选项 B 中 a>0,b>1,所以 y=bax 为增函数,故 B 项不正确.选项 C 中,a<0,b>1,
2.(2015·昆明高一检测)化简[
的结果为 ( )
A.5
B.
C.-
D.-5
【解析】选 B.[
=(
= == .
【补偿训练】计算[(- )2 的结果是 ( )
A.
B.-
C.
D.-
【解析】选 C.[(- )2 =(
=( )-1= = ,故选 C.
3.
+(-1)-1÷0.75-2+
=( )
A.
B.
C.-
D.-
所以
= =.
的值.
课时提升作业(2)
指数幂及运算
(15 分钟 30 分) 一、选择题(每小题 4 分,共 12 分)
高中数学必修一基本初等函数知识点与典型例题总结

( a ,c ( 0 ,1 ) U ( 1 , ) ,b 0 )
c
2) 对数恒等式
a lo g a N N ( a 0 且 a 1 , N 0 )
3) 四个重要推论
①logabllggabllnnab; ②logamNnm nlogaN;
③logablog1ba;
④ lo g ab lo g bc lo g ac.
由f x是奇函数,图像关于原点对称.
所以f x在( ,- a )是增函数,
在(- a ,0)是减函数.
综上,函数 f x x a(a>0)的单调
区间是
x f x在(- a ,0),(0, a )是减函数.
在( ,- a ),( a ,+)是增函数,
单调区间的分界点为: a的平方根
5.函数f x x a (a>0)的值域
①找不到证明问题的切入口.如第(1)问,很 多考生不知道求其定义域.
②不能正确进行分类讨论.若对数或指数的 底数中含有参数,一般要进行分类讨论.
一般地,函数 y x x 是 自 变 量 , 是 常 数
叫做幂函数
y
y x, y x2, y x3,
1
y x2, y x1
的图象.
O
x
幂函数的性质
当x1x2 >a时,由x1,x2是任意的,知x1,x2可 无限接近.而x1,x2在同一个区间取值, 知x1,x2 ( a,+)时,x1x2 >a都成立. 此时,f(x2 )>f (x1). 所以x ( a,+)时,f(x)是增函数.
同时可知,x (0, a )时,f(x)是减函数.
⑵. 当x∈ (-∞,0)时,确定某单调区间
高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.方程的根的情况是()A.仅有一根B.有两个正根C.有一正根和一个负根D.有两个负根【答案】C【解析】主要考查指数函数、对数函数的图象和性质。
解:采用数形结合的办法,在同一坐标系中,画出的图象可知。
2.已知 .【答案】8【解析】主要考查指数函数、二次函数的性质。
利用换元法。
解:可化为,令,又因为所以,,,故。
3.若下列命题正确的个数为()A.0B.1C.2D.3【答案】B【解析】主要考查对数运算法则。
解:根据对数的运算性质易知只有④是正确的。
4.已知_____________【答案】【解析】主要考查对数运算。
解:5.已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x年的剩留量为y,则y 与x的函数关系是A.y=(0.9576)B.y=(0.9576)100xC.y=()x D.y=1-(0.0424)【答案】A【解析】设每年减少q%,因为镭经过100年,剩留原来质量的95.76%,所以=95.76%, q%=1-(0.9576),所以=(0.9576)。
故选A。
【考点】主要考查函数的概念、解析式,考查应用数学知识解决实际问题的能力。
点评:审清题意,构建函数解析式。
6.一个体户有一种货,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为2.4%,如果月末售出可获利120元,但要付保管费5元,问这种货是月初售出好,还是月末售出好?【答案】当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【解析】解:设这种货的成本费为a元,则若月初售出,到月末共获利润为:y1=100+(a+100)×2.4%若月末售出,可获利y2=120-5=115(元)y 2-y1=0.024a-12.6=0.024(a-525)故当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【考点】主要考查函数模型的广泛应用,考查应用数学知识解决实际问题的能力。
高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.(本小题满分12分)已知函数,定义域为(1)证明函数是奇函数;(2)若试判断并证明上的单调性【答案】(1)见解析;(2)减函数。
【解析】(1)先确定函数的定义域关于原点对称,再根据奇函数的定义判断f(-x)=-f(x)即可证明. (2)当a=1时,利用函数单调性的定义证明分三个步骤:第一步在区间内取两个不同的值,第二步作差比较两个函数值的大小,第三步得出结论.2.(本小题满分12分)定义在R上的函数,,当时,,且对任意实数,有,(1) 求证:;(2)求证:对任意的∈R,恒有>0;(3)证明:是R上的增函数;(4)若,求的取值范围.、【答案】见解析。
【解析】(1)令a=b=0,可知,因为,所以f(0)=1.(2)令a=x,b=-x,可得f(0)=f(x)f(-x),再结合f(0)=1,x>0,f(x)>1,可确定当x<0时,f(x)>0,又因为f(0)=1.,从而问题得证.(3)任取x2>x1,则,从而证得结论.(4),从而再利用(3)的单调性转化为不等式,从而问题易解.3.如图所示,当时,函数的图象是 ( )【答案】D【解析】因为当时,函数,因为a,b同号,则可知当a>0,b>0,或者a<0,b<0那么分析可知选D4.若函数是上的减函数,则实数的取值范围是()A.B.C.D.【答案】C【解析】因为函数是上的减函数,则可知2-3a<0,0<a<1,a3-3a,解得实数a的范围是,选C.5.已知函数(1)当时,求函数的最大值与最小值;(2)求实数的取值范围,使得在区间上是单调函数.【答案】(1) 当时,函数取得最小值,最小值为1;当时,函数取得最大值,最大值为;(2)。
【解析】本事主要是考查二次函数的性质和单调性的运用。
(1)依题意得当时,,那么可知,由图象知当时,函数取得最小值,最小值为1(2)由于图象的对称轴为直线,根据定语和对称轴的关系得到参数的范围。
高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.已知偶函数在区间单调递减,则满足的x 取值范围是()A[-,) B (-,) C(,) D [,)【答案】B【解析】因为f(x)在区间单调递减的偶函数,所以等价于,所以不等式的解集为(-,).2.如图所示,当时,函数的图象是 ( )【答案】D【解析】因为当时,函数,因为a,b同号,则可知当a>0,b>0,或者a<0,b<0那么分析可知选D3.设,则的大小关系为()A.B.C.D.【答案】D【解析】因为,所以,选D.4.函数的单调增区间为;【答案】【解析】因为函数作图函数的图像,结合二次函数的图像的特点可知其单调增区间为。
5.里氏震级的计算公式为:其中是测震仪记录的地震曲线的最大振幅,为“标准地震”的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为__________级;9级地震的最大振幅是5级地震的最大振幅的__________倍.【答案】6; 10000【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA-lgA0=lg1000-lg0.001=3-(-3)=6.设9级地震的最大的振幅是x,5级地震最大振幅是y, 9=lgx+3,5=lgy+3,解得x=106,y=102,∴=10000故答案为:6,100006.(12分)已知函数是定义在上的奇函数,且,(1)确定函数的解析式;(2)用定义证明在(-1 ,1)上是增函数;(3)解不等式【答案】解:(1);(2)证明:见解析;(3)。
【解析】本试题主要是考查了函数的奇偶性和单调性的运用,求解抽象不等式问题。
(1)依题意得,解方程组得到参数a,b的值。
得到第一问。
(2)任取,则利用变形定号,确定与0的大小关系来证明。
(3)在上是增函数,∴,解得解:(1)依题意得即得∴(2)证明:任取,则,又∴在上是增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
此时,a 的n 次方根用符号 表示。
当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。
此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。
正的n 次方根与负的n 次方根可以合并成 (a>0)。
注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。
3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。
有理数指数幂的运算性质同样使用于无理数指数幂。
(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。
二、对数函数 (一)对数1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N— 真数,N a log — 对数式)说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =⇔=log ; ○3 注意对数的书写格式: 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln .(二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○2 =NM a log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b mnba nam log log =;(2)a b b a log 1log =.(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:x y 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:0(>a ,且)1≠a .N a log三、幂函数 1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.第二部分练习题含答案解析第二章 基本处等函数一、选择题(每小题5分,共60分)1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6. 答案:D2.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( )A .0B .1C .2D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( )A .x >12 B.12<x <1 C .x <1D .0<x <1解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( )A .0.015克B .(1-0.5%)3克C .0.925克D.1000.125克解析:设该放射性元素满足y =a x (a >0且a ≠1),则有12=a 100得a =(12)1100.可得放射性元素满足y =[(12)1100]x =(12)x 100.当x =3时,y =(12)3100=100(12)3=1000.125.答案:D6.函数y =log 2x 与y =log 12x 的图象( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称D .关于y =x 对称解析:据图象和代入式判定都可以做出判断,故选B. 答案:B7.函数y =lg(21-x -1)的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称解析:f (x )=lg(21-x -1)=lg 1+x 1-x ,f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)关于原点对称,故选C.答案:C8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a c C .c a >c bD .log b c <log a c解析:y =x c 在(0,+∞)上递增,因为a >b ,则a c >b c ;y =log a x 在(0,+∞)上递增,因为b >c ,则log a b >log a c ;y =c x 在(-∞,+∞)上递增,因为a >b ,则c a >c b .故选D.答案:D9.已知f (x )=log a (x +1)(a >0且a ≠1),若当x ∈(-1,0)时,f (x )<0,则f (x )是( )A.增函数B.减函数C.常数函数D.不单调的函数解析:由于x∈(-1,0),则x+1∈(0,1),所以a>1.因而f(x)在(-1,+∞)上是增函数.答案:A10.设a=424,b=312,c=6,则a,b,c的大小关系是()A.a>b>c B.b<c<a C.b>c>a D.a<b<c解析:a=424=12243,b=12124,c=6=1266.∵243<124<66,∴12243<12124<1266,即a<b<c.答案:D11.若方程a x=x+a有两解,则a的取值范围为()A.(1,+∞) B.(0,1)C.(0,+∞) D.Ø解析:分别作出当a>1与0<a<1时的图象.(1)当a>1时,图象如下图1,满足题意.图1图2(2)当0<a<1时,图象如上图2,不满足题意.答案:A12.已知f(x)是偶函数,它在(0,+∞)上是减函数,若f(lg x)>f(1),则x的取值范围是()A .(110,1)B .(0,110)∪(1,+∞) C .(110,10)D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎨⎧x >0,-1<lg x <1,解得110<x <10. 答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________.解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12. 答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________. 解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1.答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12. 当t =3时,y min =12;当t =1时,y max =12×4+12=52. 答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23.18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中,得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0,将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0. 解得y =4或y =22.当y =4时,即2x =4,解得x =2; 当y =22时,2x =22,解得x =-12. 综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12. (1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ; (2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa . 综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞); 当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa ,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0,(1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-a x ),其中0<a <1.(1)求证:f (x )是(a ,+∞)上的减函数;(2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-a x 2)=log a 1-a x 11-a x 2=log a 1-a x 2+a x 2-a x 11-a x 2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-a x )>log a a ⇔⎩⎪⎨⎪⎧ 1-a x >0,①1-a x <a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a 1-a}.。