高考数学--第27讲 数列的概念与简单表示法

合集下载

数列的概念和表示方法

数列的概念和表示方法

数列的概念和表示方法数列是数学中重要的概念之一。

它由一系列按照一定规律排列的数字组成,这些数字依次排列,每一个数字称为数列的项。

数列的概念和表示方法有着广泛的应用,能够帮助我们解决很多实际问题。

一、数列的概念数列是按照一定规则排列的数字序列。

数列中的每个数字称为该数列的项。

数列可以无限延伸,也可以中断。

数列中的规律可以通过一定的公式或递推关系进行表示。

数列是数学研究以及实际问题解决中的重要工具。

二、数列的表示方法1. 通项公式通项公式是用代数表达式来表示数列中任意一项与该项所在位置之间的关系。

通项公式通常依赖于数列的项数或项号。

例如,斐波那契数列的通项公式为Fn = Fn-1 + Fn-2,其中n为项号,Fn表示第n项的值。

2. 递推公式递推公式是通过已知的一些项来推导出数列中的其他项的公式。

递推公式是数列的项之间的关系表达式。

例如,等差数列的递推公式为an = a1 + (n-1)d,其中an表示第n项的值,a1为首项的值,d为公差。

3. 图形表示数列也可以通过图形表示来展示其规律。

可以使用折线图、柱状图等方式将数列中的项与其对应的位置进行关联,从而更直观地观察数列的规律。

三、数列的应用数列的概念和表示方法在实际问题的解决中有着广泛的应用。

1. 自然科学中常常涉及到一些指数、级数等数列的求和问题。

例如天体物理学中的一些数学模型,对宇宙星系中星体的数量进行估算,可以使用数列求和的方法。

2. 经济学中,通过构建数列模型可以研究经济发展的趋势,并对经济指标进行预测和分析,从而指导经济政策的制定。

3. 在工程领域,数列的应用也非常广泛,如电子电路中的信号处理、图像处理等领域都离不开数列分析与处理。

4. 生活中的一些规律也可以通过数列进行描述,如雨滴的滴落、植物的生长等,都可以用数列来表示和研究。

总结:数列作为数学中的一个重要概念,有着广泛的应用领域。

通过数列的概念和表示方法,我们可以更好地理解和分析规律性的事件和现象。

高考数学数列的概念与简单表示法

高考数学数列的概念与简单表示法

高考数学数列的概念与简单表示法
2021高考各科温习资料
2021年高三开学曾经有一段时间了,高三的同窗们是不是曾经投入了紧张的高考一轮温习中,数学网高考频道从高三开学季末尾为大家系列预备了2021年高考温习,2021年高考一轮温习,2021年高考二轮温习,2021年高考三轮温习都将继续系统的为大家推出。

1、十秒加法
1+2+3+5+8+13+21+34+55+89=231
34+55+89+144+233+377+610+987+1597+2584=6710
(请同窗揭秘)
延续十个斐波那契数字之和等于第七个数字的11倍
2、1 1 2 3 5 8 13 21 34 55 89 144 ......
1 1 4 9 25 64 169 441....(各项的平方)
总结出规律 (幻灯片提醒其几何含义:n个小正方形的面积和等于大长方形的面积)
3、除法运算
黄金联系,这个让有数数学家、艺术家为之着迷的数字,其实我想说的是我们学习数学,不要遗忘数学在实践中的运用,包括能够是最重要的一种运用方式——学会如何思索,简而言之,就是〝数学不只仅是求出X等于多少,还要指出
为什么〞。

2019高考数学数列:数列的概念与简单表示法

2019高考数学数列:数列的概念与简单表示法

数列的概念与简单表示法【考点梳理】1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.数列的递推公式如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.6.a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =,S n -S n -1,n【考点突破】考点一、由a n 与S n 的关系求通项a n【例1】(1)已知数列{a n }的前n 项和为S n =14n 2+23n +3,则数列{a n }的通项公式a n =________.(2)设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .64 [答案] (1) ⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2 (2) A[解析] (1)当n =1时,a 1=S 1=4712,当n ≥2时,a n =S n -S n -1=14n 2+23n +3-⎣⎢⎡⎦⎥⎤14(n -1)2+23(n -1)+3 =12n +512, 经检验a 1=4712不满足上式所以这个数列的通项公式为a n=⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2.(2)当n =8时,a 8=S 8-S 7=82-72=15. 【类题通法】 已知S n 求a n 的3步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)注意检验n =1时的表达式是否可以与n ≥2的表达式合并. 【对点训练】1.已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________. [答案] 4n -5[解析] a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5.2.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5 D .20[答案] D[解析] 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.【例2】(1)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.(2)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. [答案] (1) (-2)n -1(2) -1n[解析] (1)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2. 又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1.(2)∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1. ∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.【类题通法】S n 与a n 关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化. (1)利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. (2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解. 【对点训练】1.已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n =( ) A .2n +1B .2nC .2n -1D .2n -2[答案] A[解析] 由S n =2a n -4可得S n -1=2a n -1-4(n ≥2),两式相减可得a n =2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).又a 1=2a 1-4,a 1=4,所以数列{a n }是以4为首项,2为公比的等比数列,则a n =4×2n -1=2n +1,故选A.2.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A .31 B .42 C .37 D .47 [答案] D[解析] 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47.考点二、由递推公式求数列的通项公式【例3】在数列{a n }中,(1)若a 1=2,a n +1=a n +3n +2,则数列{a n }的通项公式a n =________. (2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________. [答案] (1) 32n 2+n 2 (2) 2n +1 (3) 2n +1-3[解析] (1)由题意,得a n +1-a n =3n +2,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(3n -1)+(3n -4)+…+5+2=n (3n +1)2.即a n =32n 2+n 2.(2)由na n -1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =nn +1·n -1n ·n -2n -1·…·34·23·1 =2n +1,又a 1也满足上式. 所以a n =2n +1. (3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3.【类题通法】1.形如a n +1=a n +f (n )的递推关系式利用累加法求通项公式,特别注意能消去多少项,保留多少项.2.形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n=f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项. 3.形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键. 【对点训练】 在数列{a n }中, (1)若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)若a 1=1,a n +1=2na n ,则通项公式a n =________.(3)若a 1=1,a n +1=3a n +2,则数列{a n }的通项公式a n =________. [答案] (1) 4-1n(2) ()122n n - (3) 2·3n -1-1[解析] (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n,以上(n -1)个式子的等号两端分别相加得,a n =a 1+1-1n,故a n =4-1n.(2)由a n +1=2na n ,得a n a n -1=2n -1(n ≥2), 所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=()122n n -.又a 1=1适合上式,故a n =()122n n -.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.考点三、数列的性质及应用【例3】已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 018=( )A .-1B .12 C .1 D .2[答案] D[解析] 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…, 于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+2=a 2=2. 【类题通法】解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 【对点训练】已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018=________. [答案] 0[解析] ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 018=a 2=0.。

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。

举例说明数列的组成,如自然数数列、等差数列等。

1.2 数列的项解释数列中的每一个数称为数列的项。

强调数列项的顺序和重复性质。

1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。

举例讲解如何写出简单数列的通项公式。

第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。

练习写出几个给定数列的列举表示。

2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。

举例说明如何用公式法表示等差数列和等比数列。

2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。

引导学生通过观察图形来理解数列的特点。

第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。

举例说明如何确定一个数列的项数。

3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。

举例说明如何判断一个数列的单调性。

3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。

举例说明如何判断一个数列的周期性。

第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。

推导等差数列的通项公式。

4.2 等比数列的通项公式讲解等比数列的定义和性质。

推导等比数列的通项公式。

4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。

举例讲解如何求解其他类型数列的通项公式。

第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。

推导等差数列的前n项和的公式。

5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。

推导等比数列的前n项和的公式。

5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。

举例讲解如何求解其他类型数列的前n项和。

第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。

数列的概念与简单表示法 课件

数列的概念与简单表示法 课件

由数列的前几项求通项公式
[典例]
(1)数列
3 5

1 2

5 11

3 7
,…的一个通项公式是
________.
(2)根据以下数列的前4项写出数列的一个通项公式.
①2×1 4,3×1 5,4×1 6,5×1 7,…;
②-3,7,-15,31,…;
③2,6,2,6,….
[解析] (1)数列可写为:35,48,151,164,…,分子满足:3 =1+2,4=2+2,5=3+2,6=4+2,…,
已知数列{an}的通项公式,判断某一个数是否是数列{an}的 项,即令通项公式等于该数,解关于n的方程,若解得n为正整 数k,则该数为数列{an}的第k项,若关于n的方程无解或有解且 为非正整数解则该数不是数列{an}中的项.
[点睛] (1)数列中的数是按一定顺序排列的.因此,如 果组成两个数列的数相同而排列顺序不同,那么它们就是 不同的数列.例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4 是不同的数列.
(2)在数列的定义中,并没有规定数列中的数必须不 同,因此,同一个数在数列中可以重复出现.例如:1,- 1,1,-1,1,…;2,2,2,….
2.数列的分类
分类标准 名称
含义
按项的 个数
按项的变 化趋势
有穷数列 无穷数列 递增数列
递减数列 常数列 摆动数列
项数_有__限__的数列 项数_无__限__的数列
从第_2_项起,每一项都_大__于__它的前 一项的数列
从第_2_项起,每一项都_小__于__它的前 一项的数列
_各__项__相__等__的数列 从第_2_项起,有些项_大__于__它的前一 项,有些项小__于__它的前一项的数列

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案第一章:数列的定义1.1 学习目标:理解数列的定义,能够识别数列的基本特征。

1.2 教学内容:1.2.1 数列的定义:按照一定的顺序排列的一列数。

1.2.2 数列的项:数列中的每一个数称为项。

1.2.3 数列的顺序:数列中项的排列顺序称为数列的顺序。

1.3 教学活动:1.3.1 引入数列的概念,让学生通过观察实际例子来理解数列的定义。

1.3.2 引导学生分析数列的基本特征,如顺序、项等。

1.3.3 进行数列的实例练习,让学生能够识别和描述不同的数列。

第二章:数列的表示法2.1 学习目标:掌握数列的常见表示法,能够正确写出数列的前几项。

2.2 教学内容:2.2.1 列举法:将数列的每一项按顺序写出来。

2.2.2 描述法:用数学公式或文字描述数列的规律。

2.2.3 数列的通项公式:用公式表示数列中任意一项的值。

2.3 教学活动:2.3.1 介绍列举法和描述法,让学生通过实际例子学会用不同的方式表示数列。

2.3.2 引导学生理解数列的通项公式,并能够根据规律写出数列的前几项。

2.3.3 进行数列表示法的练习,让学生能够灵活运用不同的表示法。

第三章:数列的性质3.1 学习目标:理解数列的性质,能够运用数列的性质进行问题的解决。

3.2 教学内容:3.2.1 数列的项数:数列中项的个数称为数列的项数。

3.2.2 数列的项的公共性质:数列中所有项都具有的性质称为数列的项的公共性质。

3.2.3 数列的性质:数列的项的公共性质称为数列的性质。

3.3 教学活动:3.3.1 引导学生通过观察和分析数列的实例,发现数列的性质。

3.3.2 让学生通过实际的例题,学会运用数列的性质进行问题的解决。

3.3.3 进行数列性质的练习,让学生能够熟练运用数列的性质。

第四章:数列的分类4.1 学习目标:了解数列的分类,能够识别不同类型的数列。

4.2 教学内容:4.2.1 数列的分类:按照数列的性质和规律,将数列分为不同的类型。

高考数学知识点:数列的概念与简单表示法

高考数学知识点:数列的概念与简单表示法

高考数学知识点:数列的概念与简单表示法1500字数列是指按照一定规律排列的数字集合。

在高考数学中,数列是一个重要的知识点,它不仅会在选择题和填空题中出现,还会涉及到解答题的证明和计算。

本文将从数列的概念、简单表示法、常见数列以及数列的应用等方面,详细介绍高考数学数列知识点。

一、数列的概念数列中的数字按照一定的顺序排列,每个数字依次被称为数列的项。

一般来说,数列用字母表示,如a₁, a₂, a₃, ...,其中a₁表示数列的第一项,a₂表示数列的第二项,以此类推。

数列中的项可以是整数、分数或者实数,也可以是变量。

数列可以分为等差数列和等比数列两种。

等差数列是指相邻的两项之差都是一常数的数列,等差数列的通项公式一般为an = a₁ + (n-1)d,其中a₁表示首项,d表示公差,n表示项数。

等比数列是指相邻的两项之比都是一常数的数列,等比数列的通项公式一般为an = a₁ * r^(n-1),其中a₁表示首项,r表示公比,n表示项数。

二、数列的简单表示法在高考数学中,常见的数列表示法有两种:通项公式和递推公式。

通项公式是指通过数列的第n项表示数列的任意一项,递推公式是指通过数列的前一项表示数列的后一项。

以等差数列为例,该数列的递推公式为an = an-1 + d,表示每一项都是前一项与公差之和。

而通项公式为an = a₁ + (n-1)d,表示数列的任意一项可以通过项数和公差计算得出。

另外,数列也可以通过数列的前几项给出,例如{1, 2, 3, ...}表示自然数列,{2, 4, 6, ...}表示偶数列。

这种表示法在高考数学中较少使用,但在解答题时可能会用到。

三、常见数列在高考数学中,有一些常见的数列被广泛应用。

这些数列包括等差数列、等比数列、等差数列的前n项和、等比数列的前n项和、斐波那契数列等等。

1. 等差数列:等差数列是指相邻的两项之差都是一常数的数列。

例如{1, 3, 5, 7, ...}是一个公差为2的等差数列。

《数列的概念与简单表示法》课件

《数列的概念与简单表示法》课件
公式
等差数列的通项公式是 $a_n = a_1 + (n-1)d$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是第一项,$d$ 是公差 。
等比数列的定义与特性
01
02
03
定义
等比数列是一组数,其中 任意两个相邻的数之间的 比是一个常数。
特性
等比数列的任意一项都可 以表示为前一项乘以一个 常数,这个常数被称为公 比。
金融
在金融领域,数列常用于研究投资回报、风险评估和资产定价等 。
贸易
在贸易中,数列用于分析商品销售的周期性和趋势,以及预测市场 需求。
经济学
在经济学中,数列用于研究经济增长、通货膨胀和就业等经济指标 的规律和趋势。
2023
REPORTING
THANKS
感谢观看
唯一性
一个数列只能有一个极 限。
稳定性
如果数列${ a_n }$的极 限为$a$,则对于任意 小的正数$epsilon$, 存在正整数$N$,当 $n>N$时,有$|a_n a| < epsilon$。
数列的收敛性定义与性质
收敛性定义
如果数列${ a_n }$的极限 存在,则称数列${ a_n }$ 收敛。
REPORTING
文字叙述法
文字叙述法是用文字描述数列的方法,通常包括起始值、递增值和项数等要素。
例如,数列“1, 4, 7, 10, 13”可以用文字叙述法表示为“从1开始,每次递增3,共 有5项”。
文字叙述法虽然直观易懂,但不够精确和简洁,容易产生歧义。
公式表示法
公式表示法是用数学公式来表 示数列的方法,通常包括通项 公式和求和公式等。
详细描述
数列是一种有序的数集,这些数按照 一定的次序排列,每个数称为数列的 一个项,每个项都有一个与之对应的 正整数,称为项的序号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十七讲 数列的概念与简单表示法
班级________ 姓名________ 考号________ 日期________ 得分________
一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)
1.一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍): 第1行
1 第2行
2 3 第3行
4 5 6 7 …

则第9行中的第4个数是(A .132
B .255
C .259
D .260 解析:由数表知表中各行数的个数构成一个以1为首项,公比为2的等比数列.前8
行数的个数共有1-28
1-2
=255(个),故第9行中的第4个数是259. 答案:C
2.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭
⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n
C .2+n ln n
D .1+n +ln n
解析:由已知,a n +1-a n =ln n +1n ,a 1=2,
∴a n -a n -1=ln n
n -1,
a n -1-a n -2=ln n -1
n -2,

a 2-a 1=ln 21,
将以上n -1个式子累加,得 a n -a 1=ln n
n -1+ln n -1
n -2+…+ln 21
=ln n n -1·n -1
n -2·…·21=ln n ,
∴a n =2+ln n .
答案:A
3.(2010·苏州模拟)已知数列{a n }的前n 项和S n =n 3,则a 6+a 7+a 8+a 9等于(
) A .729 B .367
C .604
D .854
解析:a 6+a 7+a 8+a 9=S 9-S 5=93-53=604. 答案:C。

相关文档
最新文档