2018年秋九年级数学上册21.3实际问题与一元二次方程第1课时实际问题与一元二次方程(1)课件(新版)新人教

合集下载

九年级数学上册-一元二次方程21.3实际问题与一元二次方程第1课时解决代数问题教案新版新人教版

九年级数学上册-一元二次方程21.3实际问题与一元二次方程第1课时解决代数问题教案新版新人教版

21.3 实际问题与一元二次方程第1课时解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.。

2018年秋九年级数学上册 第二十一章 一元二次方程 21.3 实际问题与一元二次方程(第1课时)课

2018年秋九年级数学上册 第二十一章 一元二次方程 21.3 实际问题与一元二次方程(第1课时)课

21.3实际问题与一元二次方程第1课时1.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )A.10只B.11只C.12只D.13只2.某种植物的主干长出a个支干,每个支干又长出同样数目的小分支,则主干、支干和小分支的总数为_____.3.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24 000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?4.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?5.一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.6.有人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信一个人要向几个人发送短信?7.三个连续奇数的平方和为251,求这三个数.8.随着铁路客运量的不断增长,某地火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程.其中某项工程,甲队单独完成所需时间比乙队单独完成需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月.(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,最多安排甲队施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)参考答案1.C2.1+a+a 23.解:(1)设每轮分裂中平均每个有益菌可分裂出x 个有益菌,根据题意,得 60(1+x)2=24 000.解得x 1=19,x 2=-21(不合题意,舍去). 答:每轮分裂中平均每个有益菌可分裂出19个有益菌.(2)经过三轮培植后,得60(1+19)3=60×203=480 000(个).答:经过三轮培植后共有480 000个有益菌.4.解:设有x 家公司出席了这次交易会,根据题意,得21x(x-1)=78. 解这个方程,得x 1=13,x 2=-12(舍去).答:有13家公司出席了这次交易会.5. 解:设原来的两位数的个位数字为x ,则十位数字为(x+2).根据题意,得 (10x+x+2)2=10(x+2)+x+138.解得x 1=-1114(舍去),x 2=1. 答:原来的两位数为31.6. 解:设要向x 个人发送短信.根据题意,得 x(x+1)=90,解得x 1=9,x 2=-10(舍去).答:一个人要向9个人发送短信.7. 7,9,11或-11,-9,-7.8. 解:(1)设甲队单独完成这项工程需要x 个月,则乙队单独完成这项工程需要(x -5)个月,由题意得x(x -5)=6(x+x -5),整理得x 2-17x+30=0.解得x 1=2,x 2=15,x =2不合题意,舍去,故x =15,x -5=10.答:甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月.(2)设在完成这项工程中甲队做了m 个月,则乙队做了2m 个月,由题意知,乙队每月的施工费为150万元,根据题意列不等式,得10015015002m m +⋅≤. 解得487m ≤.∵m 为整数,∴m 的最大值为8. 答:最多安排甲队施工8个月才能使工程款不超过1500万元.。

人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计

人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计

人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计一. 教材分析人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时,主要介绍了如何将实际问题转化为一元二次方程,并通过求解方程得到实际问题的解答。

本节课的内容是学生对一元二次方程知识的进一步拓展和应用,有助于提高学生的数学应用能力。

二. 学情分析学生在学习本节课之前,已经掌握了一元二次方程的基本概念、解法和应用。

但实际问题与一元二次方程的结合,对学生而言是一个新的挑战。

因此,在教学过程中,教师需要关注学生对实际问题转化为数学问题的能力的培养,引导学生学会用数学的眼光看待实际问题。

三. 教学目标1.理解实际问题与一元二次方程之间的关系,学会将实际问题转化为一元二次方程。

2.掌握一元二次方程的解法,并能应用于实际问题的解答。

3.培养学生的数学思维能力,提高学生的数学应用能力。

四. 教学重难点1.教学重点:实际问题转化为一元二次方程的方法。

2.教学难点:如何引导学生发现实际问题与一元二次方程之间的联系。

五. 教学方法1.案例分析法:通过分析具体案例,引导学生发现实际问题与一元二次方程之间的关系。

2.问题驱动法:教师提出问题,引导学生思考和探索,激发学生的学习兴趣。

3.合作交流法:鼓励学生之间相互讨论、分享心得,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示实际问题与一元二次方程之间的关系。

2.案例素材:准备一些实际问题,作为教学案例。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生思考实际问题与数学问题之间的关系,激发学生的学习兴趣。

2.呈现(10分钟)教师展示几个实际问题,让学生尝试将其转化为一元二次方程。

学生在课堂上进行讨论,分享自己的思路。

教师引导学生总结实际问题转化为一元二次方程的方法。

3.操练(10分钟)教师给出一些实际问题,学生独立将其转化为一元二次方程,并求解。

九年级数学:实际问题与一元二次方程第一课时教案

九年级数学:实际问题与一元二次方程第一课时教案

21.3实际问题与一元二次方程(1)一、教学目标1.会利用一元二次方程解决传播问题.2.培养分析问题解决问题的能力,发展应用意识.二、教学重点和难点1.重点:利用一元二次方程解决传播问题.2.难点:根据传播问题列方程.三、教学过程(一)基本训练,巩固旧知1.填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.【(1)题答案为11,121,(2)题答案为1+x,1+x+x(x+1),先让生自己做,然后师进行讲解】(二)创设情境,导入新课师:和一元一次方程一样,利用一元二次方程可以解决实际问题,上节课我们做了一个例题,本节课我们再来看一个例题.(三)尝试指导,讲授新课(师出示下面的例题)例有一人得了流感,经过两轮传染后,共有121人得了流感,每轮传染中平均每一个人传染了几个人?师:大家把这个题目好好默读几遍.(生默读)师:谁能不看黑板说出题目的意思?生:……(让几名同学说)师:这个题目怎么设?生:设每轮传染中平均一个人传染了x个人.(师板书:解:设每轮传染中平均一个人传染了x个人)师:(在黑板的其它地方板书:第一轮后)设平均一个人传染了x个人,那么第一轮后,共有多少人得了流感?生:1+x.(多让几名同学回答,然后师板书:1+x)师:(在黑板的其它地方板书:第二轮后)那么第二轮后,共有多少人得了流感?(让生思考一会儿再叫学生)生:1+x+x(1+x).(多让几名同学回答,然后师板书:1+x+x(1+x))师:下面大家根据题目的意思列一列方程.(生列方程,师巡视)师:(板书:根据题意列方程,得)列出的方程是什么?生:1+x+x(1+x)=121(生答师板书:1+x+x(1+x)=121).师:(指方程)这是一个一元二次方程,怎么解这个方程?大家试着解一解.(生解方程)师:解出来的结果是什么?生:x1=10,x2=-12(生答师板书:x1=10,x2=-12).师:(指方程)解这个方程是有讲究的,很多同学用公式法解,发现数字比较大,解起来比较麻烦.实际上我们可以用直接开平方法来解.怎么用直接平方法来解?(稍停)师:(指准1+x+x(1+x)=121)1+x+x(1+x)有公因式1+x,我们把1+x提取出来,得到(1+x)(1+x)(边讲边在其它地方板书:(1+x)(1+x)),可见方程可以化成(1+x)2=121(边讲边在其它地方板书:(1+x)2=121),用直接开平方法解这个方程,容易求出x1=10,x2=-12.师:方程中的x表示每个人传染的人数,所以x2=-12不符合题目的意思,要舍去(板书:(不合题意,舍去)).师:最后还要答.(板书:答:每轮传染中平均每个人传染了10个人)师:下面请大家自己来做一个练习.(三)试探练习,回授调节2.完成下面的解题过程:有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人?解:设每轮传播中平均一个人传播了x个人.根据题意列方程,得.提公因式,得( )2=.解方程,得x1=,x2=(不合题意,舍去).答:每轮传播中平均一个人传播了个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空:(1)经过一轮传播后,共有人知道这个消息;(2)经过两轮传播后,共有人知道这个消息;(3)经过三轮传播后,共有人知道这个消息;(4)请猜想,经过十轮传播后,共有人知道这个消息.(五)归纳小结,布置作业师:本节课我们学习了利用一元二次方程解决传播问题.俗话说:一传十,十传百.这一传十,十传百是怎么么传的?(指准方程)用方程来表示就是(1+x)2=121.如果传了三轮,就成了(1+x)3;如果传了十轮,就成了(1+x)10.(作业:P21习题1(3)(4)、4,4题中91改为81)四、板书设计(略)。

人教版九年级数学上册第21章《 21.3 实际问题与一元二次方程》(1)

人教版九年级数学上册第21章《 21.3  实际问题与一元二次方程》(1)
第二十一章 一元二次方程
21.3 实际问题与 一元二次方程(1)
随着社会的不断发展,营销问题在我们的生活 中越来越重要,今天我们就来学习一下利用一元二 次方程解决与营销有关的问题.
第二十一章 一元二次方程
【例1】两年前生产1 t甲种药品的成本是5 000元,生 产1 t乙种药品的成本是6 000元.随着生产技术的进步, 现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品 的成本是3 600元.哪种药品成本的年平均下降率较大?
第二十一章 一元二次方程
1. 平均变化率问题常列方程:a(1±x)n=b.
其中a为基数,x为平均增长(降低)率,
n为增长(降低)次数,b为增长(降低)后的量.
2. 解决利润问题常用的关系有:
(1)利润=售价-进价.
(2)利润率=
利润 进价
×100% =售价进-价进价
×100%.
(3)售价=进价(1+利润率).
第二十一章 一元二次方程
2.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植 3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利 减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株? 设每盆多植x株,则可以列出的方程是( A ) A.(3+x)(4-0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3-0.5x)=15 D.(x+1)(4-0.5x)=15
药品成本为5 000(1-x)元,两年后甲种药品成本为 5 000(1-x)2元,于是有 5 000(1-x)2=3 000. 解方程,得 x1≈0.225,x2≈1.775.
根据问题的实际意义,甲种药品成本的年平均 下降率约为22.5%.
第二十一章 一元二次方程

人教版九年级数学上册21.3.1 实际问题与一元二次方程(1)传播与握手问题(共24张PPT)

人教版九年级数学上册21.3.1 实际问题与一元二次方程(1)传播与握手问题(共24张PPT)
元二次方程并求解. 难点:发现问题中的等量关系.
5
知识点一:建立一元二次方程模型解决传播问题
新知探究
1.有一个人患了流感,经过两轮传染后共有121个人患了流感, 每轮传染中平均一个人传染几个人?
分析:设每轮传染中平均一个人传染 x个人,开始有一个人
患了流感,第一轮的传染源就是这个人,他传染给了x个人, 用代数式表示:①第一轮后共有 (1+x) 人患了流感; ②第二轮的传染中,这些人的每一个人又传染给了 x 人; ③第二轮传染后共有 1+x+x(1+x) 人患了流感.
飞机场. A.4 B.5 C.6 D.7
16
知识点二:建立一元二次方程模型解决握手问题
合作探究
先独立完成导学案互动探究2、3,再同桌相互交 流,最后小组交流;
17
知识点三:建立一元二次方程模型解决数字问题
典例讲评
例2 有一共两位数,它的十位数字与各位数字之和是8.如果
把十位数字与个位数字对调,所得的两位数与原两位数的乘
赠送一件,全组共互赠了182件.如果设全组共有x名同学,则
根据题意列出的方程是( B )
A.x(x+1)=182
B.x(x﹣1)=182
C.x(x﹣1)=182×2
D.2x(x+1)=182
2、某航空公司有若干个飞机场,每两个飞机场之间都开辟一
条航线,一共开辟了10条航线,则这个航空公司共有( B )个
学以致用
1.一个两位数,它的个位数字比十位数字大3,个位数字的平
方刚好等于这个两位数,则这个两位数是 25或36 .
2.一个两位数,个位数字是十位数字的2倍,且这个两位数等
于两个数位上的数字之积的2倍,设其十位数字为x,则下列

人教版九年级数学上册21.3实际问题与一元二次方程(第一课时)及答案【精华版】

人教版九年级数学上册21.3实际问题与一元二次方程(第一课时)及答案【精华版】

22.3实际问题与一元二次方程(第一课时)◆随堂检测1、一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( )A .(1+25%)(1+70%)a 元B .70%(1+25%)a 元C .(1+25%)(1-70%)a 元D .(1+25%+70%)a 元2、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A .2002(1%)a +=148B .2002(1%)a -=148C .200(12%)a -=148D .2002(1%)a -=1483、某商场的标价比成本高p %,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d %,则d 可用p 表示为( )A .100p p +B .pC .1001000p p -D .100100p p+ 4、某农户的粮食产量,平均每年的增长率为x ,第一年的产量为m 千克,•第二年的产量为_______千克,第三年的产量为_______千克,三年总产量为_______千克.5、据报道,我国农作物秸杆的资源巨大,但合理利用量十分有限,某地区2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定该地区每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(≈1.41)◆典例分析某商场于第一年初投入50万元进行商品经营,•以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.(1)如果第一年的年获利率为p ,那么第一年年终的总资金是多少万元?(•用代数式来表示)(注:年获利率=年利润年初投入资金×100%) (2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.分析:列一元二次方程解一元二次方程的一般步骤(1)审题,(2)设设出未知数,(3)找等量关系列出方程,(4)用适当方法解方程,(5)检验方程的解是否符合题意,将不符合题意的解舍去,(6)答题.要注意各个环节的准确性.解:(1)∵年获利率=年利润年初投入资金×100%,∴第一年年终的总资金是(5050)p +万元,即50(1)p +万元.(2)则依题意得:50(1)(110%)66p p +++=把(1+p )看成一个整体,整理得:2(1)0.1(1) 1.320p p +++-=,解得:1 1.2p +=或1 1.1p +=-,∴120.2, 2.1p p ==-(不合题意舍去).∴p =0.2=20%.∴第一年的年获利率是20%.◆课下作业●拓展提高1、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有( )人.A .12B .10C .9D .82、县化肥厂第一季度增产a 吨化肥,以后每季度比上一季度增产%x ,则第三季度化肥增产的吨数为( )A .2)1(x a +B .2%)1(x a +C .2%)1(x + D .2%)(x a a + 3、某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x ,则可列出方程为________________________.4、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.5、某公司一月份营业额为10万元,第一季度总营业额为33.1万元,求该公司二、三月份营业额平均增长率是多少?(分析:设该公司二、三月份营业额平均增长率为x ,•那么二月份的营业额就应该是10(1)x +,三月份的营业额应是102(1)x +.)6、上海甲商场七月份利润为100万元,九月份的利润为121万元,乙商场七月份利润为200万元,九月份的利润为288万元,那么哪个商场利润的月平均上升率较大? ●体验中考1、(2009年,太原)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是________________________. (注意:要理解增长率或降低率问题中的数量关系.)2、(2009年,广东)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?参考答案1、B .2、B.3、A . 由题意得:(1%)(1%)1p d +-≥,解得100p d p≤+.故选A. 4、第二年的产量为(1)m x +千克,第三年的产量为2(1)m x +千克,三年总产量为2(1)(1)m m x m x ⎡⎤++++⎣⎦千克.5、解:设该地区每年产出的农作物秸杆总量为a ,合理利用量的增长率是x .由题意得:30%a 2(1)x +=60%a ,即2(1)x +=2,∴1x ≈0.41,2x ≈-2.41(不合题意舍去).∴x ≈0.41.答:该地区每年秸秆合理利用量的增长率约为41%.◆课下作业●拓展提高1、C 设这个小组共有x 个人.由题意得:(1)72x x -=,解得129,8x x ==-(不合题意,舍去).故选C.2、B.3、215(1)60x +=.4、199 甲第一次将这手股票转卖给乙,获利10%为100元;乙而后又将这手股票返卖给甲时乙损失了10%,返卖的价格为1100(1-10%)=990;最后甲按990⨯0.9的价格将这手股票卖出,甲又盈了990⨯0.1=99(元).故在上述股票交易中,甲共盈了199元.5、解:设该公司二、三月份营业额平均增长率为x .则依题意得:21010(1)10(1)x x ++++=33.1把(1+x )看成一个整体,配方得: 21(1)2x ++=2.56,即23()2x +=2.56,∴x +32=±1.6,即x +32=1.6或x +32=-1.6. ∴1x =0.1=10%,2x =-3.1∵因为增长率为正数,∴取x =10%.答:该公司二、三月份营业额平均增长率为10%.6、解:设甲商场的月平均上升率为x .乙商场的月平均上升率为y .则依题意得:2100(1)121x +=解得:120.1, 2.1x x ==-(不合题意舍去).∴x =0.1=10%.设乙商场的月平均上升率为y .则依题意得:2200(1)288y +=解得:120.2, 2.2y y ==-(不合题意舍去).∴y =0.2=20%.∵0.1<0.2,∴乙商场的月平均上升率较大.答:乙商场的月平均上升率较大.●体验中考1、23200(1)2500x -=.2、解:设每轮感染中平均一台电脑会感染x 台电脑.则依题意得:(1)(1)81x x x +++=整理,得:2(1)81x +=解得:128,10x x ==-(不合题意舍去).∴x =8.3轮感染后,被感染的电脑有81818729700+⨯=>.答:每轮感染中平均一台电脑会感染8台电脑;若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.。

2018届九年级数学(人教版)上册教案:21.3实际问题与一元二次方程第1课时

2018届九年级数学(人教版)上册教案:21.3实际问题与一元二次方程第1课时

21. 3实际问题与一元二次方程(2课时)第1课时解决代数问题教学目标知识技能1.经历用一元二次方程解决实际问题的过程,总结列出一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.数学思考与问题解决1.通过列一元二次方程解决实际问题,培养学生的“模型思想”和对数学的“应用意识”.2.在病毒的传播问题中要弄清每一轮的传播源(即每一轮的感染者也是下一轮的传播者),同时要注意与细胞分裂、电脑病毒的传播等问题的区别与联系:在百分率问题中,注意弄清数量与百分率的关系,会归纳总结出增长率(降低率)问题的等量关系.情感态度通过列方程解决实际问题,让学生体会方程是刻画现实世界的一个有效的数学模型,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,感知数学与生活的密切联系,体会数学知识应用的价值,不断提高学生学习数学的兴趣.重点难点重点:利用一元二次方程解决传播问题、百分率问题.难点:如何理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.教学设计一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如果一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动一:自学教材第19页探究1,思考教师所提问题有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?导学:(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?设计意图:传播问题解决的关键是传播源的理解和等量关系的建立,这样有梯度的对每轮传播源的分析提问,从而降低了学生理解的难度.解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1个人患了流感,第二轮传染后有x(1+x)个人患了流感.于是可列方程:1+x+x(1+x)=121,解方程得x1=10,x2=-12(不合题意,舍去).因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动二:自学教材第19~20页探究2,思考老师所提问题两年前生产1吨甲种药品的成本是5 000元,生产1吨乙种药品的成本是6 000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3 000元,生产1吨乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?导学:(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);两月(或两年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:__________________.设计意图:主要是帮助学生区分年平均下降额与年平均下降率,能根据公式用未知数表示数量关系和等量关系.解答:若设甲种药品平均下降率为x,则一年后,甲种药品的成本为5 000(1-x)元,两年后成本为5 000(1-x)2元,依题意列方程得:5 000(1-x)2=3 000,解之得x1≈0.225,x2≈1.775.因为下降率要小于1,所以x2≈1.775舍去,即甲种药品年平均下降率约为22.5%.变式练习:(1)用同样的方法请同学们尝试计算乙种药品的平均下降率,并比较哪种药品成本的平均下降率较大.(2)经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?设计意图:鼓励学生去完成求甲种药品年平均下降率,并比较大小,就是让学生学以致用,同时也是对所学知识的一个检测.三、课堂小结与作业布置课堂小结:1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置:教材第21~22页习题21.3第2~7题.板书设计解决代数问题1.探究1:用一元二次方程解答传播问题.2.探究2:用一元二次方程解答平均增长率问题3.课堂小结4.作业布置升高(降低)率问题,即a(1±x)n=b(常见n=2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档