2014-2015年浙江省杭州市拱墅区文澜中学八年级(上)数学期中试卷及参考答案
2014年杭州文澜中学中考一模数学试卷(含答案)

2014 年杭州文澜中学中考模拟(一)数学考生须知:本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.答题时,不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号. 所有答案都做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标(-a b 2,ab ac 442-)一.仔细选一选 (本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列几何体中,主视图相同的是( )A .②④B .②③C .①②D .①④2.下列计算正确的是( )A .a 3+a 2=a 5B .(3a -b )2=9a 2-b 2C .b a a b a 326=÷ D .(-ab 3)2=a 2b 63.如图,已知BD ∥AC ,∠1=65°,∠A =40°,则∠2的大小是( ) A .40° B .50° C .75° D .95°4.已知两圆的圆心距d =3,它们的半径分别是一元二次方程x 2-5x +4=0的两个根,这两圆的位置关系是( )A. 外切B. 内切C. 外离D. 相交5. 用1张边长为a 的正方形纸片,4张边长分别为a 、b (b >a )的矩形纸片,4张边长为b 的正方形纸片,正好拼成一个大正方形(按原纸张进行无空隙、无重叠拼接),则拼成的大正方形边长为( ) A .a +b +2 ab B .2a +b C .2244b ab a ++ D .a +2b6.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 9,8,9,10,11,10这组数据的众数是9C .如果x 1,x 2,x 3,…,x n 的平均数是a ,那么(x 1-a )+(x 2-a )+…+(x n -a )=0D .一组数据的方差是这组数据与平均数的差的平方和 7.若04411422=+-++-b b a a ,则=++b a a 221( ) A .12 B .14.5 C .16 D .326+8.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与射线AC 相交于点D .当△ODA 是等边三角形时,这两个二次函数的最大值之和等于( )A .5B .534C .32D .3239.如图,已知第一象限内的点A 在反比例函数x y 1=上,第二象限的点B 在反比例函数xky =上,且OA ⊥OB ,33A sin =,则k 的值为( ) A .-3 B .-4 C .-22 D .21-10.阅读理解:我们把对非负实数x “四舍五入”到个位的值记为《x 》,即当n 为非负整数..时, 若21-n ≤x <21+n ,则《x 》=n . 例如:《0.67》=1,《2.49》=2,……. 给出下列关于《x 》的问题:①《2》=2;②《2x 》=2《x 》;③当m 为非负整数时,《x m 2+》=m +《2x 》; ④若《2x -1》=5, 则实数x 的取值范围是411≤x <413;⑤满足《x 》=x 23的非负实数x 有三个.其中正确结论的个数是( )A .1B .2C .3D .4二.认真填一填 (本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.某班随机抽取了8名男同学测量身高,得到数据如下(单位m ):1.72 , 1.80, 1.76, 1.77,1.70,1.66,1.72,1.79,则这组数据的:(1)中位数是 ;(2)众数是 .12.如图,在▱ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 延长线于点F ,则△EDF 与△BCF 的周长之比是 .13.把sin60°、cos60°、tan60°按从小到大顺序排列,用“<” 连接起来 .14. 将半径为4 cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为 cm.15.已知⊙P 的半径为1,圆心P 在抛物线342+-=x x y 上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .16.如图,在矩形ABCD 中,AB =2,AD =5,点P 在线段BC 上运动,现将纸片折叠,使点A 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),设BP =x ,当点E 落在线段AB 上,点F 落在线段AD 上时,x 的取值范围是 .三.全面答一答 (本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本小题6分)(1)先化简,再求值:2)2()1)(1(++-+a a a ,其中41=a . (2)化简xx x -+-2422.18.(本小题8分)2014年3月,某海域发生沉船事故.我海事救援部门用高频海洋探测仪进行海上搜救,分别在A 、B 两个探测点探测到C 处疑是沉船点.如图,已知A 、B 两点相距200米,探测线与海平面的夹角分别是30°和60°,试求点C 的垂直深度CD 是多少米.(精确到米,参考数据:41.12≈,73.13≈)19.(本小题8分)(1)在一次考试中,李老师从所教两个班全体参加考试的80名学生中随机抽取了20名学生的答题卷进行统计分析.其中某个单项选择题答题情况如下表(没有多选和不选): ①根据表格补全扇形统计图(要标注角度和对应选项字母,所画扇形大致符合即可);②如果这个选择题满分是3分,正确的选项是D ,则估计全体学生该题的平均得分是多少?(2)将分别写有数字4、2、1、13的四张形状质地相同的卡片放入袋中,随机抽取一张,记下数字放回袋中,第二次再随机抽取一张,记下数字:①请用列表或画树状图方法(用其中一种),求出两次抽出卡片上的数字有多少种等可能结果; ②设第一次抽得的数字为x , 第二次抽得的数字为y ,并以此确定点P (x ,y ),求点P 落在双曲线xy 4=上的概率.20.(本小题10分)如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,连结BE 交AC 于点F ,连结DF .(1)证明:△ABF ≌△ADF ;(2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,又知∠EFD =∠BCD ,请问你能推出什么结论?(直接写出一个结论,要求结论中含有字母E )21.(本小题10分)为控制H7N9病毒传播,某地关闭活禽交易,冷冻鸡肉销量上升. 某公司在春节期间采购冷冻鸡肉60箱销往城市和乡镇.已知冷冻鸡肉在城市销售平均每箱的利润 y 1(百元)与销售数量x (箱)的关系为⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401)200(51011x x x x y ,在乡镇销售平均每箱的利润y 2(百元)与销售数量t (箱)的关系为⎪⎩⎪⎨⎧<≤+-≤<=)6030(8151)300(62t t t y :(1)t 与x 的关系是 ;将y 2转换为以x 为自变量的函数,则y 2= ;(2)设春节期间售完冷冻鸡肉获得总利润W (百元),当在城市销售量x (箱)的范围是0<x ≤20时,求W 与x 的关系式;(总利润=在城市销售利润+在乡镇销售利润)(3)经测算,在20<x ≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x 的值.22.(本小题12分)如图,在一个边长为9cm 的正方形ABCD 中,点E 、M 分别是线段AC 、CD 上的动点,连结DE 并延长交正方形的边于点F ,过点M 作MN ⊥DF 于点H ,交AD 于点N .设点M 从点C 出发,以1cm/s 的速度沿CD 向点D 运动;点E 同时从点A 出发,以2cm/s 速度沿AC 向点C 运动,运动时间为t (t >0):(1)当点F 是AB 的三等分点时,求出对应的时间t ; (2)当点F 在AB 边上时,连结FN 、FM :①是否存在t 值,使FN =MN ?若存在,请求出此时t 的值;若不存在,请说明理由; ②是否存在t 值,使FN =FM ?若存在,请求出此时t 的值;若不存在,请说明理由.23.(本小题12分)如图,点P 是直线l :22-=x y 上的一点,过点P 作直线m ,使直线m 与抛物线2x y =有两个交点,设这两个交点为A 、B :(1)如果直线m 的解析式为2+=x y ,直接写出A 、B 的坐标;(2)如果已知P 点的坐标为(2, 2),点A 、B 满足PA =AB ,试求直线m 的解析式; (3)设直线l 与y 轴的交点为C ,如果已知∠AOB =90°且∠BPC =∠OCP ,求点P 的坐标.2014文澜中学中考一模数学答案一.选择题 ADCBD CBCDB二.填空题(本题有6个小题,每小题4分,共24分)11.1.74;1.72 12.1︰2 13.cos60°<sin60°<tan60° 14.328 15.)1,2(-、)1,22(± 16.215-≤x ≤2 (说明:13题可以32321<<;15题,写出其中2个给3分;16题,有一个端值正确给1分) 三、解答题 17.(6分)(1)原式=+++-a a a 4122 4 --------1分; 合并得54+a ---------1分; 求得值为6--------1分(2)原式=242--x x ---------1分;分解因式得2)2)(2(--+x x x -------1分;结果=2+x --------------1分18.( 8分)解法一:由图形可得∠BCA =30°,∴CB =BA =200--------2分 ∴在Rt △CDB 中又含30°角,得DB =21CB =100 ----------2分 ∴由勾股定理DC ==22BD -CB 22100200-------------2分解得CD =1003,∴点C 的垂直深度CD 是173米.--------2分解法二:设CD =x ,在Rt △ACD 中,∴AD =3CD =3x ,在Rt △BCD 中,BD =33CD =33x由题意得,AD -BD =200,即3x ―33x =200,解得:)(1733100米≈⨯=x (同样给分)19.(8分)(1)①补全扇形图------------------------------------- 2分 ②平均分1.95分----------------------------------2分 (2)①列表或树状图,得16种等可能结果-------2分②点P 落在x y 4=上的概率为163 -------------2分20.(10分)(1)∵AB =AD ,CB =CD ,CA 公共,∴△ABC ≌△ADC (SSS )-------------------------2分 ∴∠1=∠2,又AB =AD ,FA 公共,∴△ABF ≌△ADF (SAS )-----------------------------2分(2)证明:∵AB ∥CD ,∴∠1=∠3,-----------------------1分 又∵∠1=∠2,∴∠2=∠3,∴AD =CD ,------------------1分∵AB =AD ,CB =CD ∴AB=CB=CD=AD ,------------------1分∴四边形ABCD 是菱形;-----------------------------------------1分(3)BE ⊥CD 或∠BEC =∠BED =90°或△BEC ∽△DEF 或∠EFD =∠BAD ---------------2分 写出其中一个. 21.(10分)(1) x t -=60 ----------------------1分; ⎪⎩⎪⎨⎧≤<+<≤=)300(4151)6030(62x x x y -----------------------------2分(2) 综合⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401)200(51011x x x x y 和(1)中 y 2 ,当对应的x 范围是0<x ≤20 时, 2405301)60)(4151()5101(2++=-+++=x x x x x x W ------------------------------------------------3分(3) 当20<x ≤30 时,2405.712011)60)(4151()5.7401(22++-=-+++-=x x x x x x W --------------2分W 顶点x =11450>30,∴W 在20<x ≤30随x 增大而增大,∴最大值x =30时取得------------1分∴W 最大=382.5(百元)---------------------------------------------------------------------------------------1分 22.(12分) (1)∵AB ∥CD ,∴△AFE ∽△CDE ,-----------------------------------------------------1分 当点F 是边AB 三等分点时,则AF =3或AF =6 ,(i )AF =3时,∵EC AECD AF =,∴AE -29AE 93=,∴AE =429 ,∴49=t ------------2分 (ii )同理,AF =6,AE =5218,∴518=t ,-----------------------------------------------2分(2)设CM =t ,F 在边AB 上时,用t 表示线段AF 、ND 、AN : 由△AFE ∽△CDE ,∴tt 22929F -=A ,得AF=t t -99.------------------1分又易证△MND ∽△DFA ,∴ADMD AFND =, 解得ND =t .------------------1分∴AN =DM =9-t ,---------------------------------------------------------1分① 当FN =MN 时,则由AN =DM , ∴△FAN ≌△NDM ,--------------------------------------------1分∴AF =ND ,即tt-99=t ,得t=0,不合题意.∴此种情形不存在;----------------------------1分 ② 当FN =FM 时,由MN ⊥DF ,等腰三角形三线合一,得HN =HM =HD , ------------------1分∴△NDM 是等腰Rt △, DN =DM =MC , ∴M 为中点,∴t =29, -------------------------1分23.(12分)(1)A (2, 4)、B (-1,1)-------------------------------------2分(2)解法一:设法求出A 的坐标:设A (m , m 2)、B (a , b ), 过A 作x 轴垂线,过P 、B 作y 轴垂线,∵PA =AB ,∴△ABF ≌△APE ∴B 的横坐标a =2 m―2,纵坐标b =m 2―(2―m 2)=2 m 2―2 ∵点B 在抛物线上,b =a 2, ∴2 m 2―2=(2 m―2)2,解得m =1或m =3,∴得点A (1, 1)或A (3, 9)-------------2分∵P (2, 2),可得直线m 的解析式为:x y = 或127-=x y ------------------2分(各1分)(解法二:设B (a ,a 2),∵PA =AB ,∴A 是线段PB 的中点,∴A ()22,222++a a∵A 在抛物线上,∴=+222a 2)22(+a 解得∴a =0或4,∴B(0, 0)、B (4,16),两个点B 坐标(2分),解析式(2分),解法二比较简单)(3)设直线m :()0≠+=k b kx y 交y 轴于D ,设A (1x ,21x ),B (2x ,22x ).过A 、B 分别作AE 、BF 垂直x 轴于E 、F ,∵∠AOB =90°,∴△AEO ∽△OFB , ∴BF OF OE AE =,222121x x x x -=,∴121-=⋅x x ----------------------------------1分∵A 、B 是b kx y +=与2x y =的交点,∴21,x x 是2x b kx =+的解,∴2422,1b k k x +±=由121-=⋅x x 解得:1=b ,∴D (0,1)---------1分∵∠BPC =∠OCP ,∴DP =DC =3,---------------------------------------1分 过P 作PG 垂直y 轴于G ,则:PG 2+GD 2=DP 2,∴设P (a , 2a ―2),有2223)122(=--+a a , -----------------------1分解得0=a (舍去)或512=a ,∴P )514,512(------------------------------2分。
最新浙教版八年级数学第一学期期中考试模拟测试卷及答案解析.docx

八年级(上)期中数学试卷一、选择题(每小题3分,共30分):1.下列交通标志图案是轴对称图形的是()A.B.C.D.2.下列运算正确的是()A.(x3)4=x7B.x3•x4=x12C.(﹣2x)2=4x2D.(3x)3=9x33.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性4.关于点P(﹣1,3)和点Q(﹣1,5)的说法正确的是()A.关于直线x=4对称B.关于直线x=2对称C.关于直线y=4对称D.关于直线y=2对称5.在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,现有如下四种方案,其中正确的是()A.B.C.D.6.若等腰三角形一边长为5,另一边长为6,则这个三角形的周长是()A.18或15 B.18 C.15 D.16或177.下列各图中,不一定全等的是()A.有一个角是45°腰长相等的两个等腰三角形B.周长相等的两个等边三角形C.有一个角是100°,腰长相等的两个等腰三角形D.斜边和一条直角边分别相等的两个直角三角形8.已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°9.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行二、填空题(每小题3分,共30分):11.计算:(1)b5•b= ;(2)(103)5= ;(3)(2ab2)3= .12.三角形按边分类可分为:三边都不相等的三角形和三角形两类.13.已知点A(2,﹣3),则点A关于y轴的对称点坐标为.14.如图,∠BAC=∠ABD,请你添加一个条件:,使OC=OD(只添一个即可).15.“生活中处处有数学”,请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,我们就可以得到一个著名的常用几何结论,这一结论是:.16.一个凸多边形的内角和是其外角和的2倍,则这个多边形是边形.17.如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC 于点F,EF=2,则BC的长为.18.已知2m=a,32n=b,则23m+10n= .三、填空题(共3小题,每小题2分,满分6分)19.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.20.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论中:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,正确的是.21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.三、解答题(共60分)2)如图1,在平面直角坐标系x0y中,A(﹣1,5),B(﹣1,0),C(﹣4,3).①△ABC的面积是.②作出△ABC关于y轴的对称图形△A1B1C1.(2)如图2,按下列要求作图:(不写作法,保留作图痕迹)①作出△ABC的角平分线BD;②作出△ABC的高CG..23.如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.24.已知:如图,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.求证:AE=BF.25.如图,已知△ABC≌△A′B′C′,AD、A′D′分别是△ABC和△A′B′C′的角平分线.(1)请证明:AD=A′D′;(2)把上述结论用文字叙述出来:;(3)请你再写出一条其他类似的结论:.26.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:如图1,①在OA和OB上分别截取OD、OE,使OD=OE.②分别以D、E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C.③作射线OC,则OC就是∠AOB的平分线.小聪的作法步骤:如图2,①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)27.如图(1),在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D.点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)当x= 时,PQ⊥AC;(2)当0<x<2时,求出使PQ∥AB的x值;(3)当2<x<4时,①是否存在x,使△BPQ是直角三角形?若存在,请求出x的值,若不存在,请说明理由;②设PQ与AD交于点O,探索:OP与OQ的关系,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分):1.下列交通标志图案是轴对称图形的是()A.B.C.D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列运算正确的是()A.(x3)4=x7B.x3•x4=x12C.(﹣2x)2=4x2D.(3x)3=9x3考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方与积的乘方运算法则、同底数幂的乘法,结合选项进行判断即可.解答:解:A、(x3)4=x12,计算错误,故本选项错误;B、x3•x4=x7,计算错误,故本选项错误;C、(﹣2x)2=4x2,计算正确,故本选项正确;D、(3x)3=27x3,计算错误,故本选项错误;故选C.点评:本题考查了幂的乘方与积的乘方、同底数幂的乘法,属于基础题,掌握运算法则是关键.3.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性考点:三角形的稳定性.分析:用木条EF固定矩形门框ABCD,即是组成△AEF,故可用三角形的稳定性解释.解答:解:加上EF后,原不稳定的四边形ABCD中具有了稳定的△EAF,故这种做法根据的是三角形的稳定性.故选D.点评:本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.关于点P(﹣1,3)和点Q(﹣1,5)的说法正确的是()A.关于直线x=4对称B.关于直线x=2对称C.关于直线y=4对称D.关于直线y=2对称考点:坐标与图形变化-对称.分析:观察两坐标的特点,发现横坐标相同,所以对称轴为平行与x轴的直线,即y=纵坐标的平均数.解答:解:∵点P(﹣1,3)和点Q(﹣1,5)对称,∴PQ平行与y轴,所以对称轴是直线y=(3+5)=4.∴点P(﹣1,3)和点Q(﹣1,5)关于直线y=4对称.故选C.点评:本题主要考查了坐标与图形变化﹣﹣对称特;解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标或利用对应点的坐标求得对称轴.5.在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,现有如下四种方案,其中正确的是()A.B.C.D.考点:轴对称-最短路线问题;坐标与图形性质.分析:根据在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.解答:解:若在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,则可以过点A作关于y轴的对称点,再连接B和作出的对称点连线和y轴的交点即为所求,由给出的四个选项可知选项C满足条件.故选C.点评:本题考查了轴对称﹣最短路线问题,在一条直线上找一点使它到直线同旁的两个点的距离之和最小,所找的点应是其中已知一点关于这条直线的对称点与已知另一点的交点.6.若等腰三角形一边长为5,另一边长为6,则这个三角形的周长是()A.18或15 B.18 C.15 D.16或17考点:等腰三角形的性质;三角形三边关系.专题:计算题.分析:分两种情况考虑:当5为等腰三角形的腰长时和底边时,分别求出周长即可.解答:解:当5为等腰三角形的腰长时,6为底边,此时等腰三角形三边长分别为5,5,6,周长为5+5+6=16;当5为等腰三角形的底边时,腰长为6,此时等腰三角形三边长分别为5,6,6,周长为5+6+6=17,综上这个等腰三角形的周长为16或17.故选D点评:此题考查了等腰三角形的性质,以及三角形的三边关系,熟练掌握等腰三角形的性质是解本题的关键.7.下列各图中,不一定全等的是()A.有一个角是45°腰长相等的两个等腰三角形B.周长相等的两个等边三角形C.有一个角是100°,腰长相等的两个等腰三角形D.斜边和一条直角边分别相等的两个直角三角形考点:全等三角形的判定.专题:推理填空题.分析:熟练运用全等三角形的判定定理解答.做题时根据已知条件,结合全等的判定方法逐一验证.解答:解:A、有一个角是45°腰长相等的两个等腰三角形,没有边对应相等不能判断全等,故选项错误;B、周长相等的等边三角形,边长也相等,根据SSS可判定两三角形全等,故选项正确;C、因为已知一个角为100°的等腰三角形,没有指出该角是顶角还是底角,根据三角形内角和公式得,该角为顶角,又因为是等腰三角形则两腰对应相等,根据SAS判定两三角形全等,故选项正确;D、斜边和一条直角边分别相等的两个直角三角形,根据HL判定两三角形全等,故选项正确.故选A.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要认真仔细,最好画图结合图形进行判断.8.已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°考点:全等三角形的判定与性质;等腰三角形的性质.专题:压轴题.分析:由AB=AC,根据等边对等角,即可得∠B=∠C,又由BF=CD,BD=CE,可证得△BDF≌△CED(SAS),根据全等三角形的性质,即可求得∠B=∠C=α,根据三角形的内角和定理,即可求得答案.解答:解:∵AB=AC,∴∠B=∠C,∵BF=CD,BD=CE,∴△BDF≌△CED(SAS),∴∠BFD=∠EDC,∵α+∠BDF+∠EDC=180°,∴α+∠BDF+∠BFD=180°,∵∠B+∠BDF+∠BFD=180°,∴∠B=α,∴∠C=∠B=α,∵∠A+∠B+∠C=180°,∴2α+∠A=180°.故选:A.点评:此题考查了等腰三角形的性质、全等三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.9.将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.考点:剪纸问题.分析:根据题中所给剪纸方法,进行动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序进行操作,展开得到的图形如选项B中所示.故选B.点评:本题考查的是剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行考点:轴对称的性质;平移的性质.分析:由已知条件,根据轴对称的性质和平移的基本性质可得答案.解答:解:观察原图,由于进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选:B.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键.二、填空题(每小题3分,共30分):11.计算:(1)b5•b= b6;(2)(103)5= 1015;(3)(2ab2)3= 8a3b6.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法及幂的乘方的定义解答.解答:解:(1)原式=b5+1=b6;(2)原式=103×5=1015;(3)原式=23a3b6=8a3b6;故答案为(1)b6;(2)1015;(3)8a3b6.点评:本题考查了幂的乘方及同底数幂的乘法,理清指数的变化是解题的关键.12.三角形按边分类可分为:三边都不相等的三角形和等腰三角形两类.考点:三角形.分析:三角形按边分,可分为两类:不等边三角形和等腰三角形;进而解答即可.解答:解:三角形按边分类可以分为不等边三角形和等腰三角形;故答案为:等腰.点评:此题考查了三角形的分类.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).13.已知点A(2,﹣3),则点A关于y轴的对称点坐标为(﹣2,﹣3).考点:关于x轴、y轴对称的点的坐标.分析:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.解答:解:点A(2,﹣3)关于y轴的对称点坐标为(﹣2,﹣3).故答案为:(﹣2,﹣3).点评:本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.如图,∠BAC=∠ABD,请你添加一个条件:∠C=∠D或AC=BD ,使OC=OD (只添一个即可).考点:全等三角形的判定.专题:开放型.分析:本题可通过全等三角形来证简单的线段相等.△AOD和△BOC中,由于∠BAC=∠ABD,可得出OA=OB,又已知了∠AOD=∠BOC,因此只需添加一组对应角相等即可得出两三角形全等,进而的得出OC=OD.也可直接添加AC=BD,然后联立OA=OB,即可得出OC=OD.解答:解:∵∠BAC=∠ABD,∴OA=OB,又有∠AOD=∠BOC;∴当∠C=∠D时,△AOD≌△BOC;∴OC=OD.故填∠C=∠D或AC=BD.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.15.“生活中处处有数学”,请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,我们就可以得到一个著名的常用几何结论,这一结论是:三角形的内角和是180°.考点:三角形内角和定理.分析:根据折叠前后的两个角相等,把三角形的三个角转化为一个平角,可以得到三角形内角和定理.解答:解:根据折叠的性质,∠A=∠1,∠B=∠2,∠C=∠3,∵∠1+∠2+∠=180°,∴∠A+∠B+∠C=180°,∴定理为:三角形的内角和是180°.故答案为:三角形的内角和是180°.点评:本题主要考查了三角形的内角和定理的证明,熟练掌握翻折变换的性质是解题的关键.16.一个凸多边形的内角和是其外角和的2倍,则这个多边形是 6 边形.考点:多边形内角与外角.专题:探究型.分析:多边形的外角和是360度,多边形的内角和是它的外角和的2倍,则多边形的内角和是720度,根据多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.解答:解:设多边形边数为n.则360°×2=(n﹣2)•180°,解得n=6.故答案为:6.点评:本题主要考查了多边形内角和公式及外角的特征,求多边形的边数,可以转化为方程的问题来解决.17.如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC 于点F,EF=2,则BC的长为12 .考点:线段垂直平分线的性质;等腰三角形的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,根据等腰三角形性质求出∠C=∠B=30°,根据线段垂直平分线求出AF=BF=2EF=4,求出CF=2AF=8,即可求出答案.解答:解:连接AF,∵AC=AB,∴∠C=∠B=30°,∵EF是AB的垂直平分线,∴AF=BF,∴∠B=∠FAB=30°,∴∠CFA=30°+30°=60°,∴∠CAF=180°﹣∠C﹣∠CFA=90°,∵EF⊥AB,EF=2,∴AF=BF=2EF=4,∵∠C=30°,∠CAF=90°,∴CF=2AF=8,∴BC=CF+BF=8+4=12,故答案为:12.点评:本题考查了等腰三角形性质,线段垂直平分线性质,含30度角的直角三角形性质等知识点的应用,关键是求出CF和BF的长,题目比较典型,难度不大18.已知2m=a,32n=b,则23m+10n= a3b2.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和同底数幂的乘法运算规则进行计算.解答:解:∵32n=b,∴25n=b,∴23m+10n,=23m•210n,=(2m)3•(25n)2,=a3b2.点评:此题考查幂的乘方和同底数幂的乘法运算;幂的乘方:底数不变,指数相乘;同底数幂的乘法:底数不变,指数相加.三、填空题(共3小题,每小题2分,满分6分)19.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.考点:规律型:图形的变化类.专题:压轴题.分析:对称规律是:(1)这几幅图是A、B、C、D、E、F六个字母的对称图形;(2)1、3、5是上下对称;2、4、6是左右对称.根据此规律即可得到图形.解答:解:由题意,1,3,5上下对称即得,且图形由复杂变简单.故答案为.点评:本题考查了图形的变化,1,3,5图形上下对称,2,4,6左右对称,即得.20.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论中:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,正确的是①②③④.考点:全等三角形的判定与性质;等边三角形的性质;相似三角形的判定与性质.专题:推理填空题.分析:首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③正确.解答:解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)同理:△DFC≌△EGC(ASA),∴CF=CG,∴△CFG是等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,(③正确)过C作CM⊥AE于M,CN⊥BD于N,∵△BCD≌△ACE,∴∠BDC=∠AEC,∵CD=CE,∠CND=∠CMA=90°,∴△CDN≌△CEM,∴CM=CN,∵CM⊥AE,CN⊥BD,∴△Rt△OCN≌Rt△OCM(HL)∴∠BOC=∠EOC,∴④正确;故答案为:①②③④.点评:此题考查了等边三角形的判定与性质与全等三角形的判定与性质.此题图形比较复杂,解题的关键是仔细识图,合理应用数形结合思想.21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有13 种.考点:利用轴对称设计图案.专题:压轴题.分析:根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.解答:解:如图所示:故一共有13做法,故答案为:13.点评:此题主要考查了利用轴对称设计图案,熟练利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.三、解答题(共60分)2)如图1,在平面直角坐标系x0y中,A(﹣1,5),B(﹣1,0),C(﹣4,3).①△ABC的面积是.②作出△ABC关于y轴的对称图形△A1B1C1.(2)如图2,按下列要求作图:(不写作法,保留作图痕迹)①作出△ABC的角平分线BD;②作出△ABC的高CG..考点:作图-轴对称变换;作图—复杂作图.分析:(1)①直接根据三角形的面积公式解答即可;②根据轴对称的性质作出△A1B1C1;(2)①以点B为圆心,以任意长为半径画圆,分别交AB、BC于点EF,再分别以E、F为圆心,以大于EF为半径画圆,两圆相交于点D,连接BD即可;②过点C作CG⊥BA的延长线于点G即可.解答:解:(1)①∵由图可知,AB=5,边AB上的高为3,∴S△ABC=×5×3=.故答案为:;②如图1所示;(2)如图2,①以点B为圆心,以任意长为半径画圆,分别交AB、BC于点EF,再分别以E、F为圆心,以大于EF为半径画圆,两圆相交于点D,连接BD,则BD为∠ABC的平分线;②过点C作CG⊥BA的延长线于点G,则CG为△ABC的高.点评:本题考查的是轴对称变换及基本作出,熟知关于y轴对称的点的坐标特点是解答此题的关键.23.如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.考点:翻折变换(折叠问题).分析:根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.解答:解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.点评:本题考查了翻折变换的性质,熟记翻折前后两个图形能够完全重合得到相等的线段是解题的关键.24.已知:如图,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.求证:AE=BF.考点:全等三角形的判定与性质.专题:证明题.分析:求出AD=BC,根据平行线性质求出∠A=∠B,∠ADE=∠BCF,根据ASA推出△AED≌△BFC即可.解答:证明:∵AC=BD,∴AC+CD=BD+CD,即AD=BC,∵AE∥FB,DE∥FC,∴∠A=∠B,∠ADE=∠BCF,∵在△AED和△BFC中,∴△AED≌△BFC(ASA),∴AE=BF.点评:本题考查了全等三角形的性质和判定,平行线的性质,解此题的关键是推出△AED≌△BFC,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.25.如图,已知△ABC≌△A′B′C′,AD、A′D′分别是△ABC和△A′B′C′的角平分线.(1)请证明:AD=A′D′;(2)把上述结论用文字叙述出来:全等三角形的对应角的平分线相等;(3)请你再写出一条其他类似的结论:全等三角形的对应边上的高(或中线)相等.考点:全等三角形的判定与性质.分析:(1)由△ABC≌△A'B'C'的对应边、角相等得到:∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,然后由角平分线的定义可以证得∠BAD=∠B′A′D′,则根据ASA证得△ABD≌△A′B′D′;(2)根据证得的结论得到:全等三角形的对应角的平分线相等;(3)类似的得到:全等三角形的对应边上的高(或中线)相等解答:(1)证明:如图,∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,又∵AD、A′D′分别是△ABC和△A′B′C′的角平分线,∴∠BAD=∠B′A′D′,∴在△ABD与△A′B′D′中,,∴△ABD≌△A′B′D′(ASA),∴AD=A′D′;(2)由(2)中的结论得到:全等三角形的对应角的平分线相等;(3)同理:全等三角形的对应边上的高(或中线)相等.故答案是:全等三角形的对应角的平分线相等;全等三角形的对应边上的高(或中线)相等.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.26.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:如图1,①在OA和OB上分别截取OD、OE,使OD=OE.②分别以D、E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C.③作射线OC,则OC就是∠AOB的平分线.小聪的作法步骤:如图2,①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS .②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)考点:作图—复杂作图;全等三角形的判定与性质.分析:①根据全等三角形的判定即可求解;②根据HL可证Rt△OMP≌Rt△ONP,再根据全等三角形的性质即可作出判断;③根据用刻度尺作角平分线的方法作出图形,写出作图步骤即可.解答:解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS.故答案为:SSS;②小聪的作法正确.理由:∵PM⊥OM,PN⊥ON∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中∵,∴Rt△OMP≌Rt△ONP(HL).∴∠MOP=∠NOP∴OP平分∠AOB.③如图所示.步骤:①利用刻度尺在OA、OB上分别截取OG=OH.。
【精品】2015年浙江省杭州市拱墅区文澜中学八年级上学期期中数学试卷带解析答案

2014-2015学年浙江省杭州市拱墅区文澜中学八年级(上)期中数学试卷一、选择题1.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.2.(3分)当kb<0时,一次函数y=kx+b的图象一定经过()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限3.(3分)已知(﹣1,y1),(0.5,y2),(1.7,y3)是直线y=﹣9x+b(b为常数)上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y24.(3分)满足下列条件的△ABC,是直角三角形的有()个.(1)∠A﹣∠B=∠C(2)∠A:∠B:∠C=3:4:5(3)∠A=2∠B=3∠C(4)a=20,b=21,c=29(5)a=7,b=8,c=10(6)a=2,b=,c=(其中∠A、∠B、∠C是△ABC的三个内角,a,b,c是△ABC的三条边)A.2 B.3 C.4 D.55.(3分)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)6.(3分)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是()A.B.C.D.7.(3分)已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB 上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A的度数是()A.30°B.40°C.50°D.60°8.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0) C.(6,4) D.(8,3)9.(3分)如图,△ABC中,AB=AC,△DEF为等边三角形,则α、β、γ之间的关系为()A.B.C.D.10.(3分)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条 B.6条 C.7条 D.8条二、填空题11.(3分)函数y=中,自变量x的取值范围是.12.(3分)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC=.13.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′,EB′分别交边AC于点F,G,若∠ADF=60°,则∠EGC的度数为.14.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(9,0),(0,4),点D的坐标为(5,0),点P沿矩形的边C﹣B﹣A﹣O﹣C运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.15.(3分)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.16.(3分)对于一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则一次函数的解析式为.17.(3分)如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于cm.18.(3分)我国汉代数学家赵真为了证明勾股定理,创制了一幅“弦图”,后人称其为“最美弦图”(如图1),图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=19,则S2的值是.19.(3分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为.20.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为cm2.三、解答题21.写出下列命题的逆命题、判断真假,并选取其中一个给予证明.(1)直角三角形斜边上的中线等于斜边的一半;(2)等腰三角形两个底角的角平分线长相等.22.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.23.如图,一次函数的图象分别与x轴、y轴交于点A、B,以线段AB 为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式.24.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P点320千米处.(1)说明本次台风会影响B市;(2)求这次台风影响B市的时间.25.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.26.今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48000㎡和B种板材24000㎡的任务.(1)如果该厂安排210人生产这两种材,每人每天能生产A种板材60㎡或B 种板材40㎡,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:问这400间板房最多能安置多少灾民?2014-2015学年浙江省杭州市拱墅区文澜中学八年级(上)期中数学试卷参考答案与试题解析一、选择题1.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.(3分)当kb<0时,一次函数y=kx+b的图象一定经过()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限【解答】解:∵kb<0,∴k、b异号.①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限.故选:B.3.(3分)已知(﹣1,y1),(0.5,y2),(1.7,y3)是直线y=﹣9x+b(b为常数)上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2【解答】解:∵k=﹣9<0,∴y随x的增大而减小,∵﹣1<0.5<1.7,∵y1>y2>y3,故选:B.4.(3分)满足下列条件的△ABC,是直角三角形的有()个.(1)∠A﹣∠B=∠C(2)∠A:∠B:∠C=3:4:5(3)∠A=2∠B=3∠C(4)a=20,b=21,c=29(5)a=7,b=8,c=10(6)a=2,b=,c=(其中∠A、∠B、∠C是△ABC的三个内角,a,b,c是△ABC的三条边)A.2 B.3 C.4 D.5【解答】解:(1)∵∠A﹣∠B=∠C,∠A+∠B+∠C=180°,∴∠A=∠B+∠C=180°÷2=90°,∴△ABC为直角三角形,∴条件(1)满足题意;(2)∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC为锐角三角形,∴条件(2)不符合题意;(3)∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A=°,∠B=°,∠C=°,∴△ABC为钝角三角形,∴条件(3)不符合题意;(4)∵a=20,b=21,c=29,∴a2+b2=841=c2,∴△ABC为直角三角形,∴条件(4)符合题意;(5)∵a=7,b=8,c=10,∴a2+b2=113>100=c2,∴△ABC为锐角三角形,∴条件(5)不符合题意;(6)∵a=2,b=,c=,∴a2+b2=7=c2,∴△ABC为直角三角形,∴条件(6)符合题意.综上所述:符合题意的有(1)(4)(6).故选:B.5.(3分)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)【解答】解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(﹣x,y+2).故选:B.6.(3分)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是()A.B.C.D.【解答】解:∵水从左导管匀速地注入,气体从右导管排出时,容器内剩余气体的体积随着注水时间的增加而匀速减少,∴容器内剩余气体的体积与注水时间的函数关系的大致图象是C.故选:C.7.(3分)已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB 上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A的度数是()A.30°B.40°C.50°D.60°【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,∴AM=MC=BM,∴∠A=∠MCA,∵将△ACM沿直线CM折叠,点A落在点D处,∴CM平分∠ACD,∠A=∠D,∴∠ACM=∠MCD,∵CD⊥AB,∴∠B+∠BCD=90°,∵∠A+∠B=90°,∴∠A=∠BCD,∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°.故选:A.8.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0) C.(6,4) D.(8,3)【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选:D.9.(3分)如图,△ABC中,AB=AC,△DEF为等边三角形,则α、β、γ之间的关系为()A.B.C.D.【解答】解:∵AB=AC,∴∠B=∠C,∴∠2+∠γ=∠1+∠α,∴∠2﹣∠1=∠α﹣∠γ,∵等边△DEF,∴∠5=∠3=60°,∴∠2+∠α=∠1+∠β=120°,∴∠2﹣∠1=∠β﹣∠α,∴∠α﹣∠γ=∠β﹣∠α,∴2∠α=∠β+∠γ,∴α=,故选:B.10.(3分)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条 B.6条 C.7条 D.8条【解答】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时都能得到符合题意的等腰三角形.故选:C.二、填空题11.(3分)函数y=中,自变量x的取值范围是x≤2.【解答】解:由题意得,2﹣x≥0且x﹣6≠0,解得x≤2且x≠6,所以,自变量x的取值范围是x≤2.故答案为:x≤2.12.(3分)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC=100°.【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故答案为:100°.13.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′,EB′分别交边AC于点F,G,若∠ADF=60°,则∠EGC的度数为60°.【解答】解:如图,由题意得:∠BDE=∠B′DE(设为α),∠BED=∠B′ED(设为β);∵∠ADF=60°,∴2α=180°﹣60°=120°;∵△ABC为等边三角形,∴∠B=∠C=60°,α+β=180°﹣60°=120°;∴2β=240°﹣2α=120°;∴∠EGC=2β﹣∠C=120°﹣60°=60°,故答案为60°.14.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(9,0),(0,4),点D的坐标为(5,0),点P沿矩形的边C﹣B﹣A﹣O﹣C运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为(3,4)、(2,4)、(8,4)、(9,3).【解答】解:①点P在BC边上运动,过P作PM⊥OA于M.(1)如图1,当OP=OD时,OP=5,CO=4,∴易得CP=3,∴P(3,4);(2)如图2,当OD=PD时,PD=DO=5,PM=4,∴易得MD=3,从而CP=2或CP′=8,∴P(2,4)或(8,4);(3)当OP=PD=5时,OD=6(不合题意舍去),②如图3,点P在BA边上运动,当OD=PD=5时,∵AD=4,∴AP=3,∴P(9,3);③点P在OA边上运动,∵O,D,P三点在一条直线上,∴得不到腰长为5的等腰三角形;④点P在OC边上运动,∵∠COD=90°,且OC=4<5,∴得不到腰长为5的等腰三角形;综上,满足题意的点P的坐标为(3,4)、(2,4)、(8,4)、(9,3).故答案为(3,4)、(2,4)、(8,4)、(9,3).15.(3分)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣1).【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).16.(3分)对于一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则一次函数的解析式为y=x+2或y=﹣x+7.【解答】解:∵对于一次函数y=kx+b,当1≤x≤4时,3≤y≤6,∴点(1,3)、(4,6)在一次函数y=kx+b的图象上或点(1,6)、(4,3)在一次函数y=kx+b的图象上.当点(1,3)、(4,6)在一次函数y=kx+b的图象上时,,解得:,∴此时一次函数的解析式为y=x+2;当(1,6)、(4,3)在一次函数y=kx+b的图象上时,,解得:,此时一次函数的解析式为y=﹣x+7.故答案为:y=x+2或y=﹣x+7.17.(3分)如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于12cm.【解答】解:∵AD是BC边上的高,CE是AB边上的高,∴AB•CE=BC•AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2﹣BD2=AD2,∴AB2=BC2+36,∴=,整理得;BC2=,解得:BC=,∴AB=×BC=×=,∴△ABC的周长=2AB+BC=2×+=12.故答案为:12.18.(3分)我国汉代数学家赵真为了证明勾股定理,创制了一幅“弦图”,后人称其为“最美弦图”(如图1),图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=19,则S2的值是.【解答】解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=19,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=19,故3x+12y=19,x+4y=,所以S2=x+4y=.故答案为:.19.(3分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3).【解答】解:如图所示:A1(﹣1,1),A2(﹣2,﹣2),A3(0,2),A4(﹣2,﹣3),(﹣3,2)(此时不是四边形,舍去),故答案为:(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3).20.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为或5或10 cm2.【解答】解:分三种情况计算:(1)当AE=AF=5厘米时,=AE•AF=×5×5=厘米2,∴S△AEF(2)当AE=EF=5厘米时,如图BF===2厘米,=•AE•BF=×5×2=5厘米2,∴S△AEF(3)当AE=EF=5厘米时,如图DF===4厘米,∴S=AE•DF=×5×4=10厘米2.△AEF故答案为:,5,10.三、解答题21.写出下列命题的逆命题、判断真假,并选取其中一个给予证明.(1)直角三角形斜边上的中线等于斜边的一半;(2)等腰三角形两个底角的角平分线长相等.【解答】解:逆命题是:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.已知,如图,△ABC中,D是AB边的中点,且CD=AB,求证:△ABC是直角三角形,证明:∵D是AB边的中点,且CD=AB,∴AD=BD=CD,∵AD=CD,∴∠ACD=∠A,∵BD=CD,∴∠BCD=∠B,又∵∠ACD+∠BCD+∠A+∠B=180°,∴2(∠ACD+∠BCD)=180°,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴△ABC是直角三角形;(2)逆命题是“有两个角的平分线相等的三角形是等腰三角形”.已知:在△ABC中,BD平分∠ABC、CE平分∠ACB,且BD=CE求证:△ABC是等腰三角形,设这个△ABC,CD、BE分别是∠C和∠B的角平分线,过点E作∠BEF=∠BCD,使EF=BC,在△BCD与△FEB中,,∴△BCD≌△FEB(SAS)∴∠FBE=∠BDC,BF=DB,设∠ABE=∠EBC=α,∠ACD=∠DCB=β,∠FBC=∠BDC﹣+α=180°﹣2α﹣β+α=180°﹣(α+β),∠CEF=∠FEB+∠CEB=β+180﹣2β﹣α=180°﹣(α+β),∴∠FBC=∠CEF,∵2α+2β<180°,∴α+β<90°,∴∠FBC=∠CEF>90°,∴过C点作FB的垂线和过F点作CE的垂线必都在FB和CE的延长线上.设垂足分别为G、H,∴∠HEF=∠CBG,在△CGB与△FHE中,,∴△CGB≌△FHE∴CG=FH,BC=HE,连接CF,在Rt△CGF与△FHC 中,,∴Rt△CGF≌△FHC,∴FG=CH,∴BF=CE,∴CE=BD,在△BDC与△CEB中,,∴△BDC≌△CEB,∴∠ABC=∠ACB,∴AB=AC.22.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.【解答】解:(1)直线y=﹣x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,故y=﹣x+4.(2)当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F 为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,﹣1).∵M(3,2),F(0,﹣1),∴线段MF中点坐标为(,).直线y=﹣x+b过点(,),则=﹣+b,解得:b=2,2=1+t,解得t=1.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=﹣x+b过点(2,1),则1=﹣2+b,解得:b=3,3=1+t,解得t=2.故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.23.如图,一次函数的图象分别与x轴、y轴交于点A、B,以线段AB 为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式.【解答】解:∵一次函数中,令x=0得:y=2;令y=0,解得x=3.∴B的坐标是(0,2),A的坐标是(3,0).作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO又∵AB=AC,∠BOA=∠CDA=90°∴△ABO≌△CAD,∴AD=OB=2,CD=OA=3,OD=OA+AD=5.则C的坐标是(5,3).设BC的解析式是y=kx+b,根据题意得:,解得.则BC的解析式是:y=x+2.24.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P点320千米处.(1)说明本次台风会影响B市;(2)求这次台风影响B市的时间.【解答】(1)如图所示:∵台风中心位于点P,并沿东北方向PQ移动,B市位于点P的北偏东75°方向上,∴∠QPG=45°,∠NPB=75°,∠BPG=15°,∴∠BPQ=30°作BH⊥PQ于点H,在Rt△BHP中,由条件知,PB=320,得BH=320sin30°=160<200,∴本次台风会影响B市.(2)如图,若台风中心移动到P1时,台风开始影响B市,台风中心移动到P2时,台风影响结束.由(1)得BH=160,由条件得BP1=BP2=200,∴P1P2=2=240,∴台风影响的时间t==8(小时).25.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.26.今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48000㎡和B种板材24000㎡的任务.(1)如果该厂安排210人生产这两种材,每人每天能生产A种板材60㎡或B 种板材40㎡,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:问这400间板房最多能安置多少灾民?【解答】解:(1)设x人生产A种板材,根据题意得;x=120.经检验x=120是分式方程的解.210﹣120=90.故安排120人生产A种板材,90人生产B种板材,才能确保同时完成各自的生产任务;(2)设生产甲种板房y间,乙种板房(400﹣y)间,安置人数为W,则W=12y+10(400﹣y)=2y+4000,,解得:300≤y≤360,∵W=2y+4000时随y的增大而增大,∴当y=360时安置的人数最多.360×12+(400﹣360)×10=4720.故最多能安置4720人.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
浙江省杭州市 八年级(上)期中数学试卷(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图案中,是轴对称图形的有()个.A. 1B. 2C. 3D. 42.下列语句是命题的是()A. 作直线AB的垂线B. 在线段AB上取点CC. 同旁内角互补D. 垂线段最短吗?3.已知等腰△两条边的长分别是3和6,则它的周长是()A. 12B. 15C. 12或15D. 15或184.如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP全等的理由是()A. SSSB. ASAC. SSAD. HL5.若a<b,则下列各式中一定成立的是()A. a−1<b−1B. a3>b3C. −a<−bD. ac<bc6.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A. 5B. 2C. 4D. 87.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB、下列确定P点的方法正确的是()A. P为∠A、∠B两角平分线的交点B. P为AC、AB两边上的高的交点C. P为∠A的角平分线与AB的垂直平分线的交点D. P为AC、AB两边的垂直平分线的交点8.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD.其中正确的结论为()A. ①②④B. ①②③C. ②③D. ①③9.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A. 4.8B. 4.8或3.8C. 3.8D. 510.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A. 23B. 10C. 22D. 6二、填空题(本大题共6小题,共24.0分)11.等腰三角形的一个外角等于130°,则顶角是______ .12.写出“对顶角相等”的逆命题______ .13.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为______.14.不等式组x>−1x<m有3个整数解,则m的取值范围是______ .15.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=______.16.如图,在锐角△ABC中,∠BAC=45°,AB=2,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.三、计算题(本大题共1小题,共6.0分)17.解不等式1−7x−18>3x−24,并把它的解集在数轴上表示出来.四、解答题(本大题共6小题,共60.0分)18.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?21.如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BP=BQ,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并说明理由.(2)若PA=3,PB=4,PC=5,连结PQ,判断△PQC的形状并说明理由.22. 阅读下列材料:解答“已知x -y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法:解:∵x -y =2,x >1,∴y +2>1,即y >-1,又y <0,∴-1<y <0.…①同理得:1<x <2.…②由①+②得-1+1<y +x <0+2,∴x +y 的取值范围是0<x +y <2.请按照上述方法,完成下列问题:已知关于x 、y 的方程组 x +2y =5a −82x−y =−1的解都为非负数.(1)求a 的取值范围;(2)已知2a -b =1,求a +b 的取值范围;(3)已知a -b =m (m 是大于1的常数),且b ≤1,求2a +b 最大值.(用含m 的代数式表示)23. 如图,△ABC 中,∠C =90°,AB =5cm ,BC =3cm ,若动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒1cm ,设出发的时间为t 秒.(1)出发2秒后,求△ABP 的周长.(2)问t 满足什么条件时,△BCP 为直角三角形?(3)另有一点Q ,从点C 开始,按C →B →A →C 的路径运动,且速度为每秒2cm ,若P 、Q 两点同时出发,当P 、Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ把△ABC 的周长分成相等的两部分?答案和解析1.【答案】B【解析】解:根据轴对称图形的定义,可知第2个,第4个是轴对称图形,而第1个、第3个、第5个都不是轴对称图形.故选B.判断一个图形是否是轴对称图形,就是看是否可以存在一条直线,使得这个图形的一部分沿着这条直线折叠,能够和另一部分互相重合.本题考查轴对称图形的识别,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.【答案】C【解析】解:A、是作图语言,不符合命题的定义,不是命题;B、是作图语言,不符合命题的定义,不是命题;C、符合命题的定义,是命题;D、是一个问句,不符合命题的定义,不是命题.故选C.根据命题的定义作答.一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.一般说来,对于仸何一个命题,都可以加上“是”或“不是”,如C,可以说同旁内角是互补的.注意,作图语言与问句都不是命题.3.【答案】B【解析】解:①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选B.由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.本题考查了等腰三角形的性质与三角形的三边关系,利用分类讨论思想求解是解答本题的关键.4.【答案】D【解析】解:∵OD⊥AB,OP⊥AC,∴△ADO和△APO是直角三角形,又∵OD=OP,AO=AO,∴Rt△AOD≌△Rt△AOP(HL).故选D.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.本题考查直角三角形全等的判定方法HL.5.【答案】A【解析】解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a-1<b-1,故A选项是正确的;B、a>b,不成立,故B选项是错误的;C、a>-b,不一定成立,故C选项是错误的;D、c的值不确定,故D选项是错误的.故选A.根据不等式的性质分析判断.主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.【答案】B【解析】解:A.5,∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例;故答案A错误;B.2,∵2不是4的倍数,∴可以用来说明命题“仸何偶数都是4的倍数”是假命题的反例是2,故答案B正确;C.4,∵4是偶数,且是4的倍数,∴不能作为假命题的反例;故答案C错误;D.8,∵8是偶数,且也是4的倍数,∴不能作为假命题的反例;故答案D错误;故选:B.反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.此题主要考查了反证法的意义,在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.【答案】C【解析】解:∵P到∠A的两边的距离相等,∴P为∠A的角平分线;∵PA=PB,∴P为AB的垂直平分线,∴P为∠A的角平分线与AB的垂直平分线的交点.故选:C.首先根据P到∠A的两边的距离相等,应用角平分线的性质,可得P为∠A的角平分线;然后根据PA=PB,应用线段垂直平分线的性质,可得P为AB的垂直平分线,所以P为∠A的角平分线与AB的垂直平分线的交点,据此判断即可.此题主要考查了角平分线的性质的应用,以及线段垂直平分线的性质和应用,要熟练掌握.8.【答案】B【解析】解:∵∠B和∠ACD都是∠CAB的余角,∴∠ACD=∠B,故①正确;∵CD⊥AB,EF⊥AB,∴EF∥CD,∴∠AEF=∠CHE,∴∠CEH=∠CHE,∴CH=CE=EF,故②正确;∵角平分线AE交CD于H,∴∠CAE=∠BAE,在△ACE和△AEF中,,∴△ACE≌△AFE(AAS),∴AC=AF,故③正确;CH=CE=EF>HD,故④错误.故正确的结论为①②③.故选B.根据等角的余角相等可判断①;先判断CD∥EF,根据平行线的性质得出∠CEH=∠CHE,再由角平分线的性质可判断②;用AAS判定△ACE≌△AFE,可判断③;根据②,结合图形可判断④.本题考查了全等三角形的判定与性质及角平分线的性质,是一道综合性较强的题目,需要同学们把直角三角形的性质和三角形全等的判定等知识结合起来解答.9.【答案】A【解析】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.10.【答案】C【解析】解:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB,∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE==2.故选:C.根据直角三角形斜边上的中线的性质可得DG=AG,根据等腰三角形的性质可得∠GAD=∠GDA,根据三角形外角的性质可得∠CGD=2∠GAD,再根据平行线的性质和等量关系可得∠ACD=∠CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.11.【答案】80°或50°【解析】解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角可以是50°,也可以是80°.故填50°或80°等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.12.【答案】相等的角是对顶角【解析】解:∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两个角是对顶角,简化后即为:相等的角是对顶角.将原命题的条件及结论进行交换即可得到其逆命题.此题主要考查学生对命题及逆命题的理解及运用能力.13.【答案】4【解析】解:如右图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故答案为:4.根据角平分线的性质定理,解答出即可;本题主要考查了角平分线的性质,角平分线上的点到角两边的距离相等.14.【答案】2<m≤3【解析】解:不等式的整数解是0,1,2.则m的取值范围是2<m≤3.故答案是:2<m≤3.首先确定不等式组的整数解,然后根据只有这三个整数解即可确定.本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【答案】9【解析】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.16.【答案】2【解析】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=2,∠BAC=45°,∴BH=AB•sin45°=2×=,∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=.故答案为:.作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.17.【答案】解:去分母得,8-(7x-1)>2(3x-2),去括号得,8-7x+1>6x-4,移项得,-7x-6x>-4-8-1,合并同类项得,-13x>-13,系数化为1得,x<1.在数轴上表示如下:【解析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错,去分母时没有分母的项也要乘以分母的最小公倍数.18.【答案】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°-37°=16°.【解析】(1)利用线段垂直平分线的作法得出D 点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.此题主要考查了复杂作图以及线段垂直平分线的性质,正确利用线段垂直平分线的性质得出∠BAD=∠B=37°是解题关键.19.【答案】①证明:在△ABE 和△CBD 中,AB =CB∠ABC =∠CBD =90°BE =BD,∴△ABE ≌△CBD (SAS );②解:∵在△ABC 中,AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°,由①得:△ABE ≌△CBD ,∴∠AEB =∠BDC ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =30°+45°=75°,则∠BDC =75°.【解析】①利用SAS 即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB ,利用外角的性质求出∠AEB 的度数,即可确定出∠BDC 的度数.此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.【答案】解:(1)设A 种商品的单价为x 元、B 种商品的单价为y 元,由题意得: 50x +20y =88060x +30y =1080,解得 y =4x =16.答:A 种商品的单价为16元、B 种商品的单价为4元.(2)设购买A 商品的件数为m 件,则购买B 商品的件数为(2m -4)件,由题意得:16m +4(2m −4)≤296m +2m−4≥32,解得:12≤m ≤13,∵m 是整数,∴m =12或13,故有如下两种方案:方案(1):m =12,2m -4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m=13,2m-4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.【解析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m-4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.此题考查了一元一次不等式组及二元一次方程组的应用,解答此类应用类题目的关键是仔细审题,得出等量关系,从而转化为方程或不等式解题,难度一般,第二问需要分类讨论,注意不要遗漏.21.【答案】解:(1)AP=CQ.理由如下:∵∠PBQ=60°,且BQ=BP,∴△BPQ为等边三角形,∵∠ABP+∠CBP=60°,∠CBQ+∠CBP=60°,∴∠CBQ=∠ABP,在△ABP和△CBQ中,AB=CB∠ABP=∠CBQ,BP=BQ∴△ABP≌△CBQ(SAS),∴AP=CQ;(2)∵等边△ABC和等边△BPQ中,PB=PQ=4,PA=QC=3,∵PQ2+CQ2=PC2,∴△PQC为直角三角形(勾股定理逆定理).【解析】(1)易证△ABP≌△CBQ,可得AP=CQ;(2)根据PA=CQ,PB=BQ,即可判定△PQC为直角三角形.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了勾股定理逆定理的运用,本题中求证△ABP ≌△CBQ 是解题的关键.22.【答案】解:(1)解方程组 x +2y =5a −82x−y =−1得:y =2a −3x =a−2, ∴ 2a −3≥0a−2≥0,解得:a ≥2; (2)由2a -b =1,a ≥2,可得:1+b 2≥2,解得:b ≥3,∴a +b ≥5;(3)由a -b =m ,a ≥2,可得m +b ≥2,∴b ≥2-m ,∴2-m ≤b ≤1,同理可得:2≤a ≤1+m ,∴6-m ≤2a +b ≤3+2m ,∴最大值为3+2m .【解析】(1)先把a 当作已知求出x 、y 的值,再根据x 、y 的取值范围得到关于a 的一元一次不等式组,求出a 的取值范围即可;(2)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求a+b 的取值范围;(3)根据阅读材料所给的解题过程,分别求得a 、b 的取值范围,然后再来求2a+b 的取值范围,即可得到最大值.本题考查了一元一次不等式(组)的应用,解答本题的关键是仔细阅读材料,理解解题过程.23.【答案】解:(1)∵∠C =90°,AB =5cm ,BC =3cm , ∴AC =4cm ,动点P 从点C 开始,按C →B →A →C 的路径运动,速度为每秒1cm , ∴出发2秒后,则CP =2cm ,∵∠C =90°,∴PB = 22+32= 13cm ,∴△ABP 的周长为:AP +PB +AB =2+5+ 13=7+ 13(cm );(2)∵AC =4,动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒1cm , ∴P 在AC 上运动时△BCP 为直角三角形,∴0<t ≤4,当P 在AB 上时,CP ⊥AB 时,△BCP 为直角三角形,∵12×AB ×CP =12×AC ×BC ,∴1 2×5×CP=12×3×4,解得:CP=125cm,∴AP= AC2−CP2=165cm,∴AC+AP=365cm,∵速度为每秒1cm,∴t=365,综上所述:当0<t≤4或t=365,△BCP为直角三角形;(3)当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t-3=3,∴t=2;当P点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,∵直线PQ把△ABC的周长分成相等的两部分,∴t-4+2t-8=6,∴t=6,∴当t=2或6秒时,直线PQ把△ABC的周长分成相等的两部分.【解析】(1)首先利用勾股定理计算出AC长,根据题意可得CP=2cm,再利用勾股定理计算出PB的长,进而可得△ABP的周长;(2)当P在AC上运动时△BCP为直角三角形,由此可得0<t≤4;当P在AB上时,CP⊥AB时,△BCP为直角三角形,首先计算出CP的长,然后再利用勾股定理计算出AP长,进而可得答案.(3)分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,t+2t-3=3;当P 点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,t-4+2t-8=6.此题主要考查了勾股定理以及其逆定理等知识,利用分类讨论的思想求出是解题关键.。
2014-2015年浙江省北师大附属杭州中学八年级上学期期中数学试卷和答案

2014-2015学年浙江省北师大附属杭州中学八年级(上)期中数学试卷一、选择题:1.(3分)下列长度的四根木棒,能与3cm,7cm长的两根木棒钉成一个三角形的是()A.3cm B.4cm C.6cm D.10cm2.(3分)若x>y,则下列式子错误的是()A.x﹣1>y﹣1 B.﹣3x>﹣3y C.x+1>y+1 D.>3.(3分)如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC,若BE=7,AB=3,则AD的长为()A.3 B.5 C.4 D.不确定4.(3分)要证明命题“若a>b,则a2>b2”是假命题,下列a,b的值不能作为反例的是()A.a=1,b=﹣2 B.a=0,b=﹣1 C.a=﹣1,b=﹣2 D.a=2,b=﹣15.(3分)下列判断正确的是()A.有一条直角边对应相等的两个直角三角形全等B.腰长相等的两个等腰三角形全等C.斜边相等的两个等腰直角三角形全等D.两个锐角对应相等的两个直角三角形全等6.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,D为BC 上一点,现将纸片沿直线AD折叠,使点C落在斜边AB上的点E处,则CD等于()A.2.4cm B.3cm C.4cm D.4.8cm7.(3分)一元一次不等式组的解集为x>a,且a≠﹣1,则a取值范围是()A.a>﹣1 B.a<﹣1 C.a>0 D.a<08.(3分)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.BD平分∠ABC C.S△BCD=S△BOD D.BD=BC9.(3分)如图,已知AF平分∠BAC,过F作FD⊥BC,若∠B比∠C大16°,则∠F的度数是()A.6°B.8°C.10°D.不确定,跟∠C大小有关10.(3分)在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG、DH分别与边AC、BC交于E,F两点.下列结论:①AE+BF=AB,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是()A.①②③④B.①②③C.①④D.②③二、填空题11.(3分)如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是.(不再添加辅助线和字母)12.(3分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.13.(3分)已知等腰△ABC,∠A的相邻外角是130°,则这个三角形的顶角为.14.(3分)若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为.15.(3分)如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC 于M,若CM=5,则CE2+CF2=.16.(3分)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.则该敬老院至少有名老人,最多有名老人.17.(3分)如图,把长方形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD和一定相等;③折叠后得到的图形是轴对称图形;④若AB=4,AD=8,则AE=3.其中正确的是.(请写上正确的序号)18.(3分)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是.三、解答题(共66分)19.解下列不等式(组),并把它们的解表示在数轴上.(1);(2).20.已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,(1)求证:△ABC≌△EDF;(2)当∠CHD=120°,求∠HBD的度数.21.如图,一根6米长的竹竿DE斜靠的竖直的墙MN上,与地面所成的角∠EDN=60°,如果竹竿的顶端沿墙面下滑一段距离后竹竿与地面所成的角∠ABN=45°.(1)求∠BFD的度数;(2)梯子底端向外移动了多少米?22.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)23.某校八年级举行“生活中的数学”数学小论文比赛活动,购买A、B两种笔记本作为奖品,这两种笔记本的单价分别是12元和8元,根据比赛设奖情况,需要购买两种笔记本共30本,若学校决定购买本次笔记本所需资金不能超过280元,设买A种笔记本x本.(1)根据题意完成以下表格(用含x的代数式表示)(2)那么最多能购买A笔记本多少本?(3)若购买B笔记本的数量要小于A笔记本的数量的3倍,则购买这两种笔记本各多少本时,费用最少,最少的费用是多少元?24.如图,在△ABC中,AB=AC,∠BAC=90°,BD是∠ABC的平分线,CE⊥BD,垂足是E,BA和CE的延长线交于点F.(1)在图中找出与△ABD全等的三角形,并说出全等的理由;(2)说明BD=2EC;(3)如果AB=5,求AD的长.25.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.(1)如图1,若AB=,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=,设BP=4,求QF的长.2014-2015学年浙江省北师大附属杭州中学八年级(上)期中数学试卷参考答案与试题解析一、选择题:1.(3分)下列长度的四根木棒,能与3cm,7cm长的两根木棒钉成一个三角形的是()A.3cm B.4cm C.6cm D.10cm【解答】解:∵三角形的两边为3cm,7cm,∴第三边长的取值范围为7﹣3<x<7+3,即4<x<10,只有C符合题意,故选:C.2.(3分)若x>y,则下列式子错误的是()A.x﹣1>y﹣1 B.﹣3x>﹣3y C.x+1>y+1 D.>【解答】解:A、在不等式x>y的两边同时减去1,不等式仍成立,即x﹣1>y ﹣1,故本选项不符合题意;B、在不等式x>y的两边同时乘以﹣3,不等号方向发生改变,即﹣3x<﹣3y,故本选项符合题意;C、在不等式x>y的两边同时加上1,不等式仍成立,即x+1>y+1,故本选项不符合题意;D、在不等式x>y的两边同时除以3,不等式仍成立,即>,故本选项不符合题意;故选:B.3.(3分)如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC,若BE=7,AB=3,则AD的长为()A.3 B.5 C.4 D.不确定【解答】解:∵∠DCE=90°,∴∠ACD+∠BCE=90°,∵BE⊥AC,∴∠CBE=90°,∠E+∠BCE=90°,∴∠ACD=∠E,在△ACD和△BCE中,,∴△ACD≌△BCE(AAS),∴AD=BC,AC=BE=7,∵AB=3,∴BC=AC﹣AB=7﹣3=4.故选:C.4.(3分)要证明命题“若a>b,则a2>b2”是假命题,下列a,b的值不能作为反例的是()A.a=1,b=﹣2 B.a=0,b=﹣1 C.a=﹣1,b=﹣2 D.a=2,b=﹣1【解答】解:∵a=1,b=﹣2时,a=0,b=﹣1时,a=﹣1,b=﹣2时,a>b,则a2<b2,∴说明A,B,C都能证明“若a>b,则a2>b2”是假命题,故A,B,C不符合题意,只有a=2,b=﹣1时,“若a>b,则a2>b2”是真命题,故此时a,b的值不能作为反例.故选:D.5.(3分)下列判断正确的是()A.有一条直角边对应相等的两个直角三角形全等B.腰长相等的两个等腰三角形全等C.斜边相等的两个等腰直角三角形全等D.两个锐角对应相等的两个直角三角形全等【解答】解:A、全等的两个直角三角形的判定只有一条边对应相等不行,故本选项错误;B、只有两条边对应相等,找不出第三个相等的条件,即两三角形不全等,故本选项错误;C、斜边相等的两个等腰直角三角形,根据ASA或者HL均能判定它们全等,故此选项正确;D、有两个锐角相等的两个直角三角形,边不一定相等,有可能是相似形,故选项错误;故选:C.6.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,D为BC 上一点,现将纸片沿直线AD折叠,使点C落在斜边AB上的点E处,则CD等于()A.2.4cm B.3cm C.4cm D.4.8cm【解答】解:∵△ACD与△AED关于AD成轴对称,∴AC=AE=6cm,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=62+82 =102,∴AB=10,BE=AB﹣AE=10﹣6=4,设CD=DE=xcm,则DB=BC﹣CD=8﹣x,在Rt△DEB中,由勾股定理,得x2+42=(8﹣x)2,解得x=3,即CD=3cm.7.(3分)一元一次不等式组的解集为x>a,且a≠﹣1,则a取值范围是()A.a>﹣1 B.a<﹣1 C.a>0 D.a<0【解答】解:因为一元一次不等式组的解集为x>a,且a≠﹣1,x≥﹣1,所以a>﹣1,故选A.8.(3分)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.BD平分∠ABC C.S△BCD=S△BOD D.BD=BC【解答】解:A、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确,B、∵DO是AB垂直平分线,∴AD=BD,∴∠A=∠ABD=36°,∴∠DBC=72°﹣36°=36°=∠ABD,∴BD是∠ABC的角平分线,正确,C,根据已知不能推出△BCD的面积和△BOD面积相等,错误,D,∵∠ABD=36°,∠C=72°,∴∠BDC=72°,∴∠BDC=∠BCD,∴BD=BC,正确.故选:C.9.(3分)如图,已知AF平分∠BAC,过F作FD⊥BC,若∠B比∠C大16°,则∠F的度数是()A.6°B.8°C.10°D.不确定,跟∠C大小有关【解答】解:∵∠B比∠C大16度,∴∠B=16°+∠C,∵AF平分∠BAC,∴∠EAC=∠BAF,∵∠AEC+∠BAF+∠B﹣16°=180°,∠AEC=∠B+∠BAF,得出∠BAF+∠B=98°,∴∠AEC=98°,∵FD⊥BC,∴∠AEC=90°+∠F=98°,∴∠F=8°.故选:B.10.(3分)在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG、DH分别与边AC、BC交于E,F两点.下列结论:①AE+BF=AB,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是()A.①②③④B.①②③C.①④D.②③【解答】解:连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,∴AD=CD=BD=AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.∴∠ADE+∠EDC=90°,∵∠EDC+∠FDC=∠GDH=90°,∴∠ADE=CDF.在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),=S△CDF.∴AE=CF,DE=DF,S△ADE∵AC=BC,∴AC﹣AE=BC﹣CF,∴CE=BF.∵AC=AE+CE,∴AC=AE+BF.∵AC2+BC2=AB2,∴AC=AB,∴AE+BF=AB.∵DE=DF,∠GDH=90°,∴△DEF始终为等腰直角三角形.∵CE2+CF2=EF2,∴AE2+BF2=EF2.∵S=S△EDC+S△EDF,四边形CEDF=S△EDC+S△ADE=S△ABC.∴S四边形CEDF∴正确的有①②③④.故选A.二、填空题11.(3分)如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是答案不唯一,如AB=AC或∠B=∠C 或∠BED=∠CFD或∠AED=∠AFD.(不再添加辅助线和字母)【解答】解:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD,或∠AED=∠AFD 等;理由是:①∵AB=AC,∴∠B=∠C,根据ASA证出△BED≌△CFD,即可得出DE=DF;②由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;③由∠BED=∠CFD,∠BDE=∠CDF,BD=DC,根据AAS证出△BED≌△CFD,即可得出DE=DF;④∵∠AED=∠AFD,∠AED=∠B+∠BDE,∠AFD=∠C+∠CDF,又∵∠BDE=∠CDF,∴∠B=∠C,即由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;故答案为:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD.12.(3分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.【解答】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.13.(3分)已知等腰△ABC,∠A的相邻外角是130°,则这个三角形的顶角为50°或80°.【解答】解:∵∠A的相邻外角是130°,∴∠A=50°,当∠A为顶角时,则顶角为50°,当∠A为底角时,则顶角为180°﹣2∠A=80°,故答案为:50°或80°.14.(3分)若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为x>.【解答】解:∵解不等式①得:x≥,解不等式②得:x≤﹣a,∴不等式组的解集为:≤x≤﹣a,∵不等式组的解集为3≤x≤4,∴=3,﹣a=4,b=6,a=﹣4,∴﹣4x+6<0,x>,故答案为:x>15.(3分)如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC 于M,若CM=5,则CE2+CF2=100.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.16.(3分)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.则该敬老院至少有40名老人,最多有43名老人.【解答】解:设该敬老院有老人x人,则牛奶有(5x+38)盒,由题意得:1≤(5x+38)﹣6(x﹣1)<5,解得:39<x≤43,故该敬老院至少有40名老人,最多有43名老人.故答案为:40;43.17.(3分)如图,把长方形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD和一定相等;③折叠后得到的图形是轴对称图形;④若AB=4,AD=8,则AE=3.其中正确的是①③④.(请写上正确的序号)【解答】解:如图,∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=C=90°,AD∥BC,∴∠ADB=∠CBD.∵△DBC与△DBC′关于BD对称,∴△DBC≌△DBC′,∴DC=DC′,BC′=BC,∠DBC=∠DBC′,∠C=∠C′.∴AB=C′D,∠A=∠C′.∠EBD=∠EDB,∴BE=DE,∴△EBD是等腰三角形.故①正确.在△AEB和△C′ED中,,∴△AEB≌△C′ED(AAS),∴BE=DE,在Rt△BAE中,AE2+AB2=BE2,即AE2+42=(8﹣AE)2,解得AE=3,.故④正确,∴折叠后得到的图形是轴对称图形,故③正确.∵∠DBC=∠DBC′,∴∠ABE和∠CBD不一定相等.故②错误.故答案为:①③④.18.(3分)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是120°.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=120°,∴∠HAA′=60°,∴∠AA′M+∠A″=∠HAA′=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故答案为:120°.三、解答题(共66分)19.解下列不等式(组),并把它们的解表示在数轴上.(1);(2).【解答】解:(1)去分母得,3(2x+3)﹣2(4x﹣1)<12,去括号得,6x+9﹣8x+2<12,合并同类项得,﹣2x<1,系数化为1得,x>﹣,解集在数轴上表示为:(2)由①得,4x﹣2≥x﹣2(x+1),4x﹣2≥x﹣2x﹣2,5x≥0,x≥0;由②得,6﹣4x<9﹣3x,﹣x<3,x>﹣3,∴不等式组的解集为x≥0,在数轴上表示为:20.已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,(1)求证:△ABC≌△EDF;(2)当∠CHD=120°,求∠HBD的度数.【解答】(1)证明:∵AD=BE,∴AB=ED,在△ABC和△EDF中,,∴△ABC≌△EDF(SAS);(2)∵△ABC≌△EDF,∴∠HDB=∠HBD,∵∠CHD=∠HDB+∠HBD=120°,∴∠HBD=60°.21.如图,一根6米长的竹竿DE斜靠的竖直的墙MN上,与地面所成的角∠EDN=60°,如果竹竿的顶端沿墙面下滑一段距离后竹竿与地面所成的角∠ABN=45°.(1)求∠BFD的度数;(2)梯子底端向外移动了多少米?【解答】解:(1)∵∠ABN+∠BFD=∠EDN=60°,∠ABN=45°,∴∠BFD=60°﹣45°=15°;(2)∵AB=DE=6m,∠EDN=60°,∠ABN=45°,∴DN=3m,BN=AN,∴BN2+AN2=AB2,故2BN2=36,解得:BN=3(m),故BD=3(﹣1)m,答:梯子底端向外移动了3(﹣1)米.22.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【解答】解:(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.23.某校八年级举行“生活中的数学”数学小论文比赛活动,购买A、B两种笔记本作为奖品,这两种笔记本的单价分别是12元和8元,根据比赛设奖情况,需要购买两种笔记本共30本,若学校决定购买本次笔记本所需资金不能超过280元,设买A种笔记本x本.(1)根据题意完成以下表格(用含x的代数式表示)(2)那么最多能购买A笔记本多少本?(3)若购买B笔记本的数量要小于A笔记本的数量的3倍,则购买这两种笔记本各多少本时,费用最少,最少的费用是多少元?【解答】解:(1)由题意,得(2)由题意,得12x+8(30﹣x)≤280,解得:x≤10.∴最多能购买A笔记本10本;(3)设购买两种笔记本的总费用为W元,由题意,得W=12x+8(30﹣x)=4x+240.30﹣x<3x,∴x>7.5.∵k=4>0,∴W随x的增大而增大,=272元.∴x=8时,W最小24.如图,在△ABC中,AB=AC,∠BAC=90°,BD是∠ABC的平分线,CE⊥BD,垂足是E,BA和CE的延长线交于点F.(1)在图中找出与△ABD全等的三角形,并说出全等的理由;(2)说明BD=2EC;(3)如果AB=5,求AD的长.【解答】证明:(1)△ABD≌△ACF.∵AB=AC,∠BAC=90°,∴∠FAC=∠BAC=90°,∵BD⊥CE,∠BAC=90°,∴∠ADB=∠EDC,∴∠ABD=∠ACF,∵在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),(2)∵△ABD≌△ACF,∴BD=CF,∵BD⊥CE,∴∠BEF=∠BEC,∵BD是∠ABC的平分线,∴∠FBE=∠CBE,∵在△FBE和△CBE中,,∴△FBE≌△CBE(ASA),∴EF=EC,∴CF=2CE,∴BD=2CE.(3)过D作DM⊥BC,设AD=DM=MC=x,则DC=x由AB=AC=AD+DC可得:x+x=5,解得:x=5﹣5,即如果AB=5,则AD的长为5﹣5.25.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.(1)如图1,若AB=,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=,设BP=4,求QF的长.【解答】解:(1)∵△ABE是等边三角形,A、E、P在同一直线上,∴AB=AE且∠BAE=60°,∴点E是AP的中点,∴AP=2AB=2×2=4,∴QE=4×=6,QF=PQ÷cos30°=4÷=8,∴EF=2;(2)EF=BF.证明:∵∠BAP=∠BAE﹣∠EAP=60°﹣∠EAP,∠EAQ=∠QAP﹣∠EAP=60°﹣∠EAP,∴∠BAP=∠EAQ.在△ABP和△AEQ中,∵,∴△ABP≌△AEQ(SAS)∴∠AEQ=∠ABP=90°,∴∠BEF=180°﹣∠AEQ﹣∠AEB=180°﹣90°﹣60°=30°,又∵∠EBF=90°﹣60°=30°,∴∠BEF=∠EBF,∴EF=BF;(3)如图,过点F作FD⊥BE于点D,∵△ABE是等边三角形,∴BE=AB=2,由(2)得∠EBF=30°,在Rt△BDF中,BD=BE=×2=,∴BF===2,∴EF=2,∵△ABP≌△AEQ,∴QE=BP=4,∴QF=QE +EF=4+2=6.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
浙教版八年级数学上册中考试试题.docx

2014学年上学期初二年级(9、12、13、15班)期中考试数学试卷(满分100分 时间90分钟)命题:刘辉亮一.选择题 (每小题3分,共24分) 1、要使函数13--=x x y 有意义,则x 应该满足( ▲ )A .1<xB .1>xC .1≤xD .1≥x2、如果三角形的两边长分别是方程01582=+-x x 的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是( ▲ )A .5.5B .5C .4.5D .43、若关于x 的一元一次不等式组⎩⎨⎧>+<-202m x m x 有解,则m 的取值范围为( ▲ )A .32->m B .32≤m C .32>m D .32-≤m 4、如图,已知OP 平分AOB ∠,ο60=∠AOB ,2=CP ,CP ∥OA ,OA PD ⊥于点D ,OB PE ⊥于点E .如果点M 是OP 的中点,则DM 的长是( ▲ ) A .2 B .2 C .3 D .32(第4题) (第5题)5、如图,正比例函数1y 与反比例函数2y 的图象相交于点E (-1,2).若021>>y y ,则x 的取值范围在数轴上表示正确的是( ▲ ) A .B .C .D .6、在同一直角坐标系中,函数m mx y +=和222++-=x mx y (m 是常数,且0≠m )的图象可能是( ▲ )A .B .C .D .7、甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个)132133134135136137甲班人数(人)102412乙班人数(人)014122通过计算可知两组数据的方差分别为0.22=甲S ,7.22=乙S ,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同。
其中正确的有( ▲ )A .1个B . 2个C .3个D .4个8、如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,AEF ∆是等边三角形,连接AC 交EF 于G ,下列结论:①DF BE =,②ο15=∠DAF ,③AC 垂直平分EF ,④EF DF BE =+,⑤ABE CEF S S ∆∆=2.其中正确结论有( ▲ )个.A .2B .3C .4D .5(第8题)二.填空题 (每小题3分,共24分) 9、计算:2123-的结果是__▲______. 10、已知2-=x 是方程062=-+mx x 的一个根,则方程的另一个根是__▲____。
浙江省杭州地区2014-2015学年八年级上学期期中考试数学试题

杭州地区2014-2015学年第一学期期中教学质量检测八年级数学试卷考生须知:1.本卷分试题卷和答题卷两部分,满分120分,时间90分钟.2.必须在答题卷的对应答题位置答题.答题前,应先在答题卷上填写班级、姓名、学号.一、仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1.下列各组数可能是一个三角形的边长的是( ▲ )A .1,2,4B .4,5,9C .4,6,8D .5,5,11 2.在平面直角坐标系中,点P(2,-1)在( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 3中,x 的取值范围在数轴上可表示为( ▲ )A B C D 4.如图,在△ABC 中,AB =AC ,∠B =40º,D 为BC 上一点,DE ∥AC 交AB 于E ,则∠BED 的度数为( ▲ ) A .140º B .80º C .100º D .70º5.如图,已知△ABC 的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC 全等的三角形是( ▲ )A .甲和乙B .乙和丙C .只有乙D .只有丙 6.下列关于不等式的解的命题中,属于假命题的是( ▲ )A .不等式2<x 有唯一的正整数解B .2-是不等式012<-x 的一个解C .不等式93>-x 的解集是3->x D7.满足下列条件的△ABC ,不是直角三角形的是( ▲ ) A .222c a b -= B .∠C =∠A-∠B C .∠A ∶∠B ∶∠C =3∶4∶5 D .5:13:12::=c b a八年级数学试题卷(第1页,共4页) 8.如图,在平面直角坐标系中,已知点A (-1,1),B (-1,-2),将线段AB 向下平移2个单位,再向右平移3个单位得到线段A /B /,设点),(y x P 为线段A /B /上任意一点,则y x ,满足的条件为( ▲ )A .3=x ,14-≤≤-yB .2=x ,14-≤≤-yC .14-≤≤-x ,3=yD .14-≤≤-x ,2=y9.有一个边长为1的正方形,经过一次“生长”后在它的上侧生长出两个小正方形,且三个正方形所围成的三角形是直角三角形;再经过一次“生长”后变成了右图,如此继续“生长”下去,则“生长”第k 次后所有正方形的面积和为( ▲ ) A .k B .1+k C .2k D .2)1(+k第9题图第10题图10.如图,在△ABC 中,∠BCA =90º,CA =CB ,AD 为BC 边上的中线,CG ⊥AD 于G ,交AB 于F ,过点B 作B C 的垂线交C G 于E .现有下列结论:①△ADC ≌△CEB ;②AB =CE ;③∠ADC =∠BDF ; ④F 为EG 中点.其中结论正确的个数为( ▲ ) A .1 B .2 C .3 D .4二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.直角三角形的斜边为5,则斜边上的中线长等于 ▲ .12.已知:如图,在Rt△ABC 中,∠A=90º,∠ABC 的平分线BD 交AC 于点D ,AD =3,BC =10,则△BDC 的面积是 ▲ .13.如图,已知△ABC 是等边三角形,BD 是中线,延长BC 到E ,使CE =CD ,不添加辅助线,请你写出四个不同类型的正确结论① ▲ ;② ▲ ;③ ▲ ;④ ▲ .第12题图 第13题图14.如图,矩形ABCD 中,AB =12cm ,BC =24cm ,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BDE 的面积 ▲ cm 2.八年级数学试题卷(第2页,共4页) 15.某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对 ▲ 道题,成绩才能在80分以上.16.如图,在△ABC 中,AB =AC =5,BC =6,若点P 在边AC 上AB D移动,则BP的最小值是▲三、全面答一答(本题有7小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本题6分)▲18.(本题8分)如图,在△ABC,∠BAC=80º,AD⊥BC于D,AE平分∠DAC,∠B=60º. (1)求∠AEC的度数;(2)想一想,还有其它的求法吗?写出你的思考.▲19.(本题8分)在平面直角坐标系中,已知点关于y轴的对称点Q在第四象限,且m为整数.(1)求整数m的值;(2)求△OPQ的面积.▲20.(本题10分)如图,在△ABC中,AB=AC,AD是BC边上的高,AM是△ABC外角∠CAE 的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状,并证明你的结论.▲21.(本题10分)如图甲,已知:在△ABC中,∠BAC=90º,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,设BD=m,CE=n(1)求DE的长(用含m,n的代数式表示);(2)如图乙,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(0º<α<180º),设BD=m,CE=n.问DE的长如何表示?并请证明你的结论22.(本题12分)如图,是一个运算流程.(1)分别计算:当x=150时,输出值为▲,当x=27时,输出值为▲;(2)若需要经过两次运算,才能运算出y,求x的取值范围;(3)请给出一个x的值,使之无论运算多少次都不能输出,并请说明理由.23.(本题12分)如图,在△ABC中,已知AB=AC,∠BAC=90o,BC=6cm,,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上(向上或向下)以每秒1厘米的速度运动,连结AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为6cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由(可在备用图中画出具体图形).备用图▲八年级数学答题卷二、认真填一填(本题有6个小题,每小题4分,共24分)11. 12.13.14. 15.16.三、全面答一答(本题有7个小题,共66分)17.(本小题满分6分)18.(本小题满分8分) 19.(本小题满分8分) 20.(本小题满分10分)八年级数学答题卷(第2页,共4页)21.(本小题满分10分)22.(本小题满分12分)(1)当x =150时,输出值为 ,当x =27时,输出值为423.(本小题满分12分)备用图数学参考答案一、仔细选一选(每小题3分,共30分)1.C2.D3.D4.C5.B6.C7.C8.B9.B 10.B 二、认真填一填(每小题4分,共24分)11.5.2 12. 1513. CE=CD ;BD ⊥AC ;∠E=30°;△BDE 是等腰三角形等(同一类型只能算答对一个)三、全面答一答(本题有7小题,共66分) 17.(6分)解:6233+-≤+x x (2分) 54≤x(2分)解在数轴上表示(略)(2分)18.(8分)解:(1)∵AD⊥BC,∠B=60°,∠BAC=80°,∴∠BAD=30°,∠DAC=50°,∵AE平分∠DAC,∴∠DAE=∠EAC=25°,∴∠BAE=55°,∴∠AEC=∠B+∠BAE=115°;(4分)(2)也可利用三角形内角和求解.∵∠C=180﹣∠B﹣∠BAC=40°,∴∠AEC=180﹣∠C﹣∠EAC=180°﹣25°﹣40°=115°.(4分)19.(8分)解:(1关于y轴的对称点Q 坐标为(1分) ∵Q(2分)(1分)(2)PQ=2,(2分)S⊿OPQ2分)20.(10分)解:(1)如图所示:(3分)(2)△ADF是等腰直角三角形。
浙教版八年级上数学期中检测试卷及答案

浙教版八年级上数学期中检测试卷及答案(总5页)-本页仅作为预览文档封面,使用时请删除本页-DCB A米C1.如图1A.2.如图2A.3. A. 三棱锥 B. 立方体 C. 球体 D. 四面体4.下列说法错误的是( )A.等腰三角形两腰上的中线相等B.等腰三角形顶角平分线上任一点到底边两端的距离相等C.等腰三角形的中线与高重合D.5.右图几何体的俯视图是( )6. 到三角形三边距离相等的点是三角形三条( )A. 中线的交点B. 角平分线的交点C. 高的交点D. 垂直平分线的交点7.右图是某地的长方形广场的示意图,如果小明要从A 角走到C ) A. 90米 B. 100米 C. 120米 D. 140米 8.如果等腰三角形的一个外角等于100度,那么它的顶角等于( )A. 100︒B. 80︒C. 8040︒︒或D. 8020︒︒或 9.与红砖、足球类似的几何体分别是( )A. 长方形、圆B.长方体、球C.长方形、球D. 长方体、圆 10.若等腰三角形的顶角为α,则它一腰上的高与底边的夹角等于( )A. 2α B. 902α︒+ C. 902α︒- D. 90α︒-1132456二、填空题(每小题3分,共30分)11. 两条平行线被第三条直线所截,得到的一对同位角的平分线的位置关系是___. 12. 直五棱柱的底面是____边形.13. AD 是等腰三角形ABC 底边上的高,请写出一个正确的结论:________. 14. 有两棵树,一棵树高8米,另一棵树高2米,两棵树相距8米,一只小鸟从一棵树梢飞到另一棵树梢,至少要飞_____米.15.直角三角形两条直角边的长分别为24和7,则斜边上的中线等于_____16.如图是一个立方体表面展开图,将图折叠起来,得到一个立方体,则3的对面是____(填数字)17.如果一个三角形是轴对称图形,且有一个角是60度,那么这个三角形有___条对称轴. 18. 画三视图必须遵循的法则是长对正,高平齐,_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年浙江省杭州市拱墅区文澜中学八年级(上)期中数学试卷一、选择题1.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.2.(3分)当kb<0时,一次函数y=kx+b的图象一定经过()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限3.(3分)已知(﹣1,y1),(0.5,y2),(1.7,y3)是直线y=﹣9x+b(b为常数)上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y24.(3分)满足下列条件的△ABC,是直角三角形的有()个.(1)∠A﹣∠B=∠C(2)∠A:∠B:∠C=3:4:5(3)∠A=2∠B=3∠C(4)a=20,b=21,c=29(5)a=7,b=8,c=10(6)a=2,b=,c=(其中∠A、∠B、∠C是△ABC的三个内角,a,b,c是△ABC的三条边)A.2 B.3 C.4 D.55.(3分)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)6.(3分)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是()A.B.C.D.7.(3分)已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB 上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A的度数是()A.30°B.40°C.50°D.60°8.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0) C.(6,4) D.(8,3)9.(3分)如图,△ABC中,AB=AC,△DEF为等边三角形,则α、β、γ之间的关系为()A.B.C.D.10.(3分)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条 B.6条 C.7条 D.8条二、填空题11.(3分)函数y=中,自变量x的取值范围是.12.(3分)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC=.13.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′,EB′分别交边AC于点F,G,若∠ADF=60°,则∠EGC的度数为.14.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(9,0),(0,4),点D的坐标为(5,0),点P沿矩形的边C﹣B﹣A﹣O﹣C运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.15.(3分)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.16.(3分)对于一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则一次函数的解析式为.17.(3分)如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于cm.18.(3分)我国汉代数学家赵真为了证明勾股定理,创制了一幅“弦图”,后人称其为“最美弦图”(如图1),图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=19,则S2的值是.19.(3分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为.20.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为cm2.三、解答题21.写出下列命题的逆命题、判断真假,并选取其中一个给予证明.(1)直角三角形斜边上的中线等于斜边的一半;(2)等腰三角形两个底角的角平分线长相等.22.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.23.如图,一次函数的图象分别与x轴、y轴交于点A、B,以线段AB 为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式.24.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P点320千米处.(1)说明本次台风会影响B市;(2)求这次台风影响B市的时间.25.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.26.今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48000㎡和B种板材24000㎡的任务.(1)如果该厂安排210人生产这两种材,每人每天能生产A种板材60㎡或B 种板材40㎡,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:问这400间板房最多能安置多少灾民?2014-2015学年浙江省杭州市拱墅区文澜中学八年级(上)期中数学试卷参考答案与试题解析一、选择题1.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.(3分)当kb<0时,一次函数y=kx+b的图象一定经过()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限【解答】解:∵kb<0,∴k、b异号.①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限.故选:B.3.(3分)已知(﹣1,y1),(0.5,y2),(1.7,y3)是直线y=﹣9x+b(b为常数)上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2【解答】解:∵k=﹣9<0,∴y随x的增大而减小,∵﹣1<0.5<1.7,∵y1>y2>y3,故选:B.4.(3分)满足下列条件的△ABC,是直角三角形的有()个.(1)∠A﹣∠B=∠C(2)∠A:∠B:∠C=3:4:5(3)∠A=2∠B=3∠C(4)a=20,b=21,c=29(5)a=7,b=8,c=10(6)a=2,b=,c=(其中∠A、∠B、∠C是△ABC的三个内角,a,b,c是△ABC的三条边)A.2 B.3 C.4 D.5【解答】解:(1)∵∠A﹣∠B=∠C,∠A+∠B+∠C=180°,∴∠A=∠B+∠C=180°÷2=90°,∴△ABC为直角三角形,∴条件(1)满足题意;(2)∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC为锐角三角形,∴条件(2)不符合题意;(3)∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A=°,∠B=°,∠C=°,∴△ABC为钝角三角形,∴条件(3)不符合题意;(4)∵a=20,b=21,c=29,∴a2+b2=841=c2,∴△ABC为直角三角形,∴条件(4)符合题意;(5)∵a=7,b=8,c=10,∴a2+b2=113>100=c2,∴△ABC为锐角三角形,∴条件(5)不符合题意;(6)∵a=2,b=,c=,∴a2+b2=7=c2,∴△ABC为直角三角形,∴条件(6)符合题意.综上所述:符合题意的有(1)(4)(6).故选:B.5.(3分)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)【解答】解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(﹣x,y+2).故选:B.6.(3分)如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是()A.B.C.D.【解答】解:∵水从左导管匀速地注入,气体从右导管排出时,容器内剩余气体的体积随着注水时间的增加而匀速减少,∴容器内剩余气体的体积与注水时间的函数关系的大致图象是C.故选:C.7.(3分)已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB 上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A的度数是()A.30°B.40°C.50°D.60°【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,∴AM=MC=BM,∴∠A=∠MCA,∵将△ACM沿直线CM折叠,点A落在点D处,∴CM平分∠ACD,∠A=∠D,∴∠ACM=∠MCD,∵CD⊥AB,∴∠B+∠BCD=90°,∵∠A+∠B=90°,∴∠A=∠BCD,∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°.故选:A.8.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0) C.(6,4) D.(8,3)【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选:D.9.(3分)如图,△ABC中,AB=AC,△DEF为等边三角形,则α、β、γ之间的关系为()A.B.C.D.【解答】解:∵AB=AC,∴∠B=∠C,∴∠2+∠γ=∠1+∠α,∴∠2﹣∠1=∠α﹣∠γ,∵等边△DEF,∴∠5=∠3=60°,∴∠2+∠α=∠1+∠β=120°,∴∠2﹣∠1=∠β﹣∠α,∴∠α﹣∠γ=∠β﹣∠α,∴2∠α=∠β+∠γ,∴α=,故选:B.10.(3分)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条 B.6条 C.7条 D.8条【解答】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时都能得到符合题意的等腰三角形.故选:C.二、填空题11.(3分)函数y=中,自变量x的取值范围是x≤2.【解答】解:由题意得,2﹣x≥0且x﹣6≠0,解得x≤2且x≠6,所以,自变量x的取值范围是x≤2.故答案为:x≤2.12.(3分)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC=100°.【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故答案为:100°.13.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′,EB′分别交边AC于点F,G,若∠ADF=60°,则∠EGC的度数为60°.【解答】解:如图,由题意得:∠BDE=∠B′DE(设为α),∠BED=∠B′ED(设为β);∵∠ADF=60°,∴2α=180°﹣60°=120°;∵△ABC为等边三角形,∴∠B=∠C=60°,α+β=180°﹣60°=120°;∴2β=240°﹣2α=120°;∴∠EGC=2β﹣∠C=120°﹣60°=60°,故答案为60°.14.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(9,0),(0,4),点D的坐标为(5,0),点P沿矩形的边C﹣B﹣A﹣O﹣C运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为(3,4)、(2,4)、(8,4)、(9,3).【解答】解:①点P在BC边上运动,过P作PM⊥OA于M.(1)如图1,当OP=OD时,OP=5,CO=4,∴易得CP=3,∴P(3,4);(2)如图2,当OD=PD时,PD=DO=5,PM=4,∴易得MD=3,从而CP=2或CP′=8,∴P(2,4)或(8,4);(3)当OP=PD=5时,OD=6(不合题意舍去),②如图3,点P在BA边上运动,当OD=PD=5时,∵AD=4,∴AP=3,∴P(9,3);③点P在OA边上运动,∵O,D,P三点在一条直线上,∴得不到腰长为5的等腰三角形;④点P在OC边上运动,∵∠COD=90°,且OC=4<5,∴得不到腰长为5的等腰三角形;综上,满足题意的点P的坐标为(3,4)、(2,4)、(8,4)、(9,3).故答案为(3,4)、(2,4)、(8,4)、(9,3).15.(3分)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣1).【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).16.(3分)对于一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则一次函数的解析式为y=x+2或y=﹣x+7.【解答】解:∵对于一次函数y=kx+b,当1≤x≤4时,3≤y≤6,∴点(1,3)、(4,6)在一次函数y=kx+b的图象上或点(1,6)、(4,3)在一次函数y=kx+b的图象上.当点(1,3)、(4,6)在一次函数y=kx+b的图象上时,,解得:,∴此时一次函数的解析式为y=x+2;当(1,6)、(4,3)在一次函数y=kx+b的图象上时,,解得:,此时一次函数的解析式为y=﹣x+7.故答案为:y=x+2或y=﹣x+7.17.(3分)如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于12cm.【解答】解:∵AD是BC边上的高,CE是AB边上的高,∴AB•CE=BC•AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2﹣BD2=AD2,∴AB2=BC2+36,∴=,整理得;BC2=,解得:BC=,∴AB=×BC=×=,∴△ABC的周长=2AB+BC=2×+=12.故答案为:12.18.(3分)我国汉代数学家赵真为了证明勾股定理,创制了一幅“弦图”,后人称其为“最美弦图”(如图1),图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=19,则S2的值是.【解答】解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=19,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=19,故3x+12y=19,x+4y=,所以S2=x+4y=.故答案为:.19.(3分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3).【解答】解:如图所示:A1(﹣1,1),A2(﹣2,﹣2),A3(0,2),A4(﹣2,﹣3),(﹣3,2)(此时不是四边形,舍去),故答案为:(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3).20.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为或5或10 cm2.【解答】解:分三种情况计算:(1)当AE=AF=5厘米时,∴S=AE•AF=×5×5=厘米2,△AEF(2)当AE=EF=5厘米时,如图BF===2厘米,∴S=•AE•BF=×5×2=5厘米2,△AEF(3)当AE=EF=5厘米时,如图DF===4厘米,∴S=AE•DF=×5×4=10厘米2.△AEF故答案为:,5,10.三、解答题21.写出下列命题的逆命题、判断真假,并选取其中一个给予证明.(1)直角三角形斜边上的中线等于斜边的一半;(2)等腰三角形两个底角的角平分线长相等.【解答】解:逆命题是:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.已知,如图,△ABC中,D是AB边的中点,且CD=AB,求证:△ABC是直角三角形,证明:∵D是AB边的中点,且CD=AB,∴AD=BD=CD,∵AD=CD,∴∠ACD=∠A,∵BD=CD,∴∠BCD=∠B,又∵∠ACD+∠BCD+∠A+∠B=180°,∴2(∠ACD+∠BCD)=180°,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴△ABC是直角三角形;(2)逆命题是“有两个角的平分线相等的三角形是等腰三角形”.已知:在△ABC中,BD平分∠ABC、CE平分∠ACB,且BD=CE求证:△ABC是等腰三角形,设这个△ABC,CD、BE分别是∠C和∠B的角平分线,过点E作∠BEF=∠BCD,使EF=BC,在△BCD与△FEB中,,∴△BCD≌△FEB(SAS)∴∠FBE=∠BDC,BF=DB,设∠ABE=∠EBC=α,∠ACD=∠DCB=β,∠FBC=∠BDC﹣+α=180°﹣2α﹣β+α=180°﹣(α+β),∠CEF=∠FEB+∠CEB=β+180﹣2β﹣α=180°﹣(α+β),∴∠FBC=∠CEF,∵2α+2β<180°,∴α+β<90°,∴∠FBC=∠CEF>90°,∴过C点作FB的垂线和过F点作CE的垂线必都在FB和CE的延长线上.设垂足分别为G、H,∴∠HEF=∠CBG,∴△CGB≌△FHE∴CG=FH,BC=HE,连接CF,在Rt△CGF与△FHC 中,,∴Rt△CGF≌△FHC,∴FG=CH,∴BF=CE,∴CE=BD,在△BDC与△CEB中,,∴△BDC≌△CEB,∴∠ABC=∠ACB,∴AB=AC.22.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;【解答】解:(1)直线y=﹣x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,故y=﹣x+4.(2)当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F 为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,﹣1).∵M(3,2),F(0,﹣1),直线y=﹣x+b过点(,),则=﹣+b,解得:b=2,2=1+t,解得t=1.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=﹣x+b过点(2,1),则1=﹣2+b,解得:b=3,3=1+t,解得t=2.故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.23.如图,一次函数的图象分别与x轴、y轴交于点A、B,以线段AB 为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式.【解答】解:∵一次函数中,令x=0得:y=2;令y=0,解得x=3.∴B的坐标是(0,2),A的坐标是(3,0).作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,又∵AB=AC,∠BOA=∠CDA=90°∴△ABO≌△CAD,∴AD=OB=2,CD=OA=3,OD=OA+AD=5.则C的坐标是(5,3).设BC的解析式是y=kx+b,根据题意得:,解得.则BC的解析式是:y=x+2.24.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P点320千米处.(1)说明本次台风会影响B市;(2)求这次台风影响B市的时间.【解答】(1)如图所示:∵台风中心位于点P,并沿东北方向PQ移动,B市位于点P的北偏东75°方向上,∴∠QPG=45°,∠NPB=75°,∠BPG=15°,∴∠BPQ=30°作BH⊥PQ于点H,在Rt△BHP中,由条件知,PB=320,得BH=320sin30°=160<200,时,台风影响结束.由(1)得BH=160,由条件得BP1=BP2=200,∴P1P2=2=240,∴台风影响的时间t==8(小时).25.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,26.今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48000㎡和B种板材24000㎡的任务.(1)如果该厂安排210人生产这两种材,每人每天能生产A种板材60㎡或B 种板材40㎡,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:问这400间板房最多能安置多少灾民?【解答】解:(1)设x人生产A种板材,根据题意得;x=120.经检验x=120是分式方程的解.210﹣120=90.故安排120人生产A种板材,90人生产B种板材,才能确保同时完成各自的生产任务;(2)设生产甲种板房y间,乙种板房(400﹣y)间,安置人数为W,则W=12y+10(400﹣y)=2y+4000,,解得:300≤y≤360,∵W=2y+4000时随y的增大而增大,360×12+(400﹣360)×10=4720.故最多能安置4720人.。