仪器仪表的使用实验报告模板
常用电子仪器的使用实验报告

常用电子仪器的使用实验报告一、实验目的1、了解并熟悉常用电子仪器的基本原理和功能。
2、掌握常用电子仪器的正确使用方法和操作步骤。
3、通过实际操作,提高对电子电路的测量和分析能力。
二、实验仪器1、示波器:用于观察和测量电信号的波形、幅度、频率等参数。
2、函数信号发生器:产生各种不同类型的电信号,如正弦波、方波、三角波等。
3、数字万用表:测量电压、电流、电阻等电学量。
4、交流毫伏表:测量交流信号的电压有效值。
三、实验原理(一)示波器原理示波器是一种能够显示电信号波形的电子仪器。
它通过将输入的电信号在垂直方向上进行偏转,并在水平方向上进行扫描,从而在荧光屏上形成信号的波形图像。
示波器的主要参数包括垂直灵敏度、水平扫描速度、触发方式等。
(二)函数信号发生器原理函数信号发生器是一种能够产生各种周期性电信号的仪器。
它通常采用集成电路和数字技术,通过设置不同的参数,如频率、幅度、占空比等,来产生所需的信号波形。
(三)数字万用表原理数字万用表基于数字电路和模数转换技术,将测量的电学量转换为数字信号,并通过显示屏显示出测量结果。
它可以测量直流电压、交流电压、直流电流、交流电流、电阻、电容、二极管等多种电学参数。
(四)交流毫伏表原理交流毫伏表用于测量交流信号的电压有效值。
它采用放大和检波电路,将输入的交流信号进行放大和整流,然后通过表头显示出电压的有效值。
四、实验内容及步骤(一)示波器的使用1、开启示波器电源,预热一段时间。
2、调节“辉度”、“聚焦”等旋钮,使荧光屏上显示出清晰的扫描线。
3、选择合适的输入通道,并将探头连接到被测信号源。
4、调节“垂直灵敏度”和“水平扫描速度”旋钮,使信号波形在荧光屏上显示出合适的大小和周期。
5、选择合适的触发方式,以使波形稳定显示。
6、测量信号的幅度、周期、频率等参数,并记录测量结果。
(二)函数信号发生器的使用1、开启函数信号发生器电源,选择所需的信号类型,如正弦波、方波或三角波。
常用仪器的使用实验报告(共9篇)

常用仪器的使用实验报告(共9篇)1. 热电偶温度计的使用实验报告实验目的:了解热电偶温度计的基本原理和使用方法,掌握热电偶温度计的精度及注意事项。
实验原理:热电偶是利用两个不同金属的热电势产生温度差,将其转化为温度值的温度传感器。
它由两种不同金属的不同长度的导线组成,通常是铜和铜镍合金,两种导线的连接处称为热电接头。
当两个热电接头连接在温度不同的物体上时,由于两种金属的热电势差异,将产生一种电动势,这种电动势与温差成正比,由此可以测量物体的温度。
实验器材及药品:热电偶温度计、数字显示温度计、热水、冷水。
实验步骤:1. 将热电偶温度计接好线,将触头插入被测物体中。
2. 开始记录温度值,可以使用数字显示温度计对热电偶温度计的测量结果进行实时监测。
3. 改变被测物体的温度,比如将升温的热水倒入容器中,或者将降温的冷水倒入容器中。
4. 记录不同温度下的测温结果,并比较实验结果与实际值的误差,分析误差的可能原因。
注意事项:1. 热电偶温度计不能被弯曲或扭曲,否则会影响测量精度。
2. 热电偶接头处应该接触紧密,否则会产生不均匀的温度分布。
3. 热电偶测量的范围取决于热电偶用于测量的材料,对于不同的物质应该选择合适的热电偶。
实验结果:在实验中,我们记录了不同温度下的热电偶测量结果,发现与实际值的误差不大,具有较高的精度。
同时,我们发现热电偶温度计在测量温度差较小的物体时误差更小,测量范围大小直接影响测量精度。
在实验过程中,我们注意到热电偶接触不良时,测量结果出现波动,因此应该保证接触紧密。
pH计测量的原理是利用放置于被测液体中的电极对水中的疏水离子进行测量。
pH计是一种电化学传感器,其基本原理是靠量化氢离子浓度从而量化液体或其他物质的酸碱度。
pH计、标准缓冲溶液,待测液体。
1. 打开pH计电源,确保电极接好线。
2. 将电极放置于标准缓冲液中,按照说明书上的要求进行校准。
3. 将电极放置于待测液体中,读取pH测量值。
常用电工仪表的使用实验报告

常用电工仪表的使用实验报告一、实验目的本实验旨在使学生掌握常用电工仪表的使用方法和技巧,了解电流、电压、电阻等基本概念,提高学生的实践能力和操作技术。
二、实验器材1.万用表2.示波器3.电流表4.电压表5.电阻箱三、实验步骤1.使用万用表测量直流电压和直流电流:(1)将万用表旋转到直流伏特档或直流安培档;(2)将红色测试笔连接到被测点的正极,黑色测试笔连接到被测点的负极;(3)读取显示屏上的数值。
2.使用示波器观察交流信号:(1)将示波器接通电源并打开开关;(2)将探头连接到被测点;(3)调整示波器参数,如时间基准、扫描方式等;(4)观察显示屏上的波形。
3.使用电流表测量电路中的电流:(1)将红色测试笔连接到被测点的正极,黑色测试笔连接到被测点的负极;(2)读取显示屏上的数值。
4.使用电压表测量电路中的电压:(1)将红色测试笔连接到被测点的正极,黑色测试笔连接到被测点的负极;(2)读取显示屏上的数值。
5.使用电阻箱测量电路中的电阻:(1)将电阻箱旋转到所需阻值位置;(2)将红色测试笔连接到电阻箱上的一个端口,黑色测试笔连接到另一个端口;(3)读取显示屏上的数值。
四、实验注意事项1.在使用仪器前,应先了解其基本参数和使用方法。
2.在进行测量时,应注意接线正确、插头牢固、测试笔与被测点接触良好。
3.在进行高压或大电流实验时,应穿戴绝缘手套和鞋子,并保持身体干燥。
4.在进行示波器实验时,应注意调整参数使波形清晰稳定,并避免观察过长时间引起眼疲劳。
五、实验结果通过本次实验,我们成功掌握了常用电工仪表的使用方法和技巧,并了解了电流、电压、电阻等基本概念。
同时,我们也提高了自己的实践能力和操作技术,为今后的实验和工作打下了坚实的基础。
六、实验结论本实验通过对常用电工仪表的使用方法和技巧进行掌握,使我们能够更加熟练地操作这些仪器,并且了解到电流、电压、电阻等基本概念。
同时,我们也发现,在进行电工实验时应该注意安全,避免发生意外事故。
常用电子仪器的使用实验报告

常用电子仪器的使用实验报告一、引言。
电子仪器在现代科学实验中扮演着至关重要的角色。
本实验旨在通过对常用电子仪器的使用进行实验,掌握电子仪器的基本使用方法,提高实验操作技能,为今后的科学研究打下坚实的基础。
二、实验目的。
1. 掌握示波器的基本使用方法;2. 熟练掌握数字万用表的使用技巧;3. 理解信号发生器的原理及使用方法;4. 掌握逻辑分析仪的使用技巧。
三、实验仪器与设备。
1. 示波器;2. 数字万用表;3. 信号发生器;4. 逻辑分析仪。
四、实验步骤与结果分析。
1. 示波器的使用。
示波器是一种用于显示各种电压信号波形的仪器。
在本次实验中,我们首先接通示波器的电源,并将待测信号的正负极分别连接至示波器的输入端口。
随后,我们调节示波器的水平、垂直灵敏度,观察并记录示波器显示的波形。
通过实验,我们可以清晰地观察到待测信号的波形特征,如频率、幅度等。
2. 数字万用表的使用。
数字万用表是一种用于测量电压、电流、电阻等电学量的仪器。
在本次实验中,我们首先选择合适的测量档位,并将待测电路的正负极分别连接至数字万用表的测量端口。
随后,我们读取并记录数字万用表显示的测量数值。
通过实验,我们可以准确地获取待测电路的电学量数值。
3. 信号发生器的使用。
信号发生器是一种用于产生各种频率、幅度的信号的仪器。
在本次实验中,我们首先接通信号发生器的电源,并设置待发生信号的频率、幅度等参数。
随后,我们将信号发生器的输出端口连接至示波器的输入端口,观察并记录示波器显示的信号波形。
通过实验,我们可以清晰地观察到信号发生器产生的不同频率、幅度的信号波形。
4. 逻辑分析仪的使用。
逻辑分析仪是一种用于分析数字电路工作状态的仪器。
在本次实验中,我们首先接通逻辑分析仪的电源,并将待测数字电路的输入端口与逻辑分析仪的输入端口相连。
随后,我们通过逻辑分析仪的显示屏观察并记录待测数字电路的工作状态。
通过实验,我们可以清晰地观察到待测数字电路的逻辑高低电平状态。
常用电子仪器的使用实验报告

常用电子仪器的使用一、实验目的1. 学习电子电路实验中常用的电子仪器,掌握其使用方法。
2. 初步掌握使用双踪示波器观察信号波形和测量波形参数的方法。
3、掌握几种典型信号的幅值,有效值和周期的测量。
二、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。
它们和万用表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。
在实验中,各种电子仪器要进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接通常如图1-1所示。
为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。
信号发生器和交流毫伏表的连接线通常用屏蔽线或专用电缆线,示波器的连接线使用专用电缆线,直流电源的连接线用普通导线。
1.示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种基本参数的测量,其基本功能和主要使用方法如下:(1)寻找扫描光迹将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。
②触发方式开关置“自动”。
③适当调节垂直、水平“位移”旋钮,使扫描光迹位于屏幕中央。
(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。
)(2)双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”、“断续”二种双踪显示方式。
“交替”显示方式一般适宜于输入信号频率较高时使用,“断续”显示一般适宜于输入信号频率较低时使用。
(3)为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。
(4)触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。
教学仪器测量实验报告(3篇)

第1篇一、实验目的1. 了解教学仪器的种类、构造和基本原理。
2. 掌握教学仪器的操作方法和注意事项。
3. 通过实验,验证教学仪器的测量精度和可靠性。
二、实验器材1. 水准仪:DS3微倾式水准仪1台、水准尺1对、三脚架1个。
2. 经纬仪:电子经纬仪1台、水准尺1把、花杆1根、记录板1块、粉笔若干根、计算器1个、量角器1把、图纸1张。
3. 全站仪:全站仪1台、记录夹1个、记录纸若干张、计算器1个。
4. 其他:罗盘仪1架、棱镜1个、三角板1个、圆规1个、铅笔1支。
三、实验内容1. 水准仪测量实验(1)认识水准仪的基本构造,了解各部件的功能。
(2)掌握水准仪的使用方法,包括安置仪器、粗略整平、瞄准水准尺、精确置读数等。
(3)练习普通水准测量一测站的测量、记录和计算,记录并计算出两点间高差。
2. 经纬仪测量实验(1)认识经纬仪的基本构造,了解各部件的功能。
(2)掌握经纬仪的使用方法,包括安置仪器、对中整平、瞄准目标、观测水平角和竖直角等。
(3)练习视距测量,计算测站点到碎部点的水平距离和高差,最后计算出碎部点的高程。
(4)练习用地形半圆仪和比例尺,根据观测和计算的数据展绘碎部点的方法,并绘制成图。
(1)认识全站仪的性能及主要部件的名称和作用。
(2)掌握全站仪的基本操作方法,包括安置仪器、对中整平、观测水平角和竖直角、水平边长观测等。
(3)按导线计算表计算各点坐标高差,取往、返观测的平均值,按高程误差配赋表计算各点高程。
四、实验步骤1. 水准仪测量实验(1)认识水准仪的基本构造,了解各部件的功能。
(2)安置仪器:将水准仪的三脚架张开,使其高度适中,架头大致水平,并将脚架踩实。
取出仪器,将其固连在三脚架上。
(3)粗略整平:双手食指和拇指各拧一只脚螺旋,同时以相反的方向转动,使圆水准器气泡向中间移动。
再拧另一只脚螺旋,使圆气泡居中。
(4)瞄准水准尺:在离仪器不远处选一点A,并在其上立一根水准尺。
转动目镜调焦螺旋,使十字丝清晰。
电工仪表的使用与测量误差实验报告

电工仪表的使用与测量误差实验报告示例文章篇一:《电工仪表的使用与测量误差实验报告》嘿,亲爱的小伙伴们!今天我要跟你们讲讲我做的这个超有趣的电工仪表使用与测量误差实验,那可真是让我大开眼界呀!实验开始前,老师就像个指挥官一样,站在讲台上给我们仔细地讲解各种电工仪表的用途和使用方法。
“同学们,这万用表啊,就像是个神奇的魔法棒,能测出电路中的各种数据!”老师一边说,一边拿起万用表给我们演示。
我心里直犯嘀咕:“真有这么神奇?”终于轮到我们自己动手啦!我和同桌小明兴奋得不行。
我拿起万用表,小心翼翼地摆弄着,感觉自己就像个小电工。
“哎呀,我这怎么测不出来啊?”小明着急地叫了起来。
我看了看他,笑着说:“你是不是没调对挡位啊?”小明挠挠头:“可能是吧,这也太难搞啦!”我赶紧帮他检查,还真被我发现了问题。
我们接着测量电阻,我眼睛紧紧盯着万用表的显示屏,心里紧张得要命,生怕出错。
“哇,测出来啦!”我高兴地喊了起来。
再看看旁边的小组,小红和小刚也在为测量电压的问题争论不休。
小红说:“我觉得应该是这样读数!”小刚却反驳道:“不对不对,你看清楚啦!”这实验过程中啊,真是状况百出,可把我们忙坏啦。
经过一番努力,我们终于完成了所有的测量任务。
但是,当我们对比测量结果的时候,却发现了一个大问题——测量误差!这可把我们愁坏了。
“为啥会有误差呢?”我自言自语道。
小明想了想说:“是不是我们操作不熟练呀?”我摇摇头:“也许是仪表本身就有一定的误差呢?”这时候老师走了过来,听到我们的讨论,笑着说:“孩子们,测量误差的产生有很多原因哦。
比如仪表的精度、环境的影响,还有你们的测量方法等等。
”经过老师这么一解释,我们恍然大悟。
通过这次实验,我深深地感受到,电工仪表的使用可不是一件简单的事情。
它需要我们认真仔细,还得掌握好多知识和技巧。
就像盖房子一样,每一块砖都要放对地方,才能建成牢固的大厦。
我们在使用电工仪表的时候,每一个操作步骤都不能马虎,不然就会得到不准确的结果。
化学常规仪器实验报告(3篇)

第1篇一、实验目的1. 掌握化学常规仪器的使用方法。
2. 熟悉化学实验的基本操作技能。
3. 培养严谨、细致的实验态度。
二、实验仪器及药品1. 仪器:试管、烧杯、量筒、漏斗、玻璃棒、酒精灯、铁架台、石棉网等。
2. 药品:盐酸、氢氧化钠、酚酞、甲基橙、硫酸铜等。
三、实验原理1. 酸碱滴定法:利用酸碱反应的化学计量关系,通过滴定剂滴定待测溶液,测定其浓度。
2. 沉淀反应:利用沉淀反应,通过观察沉淀的形成和溶解,判断溶液中离子是否存在。
四、实验步骤1. 酸碱滴定法:(1)准备0.1mol/L的盐酸溶液和0.1mol/L的氢氧化钠溶液。
(2)用滴定管分别量取25mL盐酸溶液和氢氧化钠溶液于锥形瓶中。
(3)加入几滴酚酞指示剂,观察溶液颜色变化。
(4)用滴定管滴加氢氧化钠溶液,边滴边振荡锥形瓶,直至溶液颜色由无色变为浅红色,且半分钟内不褪色。
(5)记录滴定剂的体积,计算盐酸溶液的浓度。
2. 沉淀反应:(1)准备0.1mol/L的硫酸铜溶液和0.1mol/L的氢氧化钠溶液。
(2)用滴定管分别量取25mL硫酸铜溶液和氢氧化钠溶液于锥形瓶中。
(3)观察溶液颜色变化,记录沉淀的形成情况。
(4)加入适量盐酸,观察沉淀是否溶解,判断溶液中离子是否存在。
五、实验数据及结果1. 酸碱滴定法:盐酸溶液浓度:0.0985mol/L2. 沉淀反应:硫酸铜溶液中加入氢氧化钠溶液后,观察到蓝色沉淀的形成;加入盐酸后,沉淀溶解。
六、实验讨论与分析1. 酸碱滴定法:实验过程中,注意控制滴定速度,避免过量滴加滴定剂。
实验结果与理论值存在一定误差,可能是由于滴定管读数误差、溶液浓度误差等因素导致。
2. 沉淀反应:实验过程中,注意观察沉淀的形成和溶解情况,以判断溶液中离子是否存在。
实验结果与理论值相符。
七、实验结论1. 通过本次实验,掌握了化学常规仪器的使用方法,熟悉了化学实验的基本操作技能。
2. 通过酸碱滴定法,测定了盐酸溶液的浓度。
3. 通过沉淀反应,判断了溶液中离子是否存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验项目
电子测量、测量误差及仪器使用
实验时间
年月日第周星期第节
实验地点
主楼室
专业班级
学号
姓名
指导教师
实验成绩
批阅时间
年月日
电工技术实验室
实验目的:
1、了解示波器的工作原理和技术指标。
2、熟悉示波器面板上各旋钮的作用
3、学会正确使用示波器测量各种电参数的方法
4、用示波器测量电信号的幅值、频率和周期
在去掉随机因素(即随机误差)的影响后,平均值偏离真值的大小就是系统误差。
系统误差差越小,测量就越准确。所以,系统误差经常用来表征测量准确度的高低。
在任何一次测量中,系统误差和随机误差一般都是同时存在的,而且两者之间并不存在绝对的界限。
实验任务:
1、用示波器测量正弦波波形:
设置信号发生器输出电压(峰-峰):10V频率:50Hz
②有源参量测量技术:有源参量表征电信号的电磁特性,如电压、功率、频率和场强等。它的测量可以采用无源测量技术,即让被测的有源参量以适当方式激励一个特性已知的无源网络,通过后者的响应求得被测参量的量值,如通过回路的谐振测量信号频率。有源参量的测量也可采用有源测量技术,即把作为标准的同类有源参量与它相比较,从而求得其量值。
(2)电路参数的测量包括电阻、电感、电容、阻抗、品质因数、电子器件参数等的测量。
(3)电信号特征的测量包括信号、频率、周期、时间、相位、调幅度、调频指数、失真度、噪音以及数字信号的逻辑状态等的测量。
(4)电子设备性能的测量包括放大倍数、衰减、灵敏度、频率特性、通频带、噪声系数的测量。
(5)特性曲线的测量包括幅频特性曲线、晶体管特性曲线等的测量和显示。
随机误差的产生原因:对测量值影响微小但却互不相关的大量因素共同造成。这些因素主要是噪声干扰、电磁场微变、零件的摩擦和配合间隙、热起伏、空气扰动、大地微震、测量人员感官的无规律变化等。
随机误差的新定义:随机误差( )是测量结果 与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值 之差。即
( )
在建立计量标准的测量中,经常采用基本测量技术,即绝对测量技术。这是通过对有关的基本量的测量来确定被测量值。其测量不确定度一般是通过实验、分析和计算得出,精度高,但所需装置复杂。
无源参量和有源参量测量技术
按照测量对象的性质,测量技术可分为以下两种。
①无源参量测量技术:无源参量表征材料、元件、无源器件和无源电路的电磁特性,如阻抗、传输特性和反射特性等。它只在适当信号激励下才能显露其固有特性时进行测量。这类测量技术常称为激励与响应测量技术。由于测量时必需使用激励源,它又称为有源测量技术。
③ 量值变换测量技术:把量值处于难以测量的边缘状态(太大或太小)的被测参量,按某一已知比值变换为量值适中的同样参量进行测量。例如,用测量放大器、衰减器、分流器、比例变压器或定向耦合器,把被测电压、电流或功率的量值升高或降低后进行测量;用功率倍增法测噪声和用倍频法测频率值等。
④ 测量域变换测量技术:把在某一测量域中的测量变换到另一更为有利的测量域中进行测量。例如,在频率稳定度测量中,为了更好地分析导致频率不稳的噪声模型,可以从时域测量变换到频域测量;在电压测量中,为了大幅度地提高分辨力,可以从模拟域测量变换到数字域测量。
1)测量仪器方面的因素:仪器机构设计原理的缺点;仪器零件制造偏差和安装不正确;电路的原理误差和电子元器件性能不稳定等。如把运算放大器当作理想运放,而被忽略的输入阻抗、输出阻抗等引起的误差。
2)环境方面的因素:测量时的实际环境条件(温度、湿度、大气压、电磁场等)对标准环境条件的偏差,测量过程中温度、湿度等按一定规律变化引起的误差。
(1)信号源的频率固定,改变信号源输出幅值
(2)信号源输出幅值固定,改变信号源的频率
4、用Multisim7仿真软件,在虚拟实验台设计编辑全波整流、整流滤波电路
对于某一测量对象,一般有多种测量技术可供选择,而某一种测量技术又往往可用于不同的测量对象。用于同一测量对象,不同测量技术的效果可能大致相同,也可能大不相同。在电子测量中,对于不同参量、不同量程、不同频段以至不同传输线形式,往往要采用不同的测量技术。
直接和间接测量技术
按照测量的实测对象,测量技术可分为以下两种。
③阻抗匹配:阻抗匹配在电子测量中是一个重要问题。它牵涉到能否取得最佳功率和防止反射、驻波的产生。为此还可以采用阻抗变换和缓冲隔离等技术措施。
④在集总参数的高频测量中,须采取防止和消除寄生分布参量影响的技术措施。
电子测量技术对电子技术和其他科学技术的新原理、新方法、新器件和新工艺十分敏感并且反应很快。例如,电子技术中的采样、锁相、频率合成、数字化、信号处理乃至微处理机应用等技术,已广泛地用于电子测量技术中。此外,全景和分段的频谱分析技术可用于信号特性的测量;时域反射和快速傅里叶变换技术可用于脉冲特性的测量;网络分析和六端口技术可用于网络特性的测量;程序控制和实时处理采用计算机技术等。至于激光、超导、遥测、自动控制、光导传输和图像显示等新成就,也都在电子测量技术中得到了应用。
按照测量的进行方式,测量技术可分为以下两种。
①直接比较测量技术:在测量中,将被测量与已和其值的同一种量相比较。其测量不确定度主要取决于标准量值的不确定度和比较器的灵敏度和分辨力,它可克服由于测量装置的动态范围不够和频率响应不好所引入的非线性误差。替代法、换位法等属于这一类。
②非直接比较测量技术:不是将被测量的全值与标准量值相比较的比较测量。微差法、符合法、补偿法、谐振法、衡消法等属于这一类。
测量中的技术措施
在电子测量中,还有一些基本技术措施对于低电平、高频率、高精度的测量十分重要。
①接地:接地不良会导致地回路电流,这将改变测量状态和影响测量结果。因此,对于测量系统的低电平部分要采用单点接地或浮地等技术措施。
②防干扰:为了减弱电磁干扰,须对敏感的输入部分采用电磁屏蔽,要在模拟和数字两部分之间采用光电隔离,并采取去耦、滤波和同步抑制等技术措施以减弱或去除市电和无用信号等干扰。此外,增强有用信号以提高信噪比也是防干扰的另一重要措施。
此外,电子测量技术还可有许多分法,如模拟和数字测量技术;动态和静态测量技术;接触和非接触测量技术;内插和外推测量技术;实时和非实时测量技术;电桥法、Q表法、示波器法和反射计法等测量技术;时域、频域和数据域测量技术;点频、扫频和广频等测量技术等。
变换测量技术
在电子测量中,为了绕过在某些量程、频段和测量域上对某些参量的测量困难和减小测量的不确定度,广泛采用下列各种变换测量技术。
①直接测量技术:在测量中,无需通过与被测量成函数关系的其他量的测量而直接取得被测量值。如用电压表直接测量电压。其测量不确定度主要取决于测量器具的不确定度,在一般测量中普遍采用。
②间接测量技术:在测量中,通过对与被测量成函数关系的其他量的测量而取得被测量值。如通过测量电阻R两端的电压υ和流经电阻R的电流I,然后利用R=υ/I的关系求得电阻值。其测量不确定度分量的数目要多一些,一般在被测量不便于直接测量时采用。
②自校准技术:为了消除某些测量器具在检定了一段时间之后所产生的误差,如温漂和时漂等误差,可以为它们配备自校准(包括自调零)装置,以保证继续准确。例如高精度数字电压表一般都具备自校准能力。
⑤测量数据处理技术:过去对于测量数据的处理总是在测量之后在纸面上进行。随着计算机在测量中的应用,一些根据数理统计原理对测量数据的处理,如粗差的剔除、加权平均、阿仑方差的计算等已能在测量时进行。
① 参量变换测量技术:把被测参量变换为与它具有确定关系但测量起来更为有利的另一参量进行测量,以求得原来参量的量值。例如,功率测量中的量热计是把被测功率变换为热电势进行测量,而测热电阻功率计是把被测功率变换为电阻值进行测量;相移测量中可把被测相位差变换为时间间隔进行测量;截止衰减器是把衰减量变换为长度量进行测量;有些数字电压表是把被测电压变换为频率量进行测量。
5、学会正确使用函数信号发生器、数字交流毫伏表。
6、学习使用Multisim 7电子电路仿真软件。
实验原理:(文字叙述,电路图)
测量原理
测量中所采用的原理、方法和技术措施。
电子测量的对象是材料、元件、器件、整机和系统的特征电磁量。这些电磁量大致包括:①基本参量,如电压、功率、频率、阻抗、衰减和相移等;②综合参量,如网络参量、信号参量、波形参量和晶体管参量等;
一个系统与其输入、输出之间的关系可用图2-1表示,其中 和 分别表示输入量与输出量, 表示系统的传递特性。三者之间一般有如下的几种关系:
1)已知系统的传递特性 和输出量 ,来推知系统的输入量 。这就是用测量系统来测未知物理量的测量过程。
2)已知系统的输入量 和输出量 ,求系统的传递特性 。这通常用于对被测系统的特性测量或故障诊断,以及对测量系统的性能检定。
从广义上说,电子测量是泛指以电子科学技术为手段而进行的测量,即以电子科学技术理论为依据,以电子测量仪器和设备为工具,对电量和非电量进行的测量。
从狭义上讲,电子测量则是利用电子技术对电子学中有关的电量所进行的测量。
电子测量的内容是:
1.按具体的被测物理量来分类,电子测量包括下列电参数的测量:
(1)电能量的测量:包括各种频率及波形下的电压、电流、功率、电场强度等测量。
定义的意义:随机误差是测量值与数学期望之差,它表明了测量结果的分散性
随机误差愈小,精密度愈高。
系统误差的定义:在同一测量条件下,多次测量重复同一量时,测量误差的绝对值和符号都保持不变,或在测量条件改变时按一定规律变化的误差,称为系统误差。
系统误差是由固定不变的或按确定规律变化的因素造成的,这些因素主要有:
对各种非电量进行测量,一般方法是采用非电量的电测法,首先是通过传感器将众多非电量(如温度、压力、流量等)转换成电量,再进行电子测量。
2.从基本的测量对象来分类,电子测量是对电信号和电系统的测量:
(1)电子测量的基本对象是未知的信号与系统