10复数习题课
复数的四则运算及几何意义习题课

题型四:求复数式中的实参数值
练习已知复数z满足|z|=1,且
(z - m ) = 2m (m < 0) ,求m的值.
2
m = 1-
2
题型五:证明复数的有关性质
例10 已知复数z满足|z|=1,求证: 1 z+ R. z
题型五:证明复数的有关性质 例12 求证:复数z为纯虚数的充要 条件是z2<0.
复数的概念与运算典型题型分析
题型一:复数的混合运算
3 - 4i 15 8 例1 计算: + i - (1 + i ) 1 + 2i
-17-3i 3 2z + (4z + 6)i 练习设复数z=1-i,求
的值.
- 3z
1 -i
求
1 例3 已知复数z满足 z + - i = 0 , 2 z z - z + 1
.
1 x
变式1:若复数z满足|z+1|+|z-1|=4,则复数z所对应的 点表示什么图形? 以(1,0),(-1,0)为焦点,长轴长为4的椭圆 变式2:若复数z满足|z+1|-|z-1|=1,则复数z所对应的 点表示什么图形? 以(1,0),(-1,0)为焦点,实轴长为1的双曲线的右支
变式3:你能给出下列方程所表示的图形的复数 表达形式吗?
解:由条件|z-4i|=|z+2|知复数z 对应的点到点A(0,4)与点 B(-2,0)的距离相等,所以复数 z对应的点的集合是线段AB的垂直 平分线.由平面解析几何知识得x,y 满足x+2y=3,所以由均值不等式得
2 x 4 y 2 2 x 4 y 2 2 x2 y 4 2
y 4
2、思考题: (1)你能写出线段Z1Z2的垂直平分线的复数表达形式吗? (2)你能写出抛物线y2=2px(p>0)的复数表达形式吗?
复数习题课

(3)复数的乘法法则:
(a bi)(c di) (ac bd) (bc ad)i
(4)除法法则:
a bi ac bd bc ad (a bi) (c di) c di c2 d 2 c2 d 2 i
a bi (a bi)(c di)
当 b 0时, z a bi 叫做虚数.
当 a 0且b 0 时,z bi 叫做纯虚数.
规定:两复数 a bi 与 c di (a, b, c, d R)
讲 课 人 :
相等的充要条件是 a c 且 b d .
邢
启 强
2
共轭复数:
定义:实部相等,虚部互为相反数
a+bi 的共轭复数记作 z, 即 z a bi
说明: 1 | z || z | z z
2 Z1 Z2 Z1 Z2
Z1 Z2 Z1 Z2
3. | z |2 z z a2 b2
讲
课
人
:
邢
启 强
3
复数的意义. 有序实数对(a,b)
复数z=a+bi 一一对应 直角坐标系中的点Z(a,b)
2 i 2 i (2 i)(2 i)
5
所以(1-i)2+a(1-i)+b=1+i,即-2i+a-ai+b=1+i,从而有: (a+b)+(-a-2)i=1+i.
a b 1 a 3
讲 课 人 :
a
2
1
b
4
.
邢
启 强
9
4.计算:(1+2 i )2
3 4i
5.计算(i-2)(1-2i)(3+4i) -20+15i 6.计算 (1 i)3 -2+2i 7.若 z C 且 (3 z)i 1 ,则 z -__3_-_i_ . 3
复变函数与积分变换第一章习题课.

解:
1)(1 i 3)10 [2(cos2 i sin 2 )]10
3
3
210 (cos20 i sin 20 )
3
3
1024(cos2 i sin 2 )
3
3
512 i512 3.
2)3
27
2k i
3e 3 , k
0,1,2.
13
13
w0
3( 2
i
2
), w1
3,
w2
3( 2
x2
x
y2
i
x2
y
y2
u iv,
u2 v2 1 . 4
13.已知映射 z3,求: 2)区域0 arg z 在平面上的像。
3
解:
2)映射 z3将区域0 arg z 映成
3
0 arg z .
15.设f (z) 1 ( z z ),(z 0),试证:当 2i z z
22
2
2 22
z 34 , Argz arctan5 2k , k 0,1,.
2
3
2.当x, y等于什么实数时,等式
x 1 i( y 3) 1 i 5 3i
成立。
解:
原式等价于x 1 i( y 3) 2 8i, 根据复数
相等的概念,有
x y
1 3
28,即
x 1 .
y 11
13. 三角函数
1)定义:
sin z eiz eiz , cos z eiz eiz
2i
2
2)性质: 在复平面内是解析的,且 (sin z) cosz ,(cosz) sin z .
14. 对数函数
定义: 若 ew z ,则称 w 为复变函数 z 的对数 函数,记为 Lnz .
10.3复数的三角形式及其运算课件高中数学人教B版

2
个复数三角形式相除的法则为:模相除,辐角相减.
2.复数除法运算的几何意义
两个复数 z1,z2 相除时,先分别画出与 z1,z2 对应的向量1 , 2 ,然后把向量
1 绕点 O 按顺时针方向旋转角 θ2(如果 θ2<0,就要把1 绕点 O 按逆时针方
1
向旋转角|θ2|),再把它的模变为原来的 (r2>1,应缩短;0<r2<1,应伸长;r2=1,模
所以
7π
arg(1-i)= 4 .
于是 1-i=
7π
7π
2(cos +isin ).
4
4
=
2
.
2
变式训练2将下列复数化为三角形式:
π
π
(1)-cos5 +isin5 ;
(2)sin θ+icos θ.
π
π
解(1)-cos5 +isin5 =cos
(2)sin θ+icos θ=cos
π
2
π
π- 5
4
3( 3-i)
=
B.1+
3
i
3
D.1+
2
i
2
=
1
2
3
(
3
cos
-1
π
3
=
1
-1
,arg
2
+ isin
π
3
,即
3
3+i)=1+ i.故选
3
B.
=
π
,则
3
1
1
1
4
z=( B )
= +
复数习题课(新新)

复 数 习 题【知识提要】复数减法几何意义的应用:1. 设复数21,z z 分别对应复平面上两点A 、B ,则21z z AB -=。
2. 设0z 对应的点为C ,以C 为圆心,r 为半径的圆:r z z =-0。
3. 设复数21,z z 分别对应复平面上两点A 、B ,线段AB 的中垂线;21z z z z -=-。
4. 设复数21,z z 分别对应复平面上两点A 、B ,以A 、B 为焦点,长轴长为2a 的椭圆: )2z ( 22121a z a z z z z <-=-+-。
5.设复数21,z z 分别对应复平面上两点A 、B ,以A 、B 为焦点,实轴长为2a 的双曲线: )2( 22121a z z a z z z z >-=---。
【练习】1.计算:________5312i i i i =-+- ; (2)i i i i 212)1()31(63+--++-=_2i____ . 2.复数ii m z 212+-=()R m ∈在复平面上对应的点不可能位于第__一___象限。
3.已知})65(13,2,1{22i m m m m M --+--= ,1{-=N ,3},}3{=N M ,则实数m=__________。
解:}3{=N M ,3)65(1322=--+--∴i m m m m ,即 3132=--m m 0652=--m m 1-=∴m._______ , ,91)2() 103(. 4的和等于则实数若y x i x i y i -=+-+-i i y x x y 91)10()23(::-=-+-原式化为解 根据复数相等的充要条件,有910123-=-=-y x x y , 解得 11==y x , 2=+∴y xi z z z z z z z ==+-211221 , , 022,..5则在第一象限且的两个根是方程已知. 6.已知5 4log 21≥+i x ,则实数x 的取值范围是_________ 。
复数习题课课件

二.复数的乘法法则:
(a+bi)(c+di)=ac+bci+adi+bdi2
=(ac-bd)+(bc+ad)i 显然任意两个复数的积仍是一个复数. 复数的乘法运算法则: 对于任意z1,z2,z3 ∈ C,有
z1∙z2= z2∙z1 , z1∙z2 ∙z3= z1∙(z2 ∙z3) , z1∙(z2 +z3)= z1∙z2 +z1∙z3
当堂检测
1.a 0是复数a bi(a, b R)为纯虚数的( ) A.充分非必要条件 C.充分必要条件 B.必要非充分条件 D.既不充分也不必要条件
2.设o是原点,向量OA, OB对应的复数分别为2 3i, 3 2i 那么向量BA对应的复数是() A. 5 5i B. 5 5i C.5 5i D.5 5i 2 3.当 m 1时,复数m(3 i ) (2 i )在复平面内 3 对应的点位于( )
4.若z 1 2i, 则z 2 2 z的值为 __________
1 z 5.若复数z满足 i则 z 1的值为 __________ 1 z 1 3 ( .( i) (1 i ) 计算: 1) 2 2 3 1 1 3 (2).( i )( i) 2 2 2 2 2i (3). 7 4i 5(4 i ) 2 (4). i(2 i)
复数z=a+bi (数)
y 一一对应
直角坐标系中的点Z(a,b) (形)
b
建立了平面直角坐标系来 z=a+bi 表示复数的平面——复平面 Z(a,b) x轴——实轴 y轴——虚轴 a x
0
这是复数的一种几何意义.
有序实数对(a,b)
(最新整理)复数运算习题

(完整)复数运算习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)复数运算习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)复数运算习题的全部内容。
复数运算习题一.选择题(共13小题)1.(2016•淮南一模)复数的虚部是( )A.i B.﹣i C.1 D.﹣12.(2016•眉山模拟)已知i是虚数单位,则复数i(1+i)的共轭复数为( )A.1+i B.l﹣i C.﹣l+i D.﹣l﹣i3.(2016•黄浦区一模)已知复数z,“z+=0"是“z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也不必要条件4.(2016•临沂一模)复数z为纯虚数,若(3﹣i)z=a+i(i为虚数单位),则实数a的值为( )A.﹣3 B.3 C.﹣D.5.(2016•广西一模)在复平面内,复数+2i2对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限6.(2016•白山一模)若=a+bi(a,b∈R,i为虚数单位),则a﹣b等于( )A.B.1 C.0 D.﹣17.(2016•衡阳一模)如图,在复平面内,复数z1和z2对应的点分别是A和B,则=()A.+i B.+i C.﹣﹣i D.﹣﹣i8.(2016•河西区模拟)已知复数z 1=3﹣i,z2=1+i,是z1的共轭复数,则=( )A.1+i B.1﹣i C.2+i D.2﹣i(2016•青浦区一模)复数(a∈R,i是虚数单位)在复平面上对应的点不可能位于( )9.A.第一象限B.第二象限C.第三象限D.第四象限10.(2015•新课标II)若a为实数且,则a=()A.﹣4 B.﹣3 C.3 D.411.(2015•静安区一模)已知i为虚数单位,图中复平面内的点A表示复数z,则表示复数的点是()A.M B.N C.P D.Q12.(2015•固原校级一模)若复数(i为虚数单位,a∈R)在复平面内对应点在第四象限,则a的取值范围为()A.{a|a<﹣6}B.C.D.13.(2015•海南模拟)已知i是虚数单位,m∈R,且是纯虚数,则()2011的值为()A.i B.﹣i C.1 D.﹣1二.填空题(共5小题)14.(2015•曲阜市校级模拟)若=1﹣bi,其中a,b都是实数,i是虚数单位,则a+b= .15.(2015秋•启东市校级期末)复数z满足|z﹣2+i|=1,则|z+1﹣2i|的最小值为.16.(2015春•淮安校级期末)定义:若z2=a+bi(a,b∈R,i为虚数单位),则称复数z是复数a+bi的平方根.根据定义,则复数﹣3+4i的平方根是.17.(2015秋•大丰市校级期末)已知复数z=x+yi(x,y∈R,x≠0)且|z﹣2|=,则的范围为.18.(2015春•常州期中)设x是纯虚数,y是实数,且2x﹣1+i=y﹣(3﹣y)i,则|x+y|= .。
《复数》全章习题

《复数》全章习题 学习目标 1.巩固复数的概念和几何意义.2.理解并能进行复数的四则运算,并认识复数加减法的几何意义.知识点一 复数的四则运算若两个复数z 1=a 1+b 1i ,z 2=a 2+b 2i (a 1,b 1,a 2,b 2∈R ).(1)加法:z 1+z 2=(a 1+a 2)+(b 1+b 2)i ;(2)减法:z 1-z 2=(a 1-a 2)+(b 1-b 2)i ;(3)乘法:z 1·z 2=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ;(4)除法:z 1z 2=a 1a 2+b 1b 2a 22+b 22+a 2b 1-a 1b 2a 22+b 22i(z 2≠0); (5)实数四则运算的交换律、结合律、分配律都适合于复数的情况;(6)特殊复数的运算:i n (n 为正整数)的周期性运算;(1±i)2=±2i ;若ω=-12±32i ,则ω3=1,1+ω+ω2=0. 知识点二 共轭复数与复数的模(1)若z =a +b i ,则z =a -b i ,z +z 为实数,z -z 为纯虚数(b ≠0).(2)复数z =a +b i 的模,|z |=a 2+b 2,且z ·z =|z |2=a 2+b 2.知识点三 复数加、减法的几何意义(1)复数加法的几何意义若复数z 1、z 2对应的向量OZ 1→、OZ 2→不共线,则复数z 1+z 2是以OZ 1→、OZ 2→为两邻边的平行四边形的对角线OZ →所对应的复数.(2)复数减法的几何意义复数z 1-z 2是连接向量OZ 1→、OZ 2→的终点,并指向Z 1的向量所对应的复数.类型一 复数的四则运算例1 (1)计算:-23+i 1+23i +⎝ ⎛⎭⎪⎫21+i 2 012+(4-8i )2-(-4+8i )211-7i; (2)已知z =1+i ,求z 2-3z +6z +1的模. 解 (1)原式=i (1+23i )1+23i +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21+i 2 1 006+(4-8i )2-(4-8i )211-7i=i +(-i)1 006+0=-1+i.(2)z 2-3z +6z +1=(1+i )2-3(1+i )+62+i =3-i 2+i=1-i , ∴z 2-3z +6z +1的模为 2. 反思与感悟 (1)复数的除法运算是复数运算中的难点,如果遇到(a +b i)÷(c +d i)的形式,首先应该写成分式的形式,然后再分母实数化.(2)虚数单位i 的周期性:①i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n =1(n ∈N *);②i n +i n +1+i n +2+i n +3=0(n ∈N *). 跟踪训练1 计算:1i (2+2i)5+(11+i )4+(1+i 1-i)7. 解 1i (2+2i)5+(11+i )4+(1+i 1-i)7 =-i·(2)5·[(1+i)2]2·(1+i)+[1(1+i )2]2+i 7 =162(-1+i)-14-i =-(162+14)+(162-1)i. 类型二 复数的几何意义例2 设复数z 满足|z |=1,求|z -(3+4i)|的最值.解 由复数的几何意义,知|z |=1表示复数z 在复平面内对应的点在以原点为圆心,1为半径的圆上,因而|z -(3+4i)|的几何意义是求此圆上的点到点C (3,4)的距离的最大值与最小值. 如图,易知|z -(3+4i)|max =|AC |=|OC |+1=32+42+1=6,|z -(3+4i)|min =|BC |=|OC |-1=4.反思与感悟 复数和复平面内的点,以原点为起点的向量一一对应;复数加减法符合向量运算的平行四边形法则和三角形法则:|z 1-z 2|表示复数z 1,z 2对应的两点Z 1,Z 2之间的距离. 跟踪训练2 已知点集D ={z ||z +1+3i|=1,z ∈C },试求|z |的最小值和最大值. 解 点集D 的图象为以点C (-1, -3)为圆心,1为半径的圆,圆上任一点P 对应的复数为z ,则|OP →|=|z |.由图知,当OP 过圆心C (-1,-3)时,与圆交于点A 、B ,则|z |的最小值|OA |=|OC |-1=(-1)2+(-3)2-1=2-1=1,即|z |min =1;|z |的最大值|OB |=|OC |+1=2+1=3,即|z |max =3.类型三 复数相等 例3 已知复数z 满足z +z ·z =1-2i 4,求复数z . 解 设z =x +y i(x ,y ∈R ),∵z +z ·z =1-2i 4, ∴x +y i +x 2+y 2=1-2i 4, 即⎩⎨⎧ x +x 2+y 2=14,y =-12,解得⎩⎪⎨⎪⎧ x =0,y =-12或⎩⎪⎨⎪⎧x =-1,y =-12.∴z =-12i 或z =-1-12i.反思与感悟 两个复数相等是解决复数问题的重要工具.“复数相等”可以得到两个实数等式,为应用方程提供了条件,常用于确定系数,解复数方程等问题.跟踪训练3 设复数z 满足z 2=3+4i(i 是虚数单位),则|z |=________.答案 5 解析 设z =a +b i ,∴z 2=(a 2-b 2)+2ab i.又∵z 2=3+4i ,∴a 2-b 2=3,2ab =4,解得a 2=4,b 2=1,∴|z |=a 2+b 2= 5.1.复数z =2+a i 1+i(a ∈R )在复平面内对应的点在虚轴上,则a 等于( ) A .2B .-1C .1D .-2答案 D解析 z =2+a i 1+i =(2+a i )(1-i )(1+i )(1-i )=(2+a )+(a -2)i 2在复平面内对应的点(2+a 2,a -22)在虚轴上,所以2+a =0,即a =-2. 2.已知复数z =1+2i 1-i,则1+z +z 2+…+z 2 014为( ) A .1+iB .1-iC .iD .1答案 C3.△ABC 的三个顶点对应的复数分别为z 1,z 2,z 3,若复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点为△ABC 的( )A .内心B .垂心C .重心D .外心 答案 D 解析 由几何意义知,复数z 对应的点到△ABC 三个顶点距离都相等,z 对应的点是△ABC 的外心.4.若|z -1|=2,则|z -3i -1|的最小值为________.答案 1解析 因为|z -1|=2,所以复数z 在复平面内对应的点在以(1,0)为圆心,2为半径的圆上.|z -3i -1|表示复数z 在复平面内对应的点到点(1,3)的距离,因此,距离的最小值1.5.设复数z 和它的共轭复数z 满足4z +2z =33+i ,求复数z .解 设z =a +b i(a ,b ∈R ).因为4z +2z =33+i , 所以2z +(2z +2z )=33+i.2z +2z =2(a +b i)+2(a -b i)=4a ,整体代入上式,得2z +4a =33+i.所以z =33-4a 2+i 2. 根据复数相等的充要条件,得⎩⎨⎧ a =33-4a 2,b =12,解得⎩⎨⎧ a =32,b =12,所以z =32+i 2.1.复数的四则运算按照运算法则和运算律进行运算,其中除法运算的关键是将分母实数化.2.复数的几何意义是数形结合思想在复数中的一大体现.3.利用两个复数相等可以解决求参数值(或取值范围)和复数方程等问题. 课时作业 一、选择题1.复数z 对应的点在第二象限,它的模为3,实部是-5,则z 是( )A .-5+2iB .-5-2i C.5+2iD.5-2i答案 B解析 设复数z 的虚部为b ,则z =-5+b i ,b >0,∵3=5+b 2,∴b =2,∴z =-5+2i ,则z 的共轭复数是-5-2i ,故选B.2.复数1-2+i +11-2i的虚部是( ) A.15i B.15 C .-15i D .-15答案 B解析 1-2+i +11-2i=-2-i 5+1+2i 5=-15+15i.故选B. 3.若z =1+2i ,则4i z z -1等于( ) A .1B .-1C .iD .-i 答案 C解析 z =1+2i ,则4i z z -1=4i (1+2i )(1-2i )-1=4i 5-1=i. 4.若复数z =cosπ12+isin π12(i 是虚数单位),复数z 2的实部,虚部分别为a ,b ,则下列结论正确的是( )A .ab <0B .a 2+b 2≠1 C.a b = 3 D.b a = 3 答案 C解析 ∵z =cosπ12+isin π12, ∴z 2=(cos π12+isin π12)2 =cos 2π12-sin 2π12+2cos π12sin π12i =cos π6+isin π6=32+12i , 则a =32,b =12,则a b=3,故选C. 5.向量OZ 1→对应的复数是5-4i ,向量OZ 2→对应的复数是-5+4i ,则向量Z 1Z 2—→对应的复数是( )A .-10+8iB .10-8iC .-8+10iD .8+(-10i)答案 A解析 向量OZ 1→对应的复数是5-4i ,可得Z 1(5,-4);向量OZ 2→对应的复数是-5+4i ,可得Z 2(-5,4);向量Z 1Z 2—→对应的点是(-10,8),即向量Z 1Z 2—→对应的复数是-10+8i.故选A.6.已知复数z 的模为2,则|z -i|的最大值为( )A .1B .2 C. 5 D .3 答案 D 解析 ∵|z |=2,则复数z 对应的轨迹是以圆心为原点,半径为2的圆,而|z -i|表示的是圆上一点到点(0,1)的距离,∴其最大值为圆上的点(0,-2)到点(0,1)的距离,最大的距离为3.二、填空题7.i 是虚数单位,复数z 满足(1+i)z =2,则z 的实部为________.答案 1解析 因为(1+i)z =2,所以z =21+i =1-i ,所以其实部为1. 8.如果z 1=-2-3i ,z 2=3-2i (2+i )2,则z 1z 2=________. 答案 4-3i解析 ∵z 1=-2-3i ,z 2=3-2i (2+i )2, ∴z 1z 2=(-2-3i )(2+i )23-2i =-i (3-2i )(2+i )23-2i=-i(2+i)2=-(3+4i)i =4-3i.9.若复数1+i 1-i+b (b ∈R )所对应的点在直线x +y =1上,则b 的值为________. 答案 0解析 复数1+i 1-i +b =(1+i )2(1-i )(1+i )+b =2i 2+b =b +i. ∵所对应的点(b,1)在直线x +y =1上,∴b +1=1,解得b =0.10.如图,在复平面内,点A 对应的复数为z 1,若z 2z 1=i(i 为虚数单位),则z 2=________.答案 -2-i解析 由图可知,z 1=-1+2i ,∴由z 2z 1=i ,得z 2=z 1i =(-1+2i)i =-2-i. 三、解答题11.已知复数z 1=(1+b i)(2+i),z 2=3+(1-a )i (a ,b ∈R ,i 为虚数单位).(1)若z 1=z 2,求实数a ,b 的值;(2)若b =1,a =0,求|z 1+z 21-2i|. 解 (1)复数z 1=(1+b i)(2+i)=2-b +(2b +1)i ,z 2=3+(1-a )i ,由z 1=z 2,可得⎩⎪⎨⎪⎧ 2-b =3,2b +1=1-a ,解得⎩⎪⎨⎪⎧a =2,b =-1, 所以实数a =2,b =-1.(2)若b =1,a =0,则z 1=1+3i ,z 2=3+i.|z 1+z21-2i |=|1+3i +3-i||1-2i|=42+221+(-2)2=2. 12.已知复数z 1满足z 1(1-i)=2(i 为虚数单位),若复数z 2满足z 1+z 2是纯虚数,z 1·z 2是实数,求复数z 2.解 ∵z 1(1-i)=2,∴z 1=21-i =2(1+i )(1-i )(1+i )=2(1+i )2=1+i. 设z 2=a +b i(a ,b ∈R ),∵z 1+z 2=1+a +(b +1)i 是纯虚数,∴⎩⎪⎨⎪⎧1+a =0,1+b ≠0, ∴a =-1,b ≠-1. ∴z 1·z 2=(1+i)(-1+b i)=(-1-b )+(b -1)i ,又z 1·z 2是实数,则b -1=0,∴b =1,∴z 2=-1+i.13.求虚数z ,使z +9z∈R ,且|z -3|=3. 解 设z =a +b i(a ,b ∈R 且b ≠0),则z +9z =a +b i +9a +b i =(a +9a a 2+b 2)+(b -9b a 2+b2)i. 由z +9z ∈R ,得b -9b a 2+b 2=0, 又b ≠0,故a 2+b 2=9.① 又由|z -3|=3,得(a -3)2+b 2=3.②由①②,得⎩⎨⎧a =32,b =±332,即z =32+332i 或z =32-332i. 四、探究与拓展14.若a 是复数z 1=(1-i)(3+i)的虚部,b 是复数z 2=1+i 2-i 的实部,则ab =________. 答案 -25解析 z 1=(1-i)(3+i)=4-2i ,由a 是复数z 1=(1-i)(3+i)的虚部,得a =-2.z 2=1+i 2-i =(1+i )(2+i )(2-i )(2+i )=1+3i 5=15+35i , 由b 是复数z 2=1+i 2-i的实部,得b =15. 则ab =-2×15=-25. 15.在复平面内A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i. (1)求AB →,BC →,AC →对应的复数;(2)判断△ABC 的形状;(3)求△ABC 的面积.解 (1)AB →对应的复数为z B -z A =(2+i)-1=1+i ,BC →对应的复数为z C -z B =(-1+2i)-(2+i)=-3+i , AC →对应的复数为z C -z A =(-1+2i)-1=-2+2i.(2)由(1)知|AB →|=|1+i|=2,|BC →|=|-3+i|=10,|AC →|=|-2+2i|=22,∴|AB →|2+|AC →|2=|BC →|2.故△ABC 为直角三角形.(3)S △ABC =12|AB →|·|AC →|=12×2×22=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
bqr6401@
例题讲解
例4:计算
2 − i3 (1 ) = 1 − 2i
(2) (1 − i )2 • i =
1 − 3i (4) 1+ i =
2
(3)(−1 + i )(2 + i ) = i3
对应的复数是2+i 2+i, 例5:在复平面上,向量 AB 对应的复数是2+i,向量 在复平面上, 对应的复数是- 3i, CB 对应的复数是-1-3i,则向量 CA 对应的复数为 。
天才就是百分之一的灵感,百分之九十九的汗水! 书 小 不 学 勤 奋,努 徒 伤 悲 作 舟 天 才 在 于 为 径,学 力 才 能 成功=艰苦的劳动+正确的方法+少谈空话 少 山 有 路 勤习,老 来 海 无 崖 苦成 功!
bqr6401@
4.2.3 复数习题课
回顾旧知识
z1 = a + bi , z 2 = c + di
(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi) − (c + di) = (a − c) + (b − d )i
( a + bi )(c + di ) = a + bci + adi + bdi 2 = ( ac − bd ) + ( ad + bc )i
a + bi (a + bi )(c − di ) (ac + bd ) + (bc − ad )i = = c + di (c + di )(c − di ) c2 + d 2
i 4 n = 1, i 4 n+1 = i , i 4 n+ 2 = −1, i 4 n+ 3 = − i bqr6401@
4.2.3 复数习题课
例题讲解
例1:若x为实数,y为纯虚数,且满足 为实数, 为纯虚数, (2 x − 1) + i = y − (3 − y )i 则x+yi= 例2:复数
1 2 + 3 i 2
3
。 。
的值是
例3:已知关于x的一元二次方程 已知关于x 有实根b x2 − (6 + i) x + 9 + ai = 0,(a ∈ R) 有实根b, 的值; (1)求a,b的值; (2)若复数 满足 | z − a − bi | −2 | z |= 0 ,求当 z 为 何值时,|z|有最小值 并求|z|的最小值。 有最小值, |z|的最小值 何值时,|z|有最小值,并求|z|的最小值。
bqr6401@
例题讲解
例6:已知
(
那么复数z 3 + i • z = −2i ,那么复数z对应的点位于 象限。 象限。
)
复平面内第
分别对应复数1 例7:复平面上两点 A, B 分别对应复数1和i。 (1)若线段AB上的点对应的复数z=a+bi(a,b∈R), 若线段AB上的点对应的复数z=a+bi( AB上的点对应的复数z=a+bi b∈R), 求a,b间的关系及a,b的取值范围; 间的关系及a 的取值范围; 在复平面上对应点的轨迹方程。 (2)求复数 2 z 2 − 1 − i 在复平面上对应点的轨迹方程。
bqr6401@
课堂小结
bqr6401@
4.2.3 复数习题课
回顾旧知识 一些特殊的重要知识及其结论 1.共轭复数 共轭复数
z = a + bi, z = a − bi
①互为共轭复数的两个复数在复平面上标示的点关于x轴对称 互为共轭复数的两个复数在复平面上标示的点关于 轴对称Βιβλιοθήκη z • z =| z |2 ②
bqr6401@
4.2.3 复数习题课
回顾旧知识 一些特殊的重要知识及其结论
1 3 1 3 i, ω = − − i 2. 1的立方虚根 ω = − + 的立方虚根 2 2 2 2 3 3 ① ω = ω =1
② ω = ω,ω = ω
2 2
③ 1 + ω + ω = 0,1 + ω + ω = 0 1 =ω ④
2
2
ω
bqr6401@