二项式定理_第一课时课件

合集下载

6.3.1二项式定理PPT课件(人教版)

6.3.1二项式定理PPT课件(人教版)


①式中的每一项都含有82这个因数,故原式能被64整除.
反思 感悟
利用二项式定理可以解决求余数和整除的问题,通常需将底 数化成两数的和与差的情势,且这种转化情势与除数有密切 的关系.
跟踪训练4 (1)已知n∈N*,求证:1+2+22+…+25n-1能被31整除.
证明 1+2+22+23+…+25n-1=11--225n=25n-1=32n-1=(31+1)n-1 =31n+C1n×31n-1+…+Cnn-1×31+1-1=31×(31n-1+C1n×31n-2+… +Cnn-1), 显然括号内的数为正整数,故原式能被31整除.
反思 感悟
求多项式积的特定项的方法——“双通法”
所 谓 的 “ 双 通 法 ” 是 根 据 多 项 式 与 多 项 式 的 乘 法 法 则 得 到 (a + bx)n(s+tx)m 的展开式中一般项为:Tk+1·Tr+1=Cknan-k(bx)k·Crmsm-r(tx)r,再 依据题目中对指数的特殊要求,确定 r 与 k 所满足的条件,进而求 出 r,k 的取值情况.
跟踪训练 2
在2
x-
1
6
x
的展开式中,求:
(1)第3项的二项式系数及系数;
解 第 3 项的二项式系数为 C26=15,
又 T3=C26(2
x)4-
1x2=240x,
所以第3项的系数为240.
(2)含x2的项.

Tk+1=Ck6(2
x)6-k-
1xk=(-1)k26-kCk6x3-k,
令3-k=2,解得k=1,
(2)(1+2x)3(1-x)4的展开式中,含x项的系数为
A.10
B.-10
√C.2
D.-2

二项式定理ppt课件

二项式定理ppt课件
与幂级数的联系
二项式定理与幂级数有密切的联系,通过二项式定理可以推 导幂级数的展开式,反之亦然。
与微积分的联系
二项式定理在微积分中有重要的应用,例如在求解微分方程 和积分方程时,可以利用二项式定理进行近似计算。
二项式定理在实际问题中的应用
组合数学问题
二项式定理在组合数学中有广泛的应用,例如排列、组合、概率等问题中都可以用到二项式定理。
欧洲的发展
欧洲数学家在文艺复兴时 期开始深入研究二项式定 理,其中帕斯卡和贾法尼 等人都做出了重要贡献。
现代应用
二项式定理在现代数学、 物理、工程等领域都有广 泛的应用,是解决各种问 题的重要工具。
二项式定理的定义与公式
二项式定理定义
二项式定理描述了两个数 相乘时,各项的系数变化 规律。
二项式定理公式
总结词
二项式定理的展开形式是 $(a+b)^n$,其中$a$和$b$是常数 ,$n$是正整数。
详细描述
二项式定理的展开形式是$(a+b)^n$ ,其中$a$和$b$是常数,$n$是正整 数。这个公式可以展开为多项式,各 项的系数由组合数决定。
二项式展开的系数规律
总结词
二项式展开的系数规律是使用组合数 来表示的。
组合数学中的应用
排列组合公式
二项式定理可以用于推导排列组 合公式,例如C(n,k)=n!/(k!(nk)!),通过二项式定理可以推导
出该公式。
组合恒等式
利用二项式定理可以证明一些组 合恒等式,例如C(n,k)=C(n,n-k) 和C(n+1,k)=C(n,k)+C(n,k-1)等

组合数性质
利用二项式定理可以推导出组合 数的一些性质,例如C(n,k)总是 非负的,当k>n时,C(n,k)=0等

二项式定理(一)课件

二项式定理(一)课件

03 二项式定理的扩展与推广
二项式定理的扩展形式
01
02
03
04
二项式定理的扩展形式包括二 项式定理的逆用、二项式定理 的变形以及二项式定理的推广

二项式定理的逆用是指将二项 式定理中的幂次和系数互换,
从而得到新的等式。
二项式定理的变形是指通过改 变二项式定理中的幂次或系数
,从而得到新的等式。
二项式定理的推广是指将二项 式定理应用到更广泛的情况, 例如应用到多项式、分式等。
解析
根据二项式定理,$(a + b)^{2}$ 可以展开为 $a^{2} + 2ab + b^{2}$,与给定的等式一致。
习题二:证明题
题目
证明 $(a - b)(a + b) = a^{2} - b^{2}$。
解析
首先展开 $(a - b)(a + b)$,得到 $a^{2} - b^{2}$,与给定的等式一致。
习题三:综合应用题
题目
计算 $(a + b + c)^{3}$ 的展开式。
解析
根据二项式定理,$(a + b + c)^{3}$ 可以展开为 $a^{3} + 3a^{2}b + 3ab^{2} + b^{3} + c^{3} + 3ac^{2} + 3bc^{2} + 3ab^{2}c + 3ac^{2}b$。
利用组合数的性质和二项式展开式的 性质来推导公式。
公式证明的过程
基础步骤
当$n=0$和$n=1$时,公式成立。
归纳步骤
假设当$n=k$时公式成立,证明当$n=k+1$时公式也成立。

二项式定理(一)课件

二项式定理(一)课件
二项式定理可以简化解决二项式相关问题的计 算过程。
概率统计
二项分布可以通过二项式定理得到,应用于概 率和统计学中的相关计算。
组合数学
二项式系数与组合数密切相关,可用于求解排 列组合问题。
数学建模
二项式定理可以应用于数学建模中的各类排列 组合问题求解。
二项式定理的证明
1
几何证明
通过几何方法,如组合图形等,可以证明二项式定理的几何意义。
二项式定理(一)课件
本课件将详细介绍二项式定理及其应用。
二项式定理的定义
1 简介
二项式定理是描述二项式的求解过程的数学公式。
2 公式
二项式定理的公式表达为(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + ... + C(n, n) * a^0 * b^n。
3 含义
二项式定理告诉我们,当一个二项式被提升到一个非负整数次幂时,它展开后的每一项 的系数可以通过组合数C(n, k)来计算。
二项式系数的求解
1
计算公式
二项式系数可以使用组合数公式计算:C(n, k) = n! / (k! * (n-k)!)。
2
性质
二项式系数具有对称性,即C(n, k) = C(n, n-k)。
3
例题演练
通过实例演示如何计算二项式系数,加深理解和培养计算能力。
二项式的展开
公式展开
二项式定理提供了展开二项式的 公式,可以将二项式展开为一系 列项的加和。
计算方法
通过依次计算每一项的系数,可 以逐步展开二项式。
常见模式
展开后的二项式常见模式有等差 数列模式、幂函数模式等。

二项式定理-PPT课件

二项式定理-PPT课件
1.3 二项式定理 1.3.1 二项式定理
1
问题提出
1.(a+b)2和(a+b)3展开后分别等 于什么?
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3.
2
问题提出
2.对于a+b,(a+b)2,(a+b)3, (a+b)4,(a+b)5等代数式,数学上统 称为二项式,其一般形式为(a+b)n
7
问题探究
根据归纳推理,你能猜测出
(a+b)n(n∈N*)的展开式是什么
吗?
(a b)n
Cn0an Cn1an 1b Cn2an 2b2
C
n n
1abn
1
C nnb n
如何证明这个猜想?
8
大家学习辛苦了,还是要坚持
继续保持安静
9
形成结论
(a b)n Cn0an Cn1an 1b
Cnkan kbk
C nnb n
叫做二项式定理,等式右边叫做二项展
开式,其中各项的系数
C
k n
(k=0,1,2,
…,n)叫做二项式系数.
10
问题探究
共有n+1项;字母a的最高次
数为n且按降幂排列;字母b的最高
次数为n且按升幂排列;各项中a与
b的指数幂之和都是n;各项的二项
式系数依次为 b无关.
C
n0,C
n1,C
n2,
13
问题探究
在(a+b)n的二项展开式中,
Tk 1 Cnkan kbk 叫做二项展开式的通
项,那么(a-b)n的二项展开式的通项
是什么?
Tk 1 ( 1)kCnkan kbk
14
问题探究
(2x+3y)20的二项展开式的通项是什 么?

《二项式定理》(共17张)-完整版PPT课件全文

《二项式定理》(共17张)-完整版PPT课件全文

展开式的第3项是240x
例1.(2)求(2 x 1 )6的展开式 x
对于例1(2)中,请思考: ①展开式中的第3项的系数为多少? ②展开式中的第3项的二项式系数为多少? ③你能直接求展开式的第3项吗?
④你能直接求展开式中 x 2的系数吗?
解:④ Tk1 C6k (2
x)6k ( 1 )k x
(1)k 26k C6k x3k
N*)
①项数: 展开式共有n+1项.
②次数: 各项的次数均为n
字母a的次数按降幂排列,由n递减到0 , 字母b的次数按升幂排列,由0递增到n .
③二项式系数: Cnk (k 0,1,2,, n)
④二项展开式的通项: Tk1 Cnk ankbk
典例剖析
例1.(1)求(1 1 )4的展开式; x
(2)求(2 x 1 )6的展开式. x
N
*
)
(1)二项式系数: Cnk (k 0,1,2,, n)
(2)二项展开式的通项:Tk1 Cnk ankbk
思想方法:
(1) 从特殊到一般的数学思维方式.
(2) 类比、等价转换的思想.
巩固型作业: 课本36页习题1.3A组第2,4题
思维拓展型作业
二项式系数Cn0 , Cn1,, Cnk ,, Cnn有何性质?
1) x
C62 (2
x )4 (
1 x
)2
C63
(2
x )3 (
1 x
)3
C64
(2
x )2 (
1 )4 x
C65 (2
x )(
1 x
)5
C66
(
1 )6 x
64x3
192x2
240x

人教版选修23第一章二项式定理第一课时课件(共18张PPT)

人教版选修23第一章二项式定理第一课时课件(共18张PPT)

课堂小结: 本堂课你有哪些收获?
(1)注意二项式定理 中二项展开式的特征 (2)区别二项式系数,项的系数
(3)掌握用通项公式求二项式系数,项的系数及项
(ab)n C n 0 a n C n 1 a n 1 b C n 2 a n 2 b 2
C C ra n rb r n b n
(ab)100?
(ab)n ?
……
多项式乘法的再认识
➢问题1: (a1a2)b (1b2)的展开式是什么? 展开式有几项?每一项是怎样构成的?
➢问题2: (a 1 a 2 )b 1 ( b 2 )c 1 ( c 2 )展开式中 每一项是怎样构成的?展开式有几项?
规律: 每个括号内任取一个字母相乘构 成了展开式中的每一项.
从本节课的课题来看,你能否猜想一 下这节课我们研究什么问题?
根据以前的经验,研究定理有哪些步骤 或者从哪些角度来研究?
1、定理研究什么问题 2、定理怎么来的 3、定理的内容是什么 4、定理有哪些应用
二项式定理研究的是 (a b)n的展开式.
(ab)2 a ?22abb2 (ab)3 ?(ab)2(ab) (ab)4 (?ab)3(ab)
x
例:求 (2 x 1 )6 的展开式.
x
解: 先化简后展开
(2x1x)6(2xx 1)6x 13(2x1)6
x 1 3[C 6 0(2x)6C 6 1(2x)5C 6 2(2x)4 C 6 3 (2 x )3 C 6 4 (2 x )2 C 6 5 (2 x ) C 6 6 ]
6x 3 4 1x 9 2 2x 4 1 0 66 x0 0 1 x 2 2 x 1 3
探究1 推导 (a b)3的展开式.
(a b)3 (a b )a ( b )a ( b )

二项式定理课件

二项式定理课件

展开式的性质
二项式定理的展开式具有一些重要的性质,这些性质在后续 的应用中非常重要。
例如,二项式定理的展开式中的每一项都是正整数幂次的乘 积,而且每一项的系数都是组合数。此外,二项式定理的展 开式具有对称性,即第i+1项和第n-i+1项是相等的。
03
二项式定理的扩展
二项式定理的推广
推广到多项式
详细描述
通过二项式定理,可以计算出多个独立事件的概率和期望值,这在概率论中非常重要,如计算彩票中奖概率、股 票投资风险评估等领域都有应用。
微积分中的二项式定理应用
总结词
在微积分中,二项式定理常用于求幂级数的展开式。
详细描述
利用二项式定理,可以求出幂级数的展开式,这在微积分中非常重要,如求解微分方程、积分变换等 领域都有应用。
04
二项式定理的应用实例
组合数学中的二项式定理应用
总结词
在组合数学中,二项式定理常用于计 算组合数和排列数。
详细描述
利用二项式定理,可以快速计算出给 定集合的组合数或排列数,这些计算 在组合数学中非常重要,如排列组合 问题、概率论等领域都有广泛应用。
概率论中的二项式定理应用
总结词
在概率论中,二项式定理常用于计算概率和期望值。
二项式定理在组合数学、概率论和统计学 等领域有广泛的应用。
二项式定理的定义
01
二项式定理描述了一个二项式展 开后的系数规律,即$(a+b)^n$ 的展开式中的每一项系数。
02
二项式定理的系数可以用组合数 表示,即$C(n, k)$,表示从n个 不同项中选取k个的组合方式数目 。
二项式定理的应用场景
组合数的性质
二项式定理中的组合数具有一些重要的性质,如对称性、递推关系等,这些性 质在解决数学问题时非常有用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

60 12 1 64x 192x 240x 160 2 3 x x x
3 2
例:求 (2 x
1 x
) 的展开式.
6
思考1:展开式的第3项的系数是多少? 思考2:展开式的第3项的二项式系数是多少? 思考3:你能否直接求出展开式的第3项?
实战演练
例2、化简: (x-1)4+4(x-1)3+6(x-1)2+4(x-1)+1.
(1 x ) ? C x C x C x C
n
0 n
1 n
k n
k
n n n
1 6 例:求 (2 x ) 的展开式. x
1 6 例:求 (2 x ) 的展开式. x
解: 直接展开
1 6 1 0 6 1 5 (2 x ) C6 (2 x ) C6 (2 x ) ( ) x x 1 2 1 3 2 4 3 3 C6 (2 x ) ( ) C6 (2 x ) ( ) 2 x 2 x
3 2
(a b) (a b) (a b) ?
4 3
(a b)
( a b) ?
n
… …
100
?
多项式乘法的再认识
问题1: (a1 a2 )(b1 b2 ) 的展开式是什么?
展开式有几项?每一项是怎样构成的? 问题2: (a1 a2 )(b1 b2 )(c1 c2 ) 展开式中 每一项是怎样构成的?展开式有几项?
A. -15 B. 85 C. -120 D. 274
2. 求(x+2y+z)6的展开式中含xy2z3项的系数.
1.二项式定理: n 0 n 1 n1 k n k k n n * (a b) Cn a Cna b Cn a b Cn b (n N )
(1)二项式系数: C (k 0,1,2,, n)
1 4 1 5 1 6 5 6 C (2 x ) ( ) C6 (2 x )( ) C6 ( ) x x x 60 12 1 3 2 64x 192x 240x 160 2 3 x x x
4 6 2
1 6 例:求 (2 x ) 的展开式. x
解: 先化简后展开


2.二项式系数与展开式项的系数的异同 在 Tr+1=Cr an rbr 中,Cr 就是该项的二项式系数,它与 a, n n b 的值无关;Tr+1 项的系数指化简后除字母以外的数,如 a=2x,b=3y,Tr+1=Cr 2n r·rxn ryr,其中 Cr 2n r3r 就是 3 n n Tr+1 项的系数.
Tk 1 C a b
k n k k n
[重、难点提示] 1.二项式的项数与项
r (1)二项式的展开式共有 n+1 项,Cnan rbr 是第 r+1 项.

即 r+1 是项数,Cr an rbr 是项. n (2)通项是 Tr+1=Cr an rbr (r=0,1,2,…,n).其中含有 n Tr+1,a,b,n,r 五个元素,只要知道其中四个即可求 第五个元素.
4
0 4 4
1 4
( a b) ?
n
探究3:请分析 (a b) 的展开过程,证明猜想.
n
(a b ) (a b)( a b )(a b)
n
①项:
a
n
a
n 1
1 n
n
b a

n k
b
k
b
n
②系数: C
分析a
n k
0 n
C
- - - -
二项式定理
0 1 k n (a b)n Cn a n Cna n1b Cn a nk bk Cn bn (n N * )
1 k ( a b) n C n a n C n a n 1 ( b ) C n a n k ( b ) k ?0 n C n ( b)n
规律: 每个括号内任取一个字母相乘构 成了展开式中的每一项.
探究1 推导 (a b) 的展开式.
3
(a b) (a b)(a b)(a b)
3
① 项: a
3
0 3
a b
C
1 3
2
ab
C
2
b
3
3 3
a
3 k k
b
k 0,1,2,3
1 ② 系数:C
分 析a 2b
2 3
C
C 3k
(a b)(a b)(a b) (a b)(a b)(a b) (a b)(a b)(a b)
3 0 3 3 1 2 3 2 3
C
1 3
2 3 3 3
(a ③ 展开式: b) C a C a b C ab C b
探究2 仿照上述过程,推导 (a b) 的展开式.
二项式定理,又称牛顿二项式 定理,由艾萨克· 牛顿于1664、 1665年间提出. 二项式定理在组合理论、开高 次方、高阶等差数列求和,以 及差分法中都有广泛的应用.
二项式定理研究的是 (a b) 的展开式.
n
(a b) a 2ab b ?
2
2
2
(a b) ?a b) (a b) (
C
k n
C
n n
b
k
n个(a b)相乘
k 个(a b)中选b
n k 个(a b)中选a
C
k n
③展开式:
0 1 k n (a b)n Cn a n Cna n1b Cn a nk bk Cn bn (n N * )
二项式定理
(a b) C a C a b C a
4
2 (a b) C a C ab C b
2 0 2
2
1 2
2 2 2
(a b) C a C a b C ab C b
3
0 3
3
1 3
2
2 3
2
பைடு நூலகம்
3 3
3
2 3 4 C a 3b C 4 a 2b 2 C 4 ab3 C 4 b4 ( a b) C a
k n
(2)二项展开式的通项: Tk 1 C a
k n
n k k
b
2.思想方法
(1) 从特殊到一般的数学思维方式.
(2) 用计数原理分析二项式的展开过程.
(3) 类比、等价转换的思想.
1 6 2x 1 6 1 6 (2 x ) ( ) 3 (2 x 1) x x x
1 1 3 [(2 x )6 C6 (2 x )5 C 62 ( 2 x )4 x
C (2 x ) C (2 x ) C (2 x ) C ]
3 6 3 4 6 2 5 6 6 6
原式 C ( x 1) C ( x 1) C ( x 1) C ( x 1) C
0 4 4 1 4 3 2 4 2 3 4 4 4
[( x 1) 1]
4
x
4
思维拓展
1.在(x-1)(x-2)(x-3)(x-4) (x-5)的展开式中含x4项 的系数是 ( A )
n 0 n n k n 1 n1 n n k k
b C b ( n N )
n n n *
①项数: 共有n+1项 ②次数: 各项的次数都等于n,
字母a按降幂排列,次数由n递减到0
, 字母b按升幂排列,次数由0递增到n .
③二项式系数:
C (k {0,1,2,, n})
k n
④二项展开式的通项:
相关文档
最新文档