立体几何初步

合集下载

高中数学 必修二-第一章 立体几何初步 知识点整理

高中数学 必修二-第一章  立体几何初步 知识点整理

底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。

必修二立体几何初步知识点整理.doc

必修二立体几何初步知识点整理.doc

①棱柱斜棱柱棱垂直于底面> 直棱柱底而是正务形〉正棱柱 其他棱柱…必修二立体几何初步知识点整理一、基础知识(理■去记) (一)空间儿何体的结构特征(1) 多面体一一由若干个平面多边形围成的儿何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共 点叫做顶点。

旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直 线称为旋转体的轴。

(2) 柱,锥,台,球的结构特征1 .棱柱1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关 系:%1四棱柱底而为平行四边冲平行六面体侧棱垂直于底而直平行六面体底而为矩形--------------------------- ► --------------1.3%1 侧棱都相等,侧面是平行四边形;%1 两个底面与平行于底面的截面是全等的多边形; %1 过不相邻的两条侧棱的截面是平行四边形; %1 直棱柱的侧棱长与高相等,侧面与对角而是矩形。

补充知识点长方体的性质:%1 长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】AC : = AB 2 + AD 2 + "%1 (了解)R 方体的一条对角线AG 与过顶点A 的三条棱所成的角 分别是66 0,那么 cos 2 6Z+cos 2 ^ + cos 2 y= \, sin 2 a+sin ,0 + sir? /= 2 ;%1(了解)长方体的一条对角线AG 与过顶点A 的相邻三个面所成的角分别是。

,(3, y,则cos 2 6Z4-cos 2 y^ + cos 2 y = 2, sin 2 6Z+sin 2 /? + sin 2 /= 1.1.4侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底而周长和侧棱长为邻边的矩形.长方体底面为正方形 正四棱柱侧棱与J 氐面边R 相等 ---------------- ►正方体1.5面积、体积公式:(其中c 为底面周长,h 为棱柱的高)S 直棱柱侧="S 直棱柱全="+2$底,V 棱柱=5底.力2. 圆柱2.1圆柱一一以矩形的一边所在的直线为旋转轴,其余各边旋转而形 成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截 面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的 矩形. 2.4面积、体积公式:S 圆柱侧=2〃所;S 圆柱全=2勿尸/? + 2勿尸2, v 圆柱=S 底h 二勿尸人(其中r 为底面半径,h 为圆柱高)3 .棱锥3.1棱锥一一有一个面是多边形,其余各面是有一个公共顶点 的三角形,由这些面所围成的几何体叫做棱锥。

苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件

苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件
6π [S=2π×1×2+2π×12=6π.]
栏目导航
合作探究 提素养
栏目导航
棱柱、棱锥和棱台的侧面积和表面积 【例 1】 正四棱锥的侧面积是底面积的 2 倍,高是 3,求它的 表面积. 思路探究:由 S 侧与 S 底的关系,求得斜高与底面边长之间的关系, 进而求出斜高和底面边长,最后求表面积.
所以 S 侧=3×12×(20+30)×DD′=75DD′. 又 A′B′=20 cm,AB=30 cm,则上、下底面面积之和为 S 上+S 下 = 43×(202+302)=325 3(cm2).
栏目导航
由 S 侧=S 上+S 下,得 75DD′=325 3, 所以 DD′=133 3(cm), 又因为 O′D′= 63×20=103 3(cm), OD= 63×30=5 3(cm),
错点)
运算核心素养.
3.会求简单组合体的体积及表面积.(难点)
栏目导航
自主预习 探新知
栏目导航
1.柱体、锥体、台体的体积
几何体
体积
柱体 锥体
V 柱体= Sh (S 为底面面积,h 为高), V 圆柱= πr2h (r 为底面半径) 1
V 锥体= 3Sh (S 为底面面积,h 为高), V 圆锥= π3r2h (r 为底面半径)
栏目导航
台体
V 台体= 13h(S+ SS′+S′) (S′,S 分别为上、下底面面 积,h 为高),V 圆台= 13πh(r′2+rr′+r2) (r′,r 分别为上、 下底面半径)
思考:柱体、锥体、台体的体积公式之间的关系. 提示:V=Sh―S′―=→S V=13(S′+ S′S+S)h―S′―=→0 V=13Sh.
栏目导航
[解] 如图所示,设 SE 是侧面三角形 ABS 的高,则 SE 就是正 四棱锥的斜高.

(完整版)立体几何初步知识点(很详细的)

(完整版)立体几何初步知识点(很详细的)

立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =++台 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π 4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

_新教材高中数学第13章立体几何初步1

_新教材高中数学第13章立体几何初步1
ห้องสมุดไป่ตู้
6.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表 示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的 “2”在正方体的上面,则这个正方体的下面是( )
A.1
B.9
C.快
D.乐
【解析】选B.由题意,将正方体的展开图还原成正方体,如图:“1”与“乐”相对, “2”与“9”相对,“0”与“快”相对,所以下面是“9”.
2.下面图形中,为棱锥的是( )
A.①③ C.①②④
B.③④ D.①②
【解析】选C.根据棱锥的 定义和结构特征可以判 断,①②是棱锥,③不是 棱锥,④是棱锥.
3.如图,在三棱台A′B′C′­ABC中,截去三棱锥A′­ABC,则剩余部分是( )
A.三棱锥
B.四棱锥
C.三棱柱
D.三棱台
【解析】选B.剩余几何体为四棱锥A′­BCC′B′.
四边形;
(2)每一个面都不会是三角形;
(2)错误,棱柱的底面可以是三角形;
(3)正确,由棱柱的定义易知;
(3)两底面平行,并且各侧棱也平行;
(4)正确,棱柱可以被平行于底面的平面截成
(4)被平面截成的两部分可以都是棱柱.
两个棱柱.所以说法正确的序号是(3)(4).
其中正确说法的序号是__________.
6.下列关于棱锥、棱台的说法: (1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台; (2)棱台的侧面一定不会是平行四边形; (3)由四个面围成的封闭图形只能是三棱锥; (4)棱锥被平面截成的两部分不可能都是棱锥. 其中正确说法的序号是____________.
【解析】(1)错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截 面之间的部分不是棱台; (2)正确,棱台的侧面一定是梯形,而不是平行四边形; (3)正确,由四个面围成的封闭图形只能是三棱锥; (4)错误,如图所示四棱锥被平面截成的两部分都是棱锥. 答案:(2)(3)

苏教版必修2数学课件-第1章立体几何初步第2节点、线、面之间的位置关系

苏教版必修2数学课件-第1章立体几何初步第2节点、线、面之间的位置关系

栏目导航
法二: ∵l1∩l2=A,∴l1,l2确定一个平面α. ∵l2∩l3=B,∴l2,l3确定一个平面β. ∵A∈l2,l2 α,∴A∈α. ∵A∈l2,l2∈β,∴A∈β. 同理可证B∈α,B∈β,C∈α,C∈β. ∴不共线的三个点A,B,C既在平面α内,又在平面β内. ∴平面α和β重合,即直线l1,l2,l3在同一平面内.
栏目导航
D [A错误,不共线的三点可以确定一个平面. B错误,一条直线和直线外一个点可以确定一个平面. C错误,四边形不一定是平面图形. D正确,两条相交直线可以确定一个平________.
α∩β=m,n α 且 m∩n=A [由题图可知平面 α 与平面 β 相交 于直线 m,且直线 n 在平面 α 内,且与直线 m 相交于点 A,故用符 号可表示为:α∩β=m,n α 且 m∩n=A.]
栏目导航
2.本节课要重点掌握的规律方法 (1)理解平面的概念及空间图形画法要求. (2)文字语言、符号语言、图形语言的转换方法. (3)证明点、线共面的方法. (4)证明点共线、线共点的方法. 3.本节课的易错点是平面基本性质运用中忽略重要条件.
栏目导航
当堂达标 固双基
栏目导航
1.已知点A,直线a,平面α,以下命题表述不正确的个数( )
4.在正方体ABCD-A1B1C1D1中,画出平面ACD1与平面BDC1的 交线,并说明理由.
[解] 设AC∩BD=M,C1D∩CD1=N,连结MN,则平面ACD1 ∩平面BDC1=MN,
如图.理由如下: ∵点M∈平面ACD1, 点N 平面ACD1, 所以MN 平面ACD1.
栏目导航
同理,MN 平面BDC1, ∴平面ACD1∩平面BDC1=MN,即MN是平面ACD1与平面BDC1 的交线.

第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第八章立体几何初步(公式、定理、结论图表)1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.(2)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(3)三视图的长度特征:“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.5.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.6.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.7.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l三者关系S圆柱侧=2πrl――→r′=rS圆台侧=π(r+r′)l――→r′=0S圆锥侧=πrl8.柱、锥、台和球的表面积和体积(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.10.空间直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(3)平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.11.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a12.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b14.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.15.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)直线和平面所成角的范围是0°≤θ≤90°.16.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)二面角的范围是0°≤θ≤180°.17.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理l⊥α<常用结论>1.特殊的四棱柱2.球的截面的性质3.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下:5.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,6.异面直线的判定定理7.等角定理的引申(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.8.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.9.线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.12.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.<解题方法与技巧>一、空间几何体概念辨析题的常用方法A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线D[A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.图1图2B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.]二、识别三视图的步骤(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.典例2:(1)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A­BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()A B C D(2)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(1)A(2)A[(1)正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.(2)由题意可知,咬合时带卯眼的木构件如图所示,其俯视图为选项A中的图形.]三、由三视图确定几何体的步骤典例3:(1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()A.217B.25C.3D.2(1)C(2)B[(1)在正方体中作出该几何体的直观图,记为四棱锥P­ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图1所示.图1图2圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图2所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON22 5.故选B.]四、由几何体的部分视图确定剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.典例4:如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A B C DA [由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.]五、空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.2.原图形与直观图面积的关系典例5:(1)已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为()A.2B.24C.22D .22(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6cm ,O ′C ′=2cm ,则原图形是()A .正方形B .矩形C .菱形D .一般的平行四边形(1)C (2)C [(1)法一(作图求解):如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22,故选C.法二(公式法):由题中数据得等腰梯形ABCD的面积S=12×(1+3)×1=2.由S直观图=24S原图形,得S直观图=24×2=22,故选C.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2cm.所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,由题意得OA綊BC,故四边形OABC是菱形,故选C.]六、求解几何体表面积的类型及求法A.48+πB.48-πC.48+2πD.48-2π(2)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π(1)A(2)B[(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.]七、求体积的常用方法典例7:(1)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1 D.3π2+3(2)如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,则四棱锥A 1­BB 1D 1D 的体积为.(1)A (2)13[(1)由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥S­ABC 组成的,如图,三棱锥的高为3,底面△ABC 中,AB =2,OC =1,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=π2+1.故选A.(2)四棱锥A 1­BB 1D 1D 的底面BB 1D 1D 为矩形,其面积S =1×2=2,又四棱锥的高为点A 1到平面BB 1D 1D 的距离,即h =12A 1C 1=22,所以四棱锥的体积V =13×2×22=13.]八、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.典例8:(1)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D­ABC体积的最大值为()A.123B.183C.243D.543(2)已知直三棱柱ABC­A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310(1)B(2)C[(1)如图,E是AC中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥D­ABC的体积取得最大值,且最大值V ma x=13S△ABC×(4+OM)=13×93×6=18 3.故选B.(2)如图所示,由球心作平面ABC的垂线,则垂足为BC 的中点M .因为AB =3,AC =4,AB ⊥AC ,所以BC =5.又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA=132,故选C.]九、共点、共线、共面问题的证明方法(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点.(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.典例9:(1)以下命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A .0B .1C .2D .3(2)如图,正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:①E ,C ,D 1,F 四点共面;②CE,D1F,DA三线共点.(1)B[①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②中若点A,B,C在同一条直线上,则A,B,C,D,E不一定共面,故②错误;③中,直线b,c可能是异面直线,故③错误;④中,当四条线段构成空间四边形时,四条线段不共面,故④错误.](2)[证明]①如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.②∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.十、空间两条直线的位置关系典例10:(1)已知a,b,c为三条不同的直线,且a⊂平面α,b⊂平面β,α∩β=c,给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c.其中真命题有.(填序号)(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有(填上所有正确答案的序号).①②③④(1)①③(2)②④[(1)对于①,若c与a,b都不相交,则c∥a,c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.对于②,a与b可能异面垂直,故②错误.对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正确.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.]十一、平移法求异面直线所成角的步骤典例11:(1)在正方体ABCD­A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD 所成角的正切值为()A.2 2B.32C.52D.72(2)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为()A.12B .-12C.32D .-32(1)C (2)A [(1)如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为2,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan ∠EAB =BE AB =52.故选C.(2)如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD 所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.]十二、判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).典例12:如图,在四棱锥P ­ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ;(2)求证:GH ∥平面P AD .[证明](1)连接EC ,因为AD ∥BC ,BC =12AD ,E 为AD 中点,所以BC AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点.又因为F 是PC 的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点,所以FH ∥PD ,因为FH ⊄平面PAD ,PD ⊂平面PAD ,所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点,所以OH ∥AD ,因为OH ⊄平面PAD ,AD ⊂平面PAD .所以OH ∥平面P AD .又FH ∩OH =H ,所以平面OHF ∥平面PAD .又因为GH ⊂平面OHF ,所以GH∥平面PAD.十三、判定平面与平面平行的四种方法(1)面面平行的定义,即证两个平面没有公共点(不常用);(2)面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两个平面平行(客观题可用);(4)利用平面平行的传递性,两个平面同时平行于第三个平面,那么这两个平面平行(客观题可用).注意:谨记空间平行关系之间的转化典例13:已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC 为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,M,N分别为DB,DC的中点.(1)求证:平面EMN∥平面ABC;(2)求三棱锥A­ECB的体积.[解](1)证明:取BC中点H,连接AH,∵△ABC为等腰三角形,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN ∥AH ,∵EN ⊄平面ABC ,AH ⊂平面ABC ,∴EN ∥平面ABC ,又M ,N 分别为BD ,DC 中点,∴MN ∥BC ,∵MN ⊄平面ABC ,BC ⊂平面ABC ,∴MN ∥平面ABC ,又MN ∩EN =N ,∴平面EMN ∥平面ABC .(2)连接DH ,取CH 中点G ,连接NG ,则NG ∥DH ,由(1)知EN ∥平面ABC ,所以点E 到平面ABC 的距离与点N 到平面ABC 的距离相等,又△BCD 是边长为2的等边三角形,∴DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,DH ⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,∴DH =3,又N 为CD 中点,∴NG 又AC =AB =3,BC =2,∴S △ABC =12·|BC |·|AH |=22,∴V E ­ABC =V N ­ABC =13·S △ABC ·|NG |=63.十四、证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理.典例14:如图,在斜三棱柱ABC ­A 1B 1C 1中,底面ABC 是边长为2的正三角形,M 为棱BC 的中点,BB 1=3,AB 1=10,∠CBB 1=60°.(1)求证:AM ⊥平面BCC 1B 1;(2)求斜三棱柱ABC ­A 1B 1C 1的体积.[解](1)证明:如图,连接B 1M ,因为底面ABC 是边长为2的正三角形,且M 为棱BC 的中点,所以AM ⊥BC ,且AM =3,因为BB 1=3,∠CBB 1=60°,BM =1,所以B 1M 2=12+32-2×1×3×cos 60°=7,所以B 1M =7.又因为AB 1=10,所以AM 2+B 1M 2=10=AB 21,所以AM ⊥B 1M .又因为B 1M ∩BC =M ,所以AM ⊥平面BCC 1B 1.(2)设斜三棱柱ABC ­A 1B 1C 1的体积为V ,则V =3VB 1­ABC =3VA ­B 1BC=3×13S △B 1BC ·|AM |=12×2×3×sin 60°×3=92.所以斜三棱柱ABC­A1B1C1的体积为9 2 .十五、证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决,注意:三种垂直关系的转化典例15:(1)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线B[取CD的中点F,DF的中点G,连接EF,FN,MG,GB,BD,BE.∵点N为正方形ABCD的中心,∴点N在BD上,且为BD的中点.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=52,∴BM=MG2+BG2=7.∴BM≠EN.∵BM,EN是△DBE的中线,∴BM,EN必相交.故选B.](2)如图,四棱锥P­ABCD中,△PCD为等边三角形,CD=AD=2AB,E,S,T,Q为CD,P A,PB,AD的中点,∠ABC=∠BCD=∠PEA=90°,平面STRQ∩平面ABCD=RQ.①证明:平面P AE⊥平面STRQ;②若AB=1,求三棱锥Q­BCT的体积.[解]①证明:因为E为CD的中点,CD=2AB,∠ABC=∠BCD=90°,所以四边形ABCE 为矩形,所以AE⊥CD.由已知易得RQ∥CD,所以RQ⊥AE.因为∠PEA=90°,PE∩CD=E,故AE⊥平面PCD,又因为AE⊂平面ABCD.故平面PCD⊥平面ABCD.因为PE⊥CD,所以PE⊥平面ABCD.因为RQ⊂平面ABCD,所以RQ⊥PE.又PE ∩AE =E ,所以RQ ⊥平面PAE .所以平面P AE ⊥平面STRQ .②由①可知,PE ⊥平面ABCD ,又T 是PB 的中点,∴点T 到平面BCQ 的距离为12PE =32,易知S △BCQ =12S 梯形ABCD =12×12×(1+2)×3=334.故三棱锥Q ­BCT 的体积V =13×334×32=38.十六、求点到平面的距离(高)的两种方法(1)定义法:求几何体的高或点到面的距离,经常根据高或距离的定义在几何体中作出高或点到面的距离.其步骤为:一作、二证、三求.如何作出点到面的距离是关键,一般的方法是利用辅助面法,所作的辅助面,一是要经过该点,二是要与所求点到面的距离的面垂直,这样在辅助面内过该点作交线的垂线,点到垂足的距离即为点到面的距离.(2)等体积法:求棱锥的高或点到平面的距离常常利用同一个三棱锥变换顶点及底面的位置,其体积相等的方法求解.典例16:(1)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为.2[如图,过点P 作⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F ,连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC .又PE =PF =3,所以OE =OF ,所以CO 为∠ACB 的平分线,即∠ACO =45°.在Rt △PEC 中,PC =2,PE =3,所以CE =1,所以OE =1,所以PO =PE 2-OE 2=(3)2-12= 2.](2)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.①证明:PO ⊥平面ABC ;②若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解]①证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .②作CH ⊥OM ,垂足为H .又由①可得OP ⊥CH ,OP ⊂平面POM ,OM ⊂平面POM ,OP ∩OM =O ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.十七、求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.典例17:(1)在长方体ABCD­A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.62C.82D.83C[如图,连接AC1,BC1,AC.∵AB⊥平面BB1C1C,∴∠AC1B为直线AC1与平面BB1C1C所成的角,∴∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1=2sin30°=4.在Rt△ACC1中,CC1=42-(22+22)=22,∴V长方体=AB×BC×CC1=2×2×22=82.](2)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.①求证:AD⊥BC;②求异面直线BC与MD所成角的余弦值;③求直线CD与平面ABD所成角的正弦值.[解]①证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.②如图,取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM =AD 2+AM 2=13.因为AD ⊥平面ABC ,所以AD ⊥AC .在Rt △DAN 中,AN =1,故DN =AD 2+AN 2=13.在等腰三角形DMN 中,MN =1,可得cos ∠DMN =12MN DM=1326.所以,异面直线BC 与MD 所成角的余弦值为1326.③如图,连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,所以CM ⊥AB ,CM = 3.又因为平面ABC ⊥平面,平面ABC ∩平面ABD =AB ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,所以∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =AC 2+AD 2=4.在Rt △CMD 中,sin ∠CDM =CM CD =34.所以,直线CD 与平面ABD 所成角的正弦值为34.十八、转化思想的应用(1)证明线面平行、面面平行可转化为证明线线平行;证明线线平行可以转化为证明线面平行或面面平行.(2)从解题方法上讲,由于线线垂直、线面垂直、面面垂直之间可以相互转化,因此整个解题过程始终沿着线线垂直、线面垂直、面面垂直的转化途径进行.(3)求几何体的体积也常用转化法.如三棱锥顶点和底面的转化,几何体的高利用平行、中点,比例关系的转化等.典例18:如图,在四棱锥P ­ABCD 中,△PAD 是等腰直角三角形,且∠APD =90°,∠ABC =90°,AB ∥CD ,AB =2CD =2BC =8,平面PAD ⊥平面ABCD ,M 是PC 的三等分点(靠近C 点处).(1)求证:平面MBD ⊥平面P AD ;(2)求三棱锥D ­MAB 的体积.[解](1)证明:由题易得BD =AD =42,∴AB 2=AD 2+BD 2,∴BD ⊥AD .∵平面P AD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面P AD .又∵BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .(2)过点P 作PO ⊥AD 交AD 于点O (图略),∵平面PAD ⊥平面DAB ,平面PAD ∩平面DAB =AD ,∴PO ⊥平面DAB ,∴点P 到平面DAB 的距离为PO =2 2.∴V D ­MAB =V M ­DAB =13S △DAB ·13PO =13×12×(42)2×13×22=3229.十九、解决平面图形翻折问题的步骤典例19:图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.图1图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.[解](1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1=3,故DM=2.所以四边形ACGD的面积为4.二十、存在性问题的一般解题方法先假设其存在,然后把这个假设作为已知条件,和题目的其他已知条件一起进行推理论证和计算.在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在;如果得到了一个不合理的结论,则说明不存在.而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.典例20:如图,在四棱锥P­ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.。

立体几何初步知识点总结

立体几何初步知识点总结

立体几何初步知识点总结立体几何初步知识点总结立体几何是高中数学中的重要内容,也是许多大学课程的基础。

以下是立体几何初步知识点的总结,希望对初学者有所帮助。

一、立体图形的概念立体图形是指具有三维形态,能够占据一定空间的图形。

常见的立体图形有立方体、正方体、长方体、棱锥、棱台、圆柱体和圆锥体等。

二、立体图形的性质1. 容积:指立体图形占据的空间大小,通常用“立方米”等单位来计算。

2. 表面积:指立体图形表面的大小,通常用“平方米”等单位来计算。

3. 对称性:有些立体图形可以沿着某个平面镜面对称。

例如,正方体可以沿着一条对角线镜面对称,而圆锥体可以沿着底面中心的垂线镜面对称。

三、多面体的计算公式1. 正多面体的公式:对于一个正多面体,如果已知它的棱长为a,那么它的体积公式为V = (1/3)×a^3×n/(tan(π/n)),其中n为多面体的面数。

2. 海龙公式:海龙公式适用于任意形状的多面体,包括不规则多面体。

其公式为V = (1/3)×S×h,其中S为多面体表面积,h为一条从顶点到底面垂线的长度。

四、圆柱体和圆锥体的公式1. 圆柱体的公式:对于一个圆柱体,如果已知它的底面半径为r,高为h,那么它的体积公式为V = πr^2h。

2. 圆锥体的公式:对于一个圆锥体,如果已知它的底面半径为r,高为h,那么它的体积公式为V = (1/3)×πr^2h。

五、解决立体几何问题的步骤1. 确定所求:首先明确自己需要求什么,是体积还是表面积。

2. 确定已知:确定自己已经知道的信息,例如图形的长宽高、面积、体积等等。

3. 选择计算公式:根据所求和已知,选择恰当的计算公式。

4. 进行计算:代入公式,进行计算。

5. 检查答案:计算完成后,要检查答案是否合理,例如是否有负数或过大的数字。

总之,立体几何是高中数学必修课中的重要内容,掌握立体几何的基本知识和计算方法,能够帮助我们解决很多实际问题,更好地理解世界。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二.新教材与原有教材的区别
2、内容的编排顺序变化
☆ 对于平行关系和垂直关系的学习,原有教材 是先集中讲完判定定理后,再讲性质定理,而 新教材是讲完判定定理,紧跟着讲性质定理。
二.新教材与原有教材的区别 3、教材例题、习题的变化
并且随堂练习和课后习题都作了较大的调正。
教材上的例题主要有两个特点, 一是注重定理的简单应用, 二是强调平行与垂直关系的等价转化。 不要过分的追求空间几何推理的严谨性,更重
并说明理由.
五、对教材重点内容的处理建议
(2)构造平行四边形寻找平行关系
例题2:如图,三棱柱ABC A中1B1,C1 分M、 别N是BC和 点,求证: 面MN // . AA1C1C
的A1B中1
五、对教材重点内容的处理建议
(3)利用线面平行的性质寻找平行关系
例题3:如图,在以 A、B、C、D、E、F 为顶点的五 面体中,面 ABEF 为正方形,求证:CD∥EF 分析:这里没有中点条件,CD 的长度不定,所以也比 较难构成平行四边形,因此,可考虑把目标转向他们有 可能都平行的直线 AB 上,通过线面平行过渡平行关系。
☆利用模型来帮助提升学生的空间想象能力, 长方体是学生非常熟悉几何模型。
☆利用“长方体”几何模型,帮助学生从特殊 到一般,从具体到抽象,用模型帮助学生把困 难的问题变得直观、简洁,培养学生把握图形、 欣赏图形的能力。
四、教学建议
2.重视研究方法的引导
☆在本章,基本立体图形和基本图形位置关系 是主要的研究对象。教学中要注意加强“一般 观念”的引导,增强学生发现和提出问题的能 力。
三.教材的特点、理念
4.循序渐进发展逻辑推理素养
☆例如,通过对实物、模型等的操作和感知,引导学生 归纳、概括,帮助学生认识空间几何体的结构特征;通 过对图形的观察和实验,发现和提出描述直线、平面之 间平行、垂直关系的命题,并逐步学会用准确的数学语 言表达这些命题,引导学生直观解释命题的含义和证明 思路,并能证明其中的一些命题。这种处理,降低了学 生证明立体几何问题的难点,更有利于学生逻辑推理素 养的培养。
☆作图过程就是在运用所学的平面几何知识去 理解空间图形的本质。因此,对于培养学生的 空间想象力是有重要意义的。在教学中,在获 得几何对象、描述概念、发现性质等各个环节 中都要加强作图的训练。在解题教学中,也要 把“观察图形”“根据题意做出图形”作为出 发点。
四、教学建议
5.充分利用信息技术工具
☆在本章的学习中,信息技术工具可以给我们 提供一个仿真的三维空间的学习环境,帮助我 们认识立体图形的结构特征,发现其中的基本 位置关系,为把握和理解立体图形提供几何直 观。有条件的学校,应尽可能多地使用信息技 术工具,为学生提供帮助,加深学生对相关知 识的理解和认识。
三.教材的特点、理念 5.重视几何语言的培养和训练
☆例如线面平行的性质定理:
三.教材的特点、理念 6.重视平面三个基本事实的作用
☆基本事实1、过不在一条直线上的三个点,有且只有 一个平面.
☆基本事实2、如果一条直线上的两个点在一个平面内, 那么这条直线在这个平面内.
☆基本事实3、如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线.
线与平面、平面与平面的垂 文19
直关系,归纳出相应的性质 北京卷文18
定理和判定定理,并加以证 天津卷文17
明。
浙江卷8,19
课时分配 3
5
四、教学建议
1.要充分利用好长方体模型 2.重视研究方法的指导 3.把握好教学要求,循序渐进 4.重视作图技能训练 5.充分利用信息技术工具
四、教学建议
1.要充分利用好长方体模型
二.新教材与原有教材的区别 1、具体的内容变化 2、内容的编排顺序变化 3、教材例题、习题的变化
二.新教材与原有教材的区别
1、具体的内容变化情况
☆删除内容:三视图 、平行投影、中心投影 ☆增加内容:直棱柱、斜棱柱、正棱柱,平行
六面体、正棱锥的概念; 球、棱台的体积公式的推导; 平面基本事实的三个推论。
五、对教材重点内容的处理建议
1.平行关系
(1)利用中位线寻找平行关系
课本137页例2思维比较简单,证明中点的连线就是该三角形中位线 例1.求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面。
练习.如图,正方体 ABCD 中A1B,1CE1D为1 的中点D,D试1 判断 与平面 BD的1 位置关A系E,C
☆新教材遵从整体到局部,一般到特殊的原则,更 符合学生认知规律,有利于学生空间观念的培养。
例如:让学生从对空间几何体的整体观察入手,直 观认识空间图形,然后从空间到平面,即直观图;在 此基础上抽象出组成几何体的基本元素,最后以长方 体为载体研究其中的点、线、面之间的位置关系,这 一思路贯穿到教材的每一个部分。
四、教学建议
☆首先是教材内容的定位,本章为立体几何初 步,“初步”是有明确含义的,教学的重点是 帮助学生逐步形成空间想象能力,表现在集中 解决空间观念问题,逐步形成空间观念及逐步 培养学生的空间想象能力。在学习中,虽然也 有一些简单的证明,它的目标也是促进空间观 念的形成。
对应课标、课时分配建议
(1)如何判定一个平面内的任意一条直线都平行于 另一个平面呢?有没有更简便的方法?
(2)如果一个平面内两条相交直线或两条平行直线 都和另一个平面平行,是否就能使这两个平面平行?
(3)两条相交直线和两条平行直线都可以确定一个 平面。为什么可以利用两条相交直线判定两个平面平 行,而不能用两条平行直线呢?你能从向量的角度解 释吗?
一、教学中的地位与作用
立体几何是研究三维空间中物体的形状、大小和位 置关系的一门数学学科。直观感知、操作确认、推 理论证、度量计算,是认识立体图形的基本方法, 培养和发展学生的空间想象能力、推理论证能力、 运用图形语言进行交流的能力以及几何直观能力, 是高中阶段数学课程的基本要求。所以,学习立体 几何对我们更好地认识、理解现实世界,具有重要 的意义,该部分也是历年高考重点内容之一。
2019考题举例 常考题型 课时分配
全国II卷理16 选择题、填
2
空题
选择题、填
2
空题
全国I卷理12 选择题、填 2
全国III卷理16
空题
江苏卷9
天津卷理11
8.4空间 点、直线 、平面之 间的位置 关系
借助长方体,在直观认识空 间点、直线、平面的位置关 系的基础上,抽象出空间点 、直线、平面的位置关系的 定义,了解基本事实。
三.教材的特点、理念
2、重视几何直观
☆从人们认识世界的过程来看,对“形”的认识要 先于对“数”的认识。所以学习立体几何的途径是: 直观感知(识图)-操作确认(画图)-度量计算(算 图)-思辨论证(证图),教科书的安排也体现了这个认 知过程。
三.教材的特点、理念 3.关注研究几何对象的基本方法
☆例如,对于两个平面平行的判定的研究,教科书提出 了这样一些问题:

行关系,归纳出相应的性质

定理和判定定理,并加以证

明。能用已获得的结论证明

空间基本图形位置关系的简

单命题。
步 8.6空间 从定义、基本事实出发,借 全国I卷文16 选择题、
直线、平 助长方体,通过直观感知, 全国II卷文17 填空题、
面的垂直 了解空间中直线与直线、直 全国III卷理8 解答题


8.1基本
第 立体图形




几 8.2立体何 图形的直来自初 观图步8.3简单
几何体的
表面积与
体积
对应课标 利用实物、计算机软件等观 察空间图形,认识柱、锥、 台、球及简单组合体的结构 特征,能运用这些特征描述 现实生活中简单物体的结构 。 能用斜二测法画出简单空间 图形(长方体、球、圆柱、 圆锥、棱柱及其简单组合) 的直观图。 知道球、棱柱、棱锥、棱台 的表面积和体积的计算公式 ,能用公式解决简单的实际 问题。
要的是要突出几何直观以及平行和垂直关系的相 互转化来帮助提高学生的空间想象能力。
三.教材的特点、理念
1、从整体到局部的研究视角 2、重视几何直观 3、关注研究几何对象的基本方法 4、循序渐进发展逻辑推理素养 5、重视几何语言的培养和训练 6、重视平面三个基本事实的作用
三.教材的特点、理念
1、从整体到局部的研究视角
必修(第二册)第八章 立体几何初步 的教材分析与教学建议
阳信二中 李娟
在高中数学课程中,《标准(2017年版)》 将立体几何内容分两部分安排:必修课程中的 “立体几何初步”和选择性必修课程中的“空 间向量与立体何”。
基本事实
直观图 建立空间概念,提升空间想象能力
/87
一、教学中的地位与作用 二、新教材与旧教材的区别 三、教材的编写特点、理念 四、教学建议 五、对教材重点内容的处理建议
全国II卷理7 北京卷文13
选择题、填 2 空题
对应课标、课时分配建议
章 节 对应课标
2019考题举例 常考题型
8.5空间 从定义、基本事实出发,借 全国I卷文19 选择题、
第 直线、平 助长方体,通过直观感知, 江苏卷16
填空题、
八 面的平行 了解空间中直线与直线、直
解答题

线与平面、平面与平面的平
五、对教材重点内容的处理建议
2.垂直关系
(1) 利用平行关系与垂直关系的联系 (2)利用线面垂直的定义
五、对教材重点内容的处理建议
2.垂直关系
(3) 利用等腰三角形三线合一性质
四、教学建议
3.把握好教学要求,循序渐进
☆本章内容比较抽象,历来也是高中教学的难点, 所以教学中要注意把握以下几点: (1)基本几何体的认识:没必要再补充“正棱 台”概念; (2)直观图、表面积、体积:会看,会画,会 算,不要求会证; (3)推理论证:以长方体为载体,循序渐进教学.
相关文档
最新文档