高中数学 《立体几何初步》教案(高考回归课本系列)新人教A版
高中数学教案《立体几何初步》

教学设计:《立体几何初步》一、教学目标1.知识与技能:学生能够理解空间几何体的基本概念,掌握点、线、面的位置关系及基本性质,能够识别并绘制简单的空间图形,理解并计算空间几何体的表面积和体积。
2.过程与方法:通过观察、分析、比较等数学活动,培养学生的空间想象能力和逻辑推理能力;通过小组合作,提高学生解决问题的合作与交流能力。
3.情感态度与价值观:激发学生对立体几何的兴趣,培养学生勇于探索、敢于质疑的科学精神;在解决问题过程中,体验数学的严谨性和美感。
二、教学重点和难点●重点:空间几何体的基本性质,点、线、面的位置关系,空间几何体的表面积和体积计算。
●难点:空间想象能力的培养,复杂空间图形的识别与绘制,以及利用空间几何性质解决实际问题。
三、教学过程1. 导入新课(5分钟)●生活实例引入:展示生活中常见的立体几何体(如建筑、家具、自然物体等),引导学生观察并讨论它们的共同特征,引出立体几何的概念。
●问题驱动:提出一个与立体几何相关的问题,如“如何计算一个房间的体积?”激发学生好奇心,为新课学习做好铺垫。
●明确目标:简要说明本节课的学习目标和任务,让学生有清晰的学习方向。
2. 知识点讲解(15分钟)●基本概念阐述:详细讲解空间几何体的定义、分类及基本性质,包括棱柱、棱锥、圆柱、圆锥等。
●位置关系分析:通过图示和实例,讲解点、线、面在空间中的位置关系,如平行、垂直、相交等,并引导学生理解其性质。
●公式推导:简要推导空间几何体表面积和体积的计算公式,让学生理解公式的来源和适用范围。
3. 直观演示与操作(10分钟)●多媒体演示:利用多媒体课件展示空间几何体的动态形成过程,帮助学生建立直观的空间形象。
●实物模型展示:展示空间几何体的实物模型,让学生亲手触摸、观察,加深对空间图形的认识。
●动手实践:组织学生进行简单的空间图形绘制活动,如用直尺和圆规绘制棱柱的俯视图、左视图等。
4. 问题解决与讨论(15分钟)●例题讲解:选取几道典型例题,讲解如何利用空间几何的性质和公式解决问题。
人教版高中数学立体几何教案2023

人教版高中数学立体几何教案2023教案:人教版高中数学立体几何教案一、教学目标通过本节课的学习,学生应能够:1. 理解立体几何的相关概念,如立体、面、棱、顶点等;2. 掌握立体几何的基本性质,如欧拉定理、欧拉公式等;3. 运用数学知识解决立体几何问题,如计算体积、表面积等;4. 培养学生的空间想象力和几何推理能力。
二、教学重点1. 立体几何的相关概念和基本性质;2. 运用数学知识解决立体几何问题。
三、教学难点1. 掌握立体几何的基本性质;2. 运用数学知识解决立体几何问题。
四、教学方法1. 导入启发法:通过引导学生观察周围的立体物体,进而引发学生对立体几何的兴趣和思考;2. 讲授法:通过板书和讲解,介绍立体几何的相关概念和基本性质;3. 实例演练法:通过具体实例,引导学生运用数学知识解决立体几何问题;4. 合作学习法:组织学生进行小组合作学习,促进彼此之间的交流与合作。
五、教学过程一、导入教师可以展示一些常见的立体物体,如立方体、圆柱体等,并提问学生对这些物体的认识和了解。
引导学生思考什么是立体几何,以及立体几何在日常生活中的应用。
二、讲解1. 立体几何的基本概念:立体:具有长度、宽度和高度三个方向的空间;面:立体的表面,由很多个平面构成;棱:立体的相邻的两个面之间的线段;顶点:立体的两个或两个以上棱的交点。
2. 立体几何的基本性质:a. 欧拉定理:对于任意一个凸多面体,有V+F=E+2,其中V为顶点数,F为面数,E为棱数;b. 欧拉公式:对于任意一个多面体,有V+F-E=2,其中V为顶点数,F为面数,E为棱数。
三、实例演练1. 计算立体体积:通过具体的立体物体,如长方体、圆柱体等,让学生运用公式计算体积。
2. 计算立体表面积:同样通过具体的立体物体,让学生运用公式计算表面积。
3. 解决立体几何问题:给出一些立体几何问题,让学生进行思考和解答,培养学生的几何推理能力。
四、小组合作学习将学生分成小组,让每个小组根据教师提供的题目进行讨论和解答。
【K12教育学习资料】高中数学 第一章 立体几何初步学案 新人教A版必修2

教育是最好的老师,小学初中高中资料汇集第一章 立体几何初步一、知识结构二、重点难点重点:空间直线,平面的位置关系。
柱、锥、台、球的表面积和体积的计算公式。
平行、垂直的定义,判定和性质。
难点:柱、锥、台、球的结构特征的概括。
文字语言,图形语言和符号语言的转化。
平行,垂直判定与性质定理证明与应用。
第一课时 棱柱、棱锥、棱台【学习导航】学习要求1.初步理解棱柱、棱锥、棱台的概念。
掌握它们的形成特点。
2.了解棱柱、棱锥、棱台中一些常用名称的含义。
3.了解棱柱、棱锥、棱台这几种几何体简单作图方法4.了解多面体的概念和分类.【课堂互动】 自学评价1. 棱柱的定义: 表示法:思考:棱柱的特点:.【答】 2. 棱锥的定义: 表示法:思考:棱锥的特点:.【答】 3.棱台的定义: 表示法:思考:棱台的特点:.【答】4.多面体的定义:5.多面体的分类:⑴棱柱的分类⑵棱锥的分类⑶棱台的分类【精典范例】例1:设有三个命题:甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱;乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。
以上各命题中,真命题的个数是(A)A.0 B. 1 C. 2 D. 3例2:画一个四棱柱和一个三棱台。
【解】四棱柱的作法:⑴画上四棱柱的底面----画一个四边形;⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段;⑶画下底面------顺次连结这些线段的另一个端点互助参考7页例1⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.互助参考7页例1点评:(1)被遮挡的线要画成虚线(2)画台由锥截得思维点拔:解柱、锥、台概念性问题和画图需要:(1).准确地理解柱、锥、台的定义(2).灵活理解柱、锥、台的特点:例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。
人教A版高中数学必修教案:立体几何全部教案

人教A版高中数学必修教案:立体几何全部教案第一章:绪论1. 教学目标1.1 了解立体几何的概念和研究对象1.2 掌握空间点的表示方法1.3 理解空间向量的概念及其运算1. 教学内容1.1 立体几何的概念和研究对象1.2 空间点的表示方法1.3 空间向量的概念及其运算2. 教学方法2.1 采用多媒体教学,展示立体几何图形2.2 结合实际例子,引导学生理解空间点的表示方法2.3 运用几何直观,讲解空间向量的概念及其运算3. 教学步骤3.1 引入立体几何的概念和研究对象,引导学生思考立体的特点3.2 讲解空间点的表示方法,结合具体例子进行演示和练习3.3 引入空间向量的概念,讲解其运算规则,并通过几何直观进行解释4. 课后作业4.1 复习立体几何的概念和研究对象4.2 练习空间点的表示方法4.3 巩固空间向量的概念及其运算第二章:直线与平面1. 教学目标1.1 理解直线的概念及其性质1.2 掌握平面的概念及其性质1.3 掌握直线与平面的位置关系2. 教学内容2.1 直线的概念及其性质2.2 平面的概念及其性质2.3 直线与平面的位置关系3. 教学方法3.1 采用多媒体教学,展示直线和平面的图形3.2 结合实际例子,引导学生理解直线的性质3.3 运用几何直观,讲解直线与平面的位置关系4. 教学步骤4.1 引入直线的概念,讲解其性质,并通过实际例子进行演示和练习4.2 引入平面的概念,讲解其性质,并通过实际例子进行演示和练习4.3 讲解直线与平面的位置关系,并通过几何直观进行解释5. 课后作业5.1 复习直线的概念及其性质5.2 练习平面的概念及其性质5.3 巩固直线与平面的位置关系第三章:平面几何1. 教学目标1.1 理解平面几何的基本概念和性质1.2 掌握平面几何的基本运算和证明方法1.3 掌握平面几何图形的判定和性质2. 教学内容2.1 平面几何的基本概念和性质2.2 平面几何的基本运算和证明方法2.3 平面几何图形的判定和性质3. 教学方法3.1 采用多媒体教学,展示平面几何图形3.2 结合实际例子,引导学生理解平面几何的基本概念和性质3.3 运用几何直观,讲解平面几何的基本运算和证明方法4. 教学步骤4.1 引入平面几何的基本概念和性质,引导学生思考平面几何的特点4.2 讲解平面几何的基本运算和证明方法,并通过实际例子进行演示和练习4.3 引入平面几何图形的判定和性质,并通过实际例子进行演示和练习5. 课后作业5.1 复习平面几何的基本概念和性质5.2 练习平面几何的基本运算和证明方法5.3 巩固平面几何图形的判定和性质第四章:空间几何1. 教学目标1.1 理解空间几何的基本概念和性质1.2 掌握空间几何的基本运算和证明方法1.3 掌握空间几何图形的判定和性质2. 教学内容2.1 空间几何的基本概念和性质2.2 空间几何的基本运算和证明方法2.3 空间几何图形的判定和性质3. 教学方法3.1 采用多媒体教学,展示空间几何图形3.2 结合实际例子,引导学生理解空间几何的基本概念和性质3.3 运用几何直观,讲解空间几何的基本运算和证明方法4. 教学步骤4.1 引入空间几何的基本概念和性质,引导学生思考空间几何的特点4.2 讲解空间几何的基本运算和证明方法,并通过实际例子进行演示和练习4.3 引入空间几何图形的判定和性质,并通过实际例子进行演示和第六章:立体几何中的角和距离1. 教学目标1.1 理解立体几何中的角和距离的概念1.2 掌握立体几何中角的计算方法1.3 学会计算立体几何中的距离2. 教学内容2.1 立体几何中的角的概念和分类2.2 立体几何中的角的计算方法2.3 立体几何中的距离的计算方法3. 教学方法3.1 采用多媒体教学,展示立体几何中的角和距离的图形3.2 结合实际例子,引导学生理解立体几何中的角和距离的概念3.3 运用几何直观,讲解立体几何中的角的计算方法和距离的计算方法4. 教学步骤4.1 引入立体几何中的角的概念和分类,引导学生思考立体几何中角的特点4.2 讲解立体几何中的角的计算方法,并通过实际例子进行演示和练习4.3 引入立体几何中的距离的概念,讲解其计算方法,并通过实际例子进行演示和练习5. 课后作业5.1 复习立体几何中的角的概念和分类5.2 练习立体几何中的角的计算方法5.3 巩固立体几何中的距离的计算方法第七章:立体几何中的体积和表面积1. 教学目标1.1 理解立体几何中的体积和表面积的概念1.2 掌握立体几何中体积和表面积的计算方法1.3 学会应用体积和表面积解决实际问题2. 教学内容2.1 立体几何中的体积的概念和计算方法2.3 应用体积和表面积解决实际问题3. 教学方法3.1 采用多媒体教学,展示立体几何中的体积和表面积的图形3.2 结合实际例子,引导学生理解立体几何中的体积和表面积的概念3.3 运用几何直观,讲解立体几何中的体积和表面积的计算方法4. 教学步骤4.1 引入立体几何中的体积的概念,讲解其计算方法,并通过实际例子进行演示和练习4.2 引入立体几何中的表面积的概念,讲解其计算方法,并通过实际例子进行演示和练习4.3 应用体积和表面积解决实际问题,并通过实际例子进行演示和练习5. 课后作业5.1 复习立体几何中的体积的概念和计算方法5.2 练习立体几何中的表面积的概念和计算方法5.3 巩固应用体积和表面积解决实际问题的能力第八章:立体几何中的对称变换1. 教学目标1.1 理解立体几何中的对称变换的概念1.2 掌握立体几何中对称变换的性质和应用1.3 学会运用对称变换解决立体几何问题2. 教学内容2.2 立体几何中对称变换的性质和应用2.3 运用对称变换解决立体几何问题3. 教学方法3.1 采用多媒体教学,展示立体几何中的对称变换的图形3.2 结合实际例子,引导学生理解立体几何中的对称变换的概念3.3 运用几何直观,讲解立体几何中对称变换的性质和应用4. 教学步骤4.1 引入立体几何中的对称变换的概念和分类,引导学生思考对称变换的特点4.2 讲解立体几何中对称变换的性质,并通过实际例子进行演示和练习4.3 引入立体几何中对称变换的应用,并通过实际例子进行演示和练习5. 课后作业5.1 复习立体几何中的对称变换的概念和分类5.2 练习立体几何中对称变换的性质和应用5.3 巩固运用对称变换解决立体几何问题的能力第九章:立体几何中的坐标变换1. 教学目标1.1 理解立体几何中的坐标变换的概念1.2 掌握立体几何中坐标变换的性质和应用1.3 学会运用坐标变换解决立体几何问题2. 教学内容2.1 立体几何中的坐标变换的概念和分类2.3 运用坐标变换解决立体几何问题3. 教学方法3.1 采用重点和难点解析重点环节1:立体几何的概念和研究对象难点解析1:立体几何的研究对象是三维空间中的点、线、面及其之间的位置关系。
立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。
掌握空间几何体的结构特征,如表面积、体积等。
1.2 教学内容柱体、锥体、球体的定义及性质。
空间几何体的结构特征的计算方法。
1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。
3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。
1.4 课堂练习完成课本练习题,巩固所学知识。
1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。
第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。
掌握点、线、面的位置关系的判定方法。
2.2 教学内容点、线、面的位置关系的定义及判定方法。
2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。
2.4 课堂练习完成课本练习题,巩固所学知识。
2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。
第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。
掌握空间角的计算方法。
3.2 教学内容空间角的定义及性质。
空间角的计算方法。
3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。
3.4 课堂练习完成课本练习题,巩固所学知识。
3.5 课后作业完成课后作业,加深对空间角的计算的理解。
第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。
掌握空间向量的应用方法。
空间向量的定义及性质。
空间向量的应用方法。
4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。
4.4 课堂练习完成课本练习题,巩固所学知识。
4.5 课后作业完成课后作业,加深对空间向量的应用的理解。
第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。
5.2 教学内容立体几何中的综合问题的解题策略。
5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。
人教A版高中数学必修教案:立体几何全部教案

人教A版高中数学必修教案:立体几何第一章教案第一章:空间几何体1.1 柱体教学目标:理解柱体的概念及其性质,掌握柱体的表面积和体积的计算方法。
教学重点:柱体的概念及其性质,柱体的表面积和体积的计算方法。
教学难点:柱体的表面积和体积的计算方法。
教学准备:教师准备柱体的实物模型,以及相关的计算工具。
教学过程:(1) 引入新课通过展示柱体的实物模型,引导学生观察和描述柱体的特征。
(2) 讲解概念解释柱体的定义,说明柱体的性质,如底面的形状和大小,高的大小等。
(3) 计算方法讲解柱体的表面积和体积的计算方法,引导学生理解和掌握这些方法。
(4) 练习给出一些柱体的具体数据,让学生计算其表面积和体积,巩固所学的计算方法。
(5) 总结总结本节课所学的柱体的概念及其性质,以及表面积和体积的计算方法。
教学反思:通过本节课的教学,学生应该能够理解和掌握柱体的概念及其性质,以及柱体的表面积和体积的计算方法。
在教学过程中,教师应该注重学生的观察和思考能力的培养,通过实物模型和计算练习,帮助学生更好地理解和掌握所学的知识。
1.2 锥体教学目标:理解锥体的概念及其性质,掌握锥体的表面积和体积的计算方法。
教学重点:锥体的概念及其性质,锥体的表面积和体积的计算方法。
教学难点:锥体的表面积和体积的计算方法。
教学准备:教师准备锥体的实物模型,以及相关的计算工具。
教学过程:(1) 引入新课通过展示锥体的实物模型,引导学生观察和描述锥体的特征。
(2) 讲解概念解释锥体的定义,说明锥体的性质,如底面的形状和大小,高的大小等。
(3) 计算方法讲解锥体的表面积和体积的计算方法,引导学生理解和掌握这些方法。
(4) 练习给出一些锥体的具体数据,让学生计算其表面积和体积,巩固所学的计算方法。
总结本节课所学的锥体的概念及其性质,以及表面积和体积的计算方法。
教学反思:通过本节课的教学,学生应该能够理解和掌握锥体的概念及其性质,以及锥体的表面积和体积的计算方法。
立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)一、第一章:空间几何体的结构特征1. 教学目标(1) 了解柱体、锥体、球体的定义及性质。
(2) 掌握空间几何体的结构特征,如表面积、体积等。
(3) 培养学生的空间想象能力和抽象思维能力。
2. 教学内容(1) 柱体、锥体、球体的定义及性质。
(2) 空间几何体的结构特征,如表面积、体积的计算。
(3) 空间几何体的分类及应用。
3. 教学方法(1) 采用多媒体课件辅助教学,展示空间几何体的直观图形。
(2) 结合实物模型,引导学生感知空间几何体的结构特征。
(3) 利用例题和练习,巩固所学知识。
4. 教学重点与难点(1) 重点:空间几何体的结构特征,如表面积、体积的计算。
(2) 难点:空间几何体的分类及应用。
二、第二章:点、线、面的位置关系1. 教学目标(1) 了解点、线、面的位置关系,如平行、垂直等。
(2) 掌握空间点、线、面的判定方法及其性质。
(3) 培养学生的空间想象能力和逻辑推理能力。
2. 教学内容(1) 点、线、面的位置关系,如平行、垂直等。
(2) 空间点、线、面的判定方法及其性质。
(3) 空间点、线、面的应用,如线面垂直、面面垂直等。
3. 教学方法(1) 利用多媒体课件,展示空间点、线、面的位置关系。
(2) 结合实物模型,引导学生感知空间点、线、面的性质。
(3) 利用例题和练习,巩固所学知识。
4. 教学重点与难点(1) 重点:空间点、线、面的判定方法及其性质。
(2) 难点:空间点、线、面的应用,如线面垂直、面面垂直等。
三、第三章:空间向量及其应用1. 教学目标(1) 了解空间向量的定义及坐标表示。
(2) 掌握空间向量的运算规则,如加法、减法、数乘、点乘、叉乘等。
(3) 学会运用空间向量解决立体几何问题。
2. 教学内容(1) 空间向量的定义及坐标表示。
(2) 空间向量的运算规则,如加法、减法、数乘、点乘、叉乘等。
(3) 空间向量在立体几何中的应用,如线线、线面、面面间的夹角等。
人教A版高中数学必修教案:立体几何全部教案

人教A版高中数学必修教案:立体几何全部教案第一章:绪论1.1 立体几何的概念教学目标:1. 理解立体几何的概念,掌握立体几何的研究对象和基本元素。
2. 掌握空间点、线、面的位置关系,培养空间想象能力。
教学重点:立体几何的概念,空间点、线、面的位置关系。
教学难点:立体几何的概念的理解,空间点、线、面的位置关系的应用。
教学过程:一、导入:引导学生回顾平面几何的基本概念,引出立体几何的概念。
二、新课:讲解立体几何的研究对象和基本元素,通过实物展示和图形绘制,介绍空间点、线、面的位置关系。
三、练习:学生自主完成练习题,巩固所学知识。
四、小结:总结本节课的主要内容,强调立体几何的概念和空间点、线、面的位置关系的重要性。
第二章:直线与平面2.1 直线与平面的位置关系教学目标:1. 理解直线与平面的位置关系,掌握直线与平面平行和直线与平面垂直的判定方法。
2. 培养空间想象能力和逻辑思维能力。
教学重点:直线与平面的位置关系,直线与平面平行和直线与平面垂直的判定方法。
教学难点:直线与平面平行和直线与平面垂直的判定方法的运用。
教学过程:一、导入:通过实例引入直线与平面的位置关系。
二、新课:讲解直线与平面的位置关系,介绍直线与平面平行和直线与平面垂直的判定方法。
三、练习:学生自主完成练习题,巩固所学知识。
四、小结:总结本节课的主要内容,强调直线与平面的位置关系和判定方法的重要性。
第三章:平面与平面3.1 平面与平面的位置关系教学目标:1. 理解平面与平面的位置关系,掌握平面与平面平行和平面与平面垂直的判定方法。
2. 培养空间想象能力和逻辑思维能力。
教学重点:平面与平面的位置关系,平面与平面平行和平面与平面垂直的判定方法。
教学难点:平面与平面平行和平面与平面垂直的判定方法的运用。
教学过程:一、导入:通过实例引入平面与平面的位置关系。
二、新课:讲解平面与平面的位置关系,介绍平面与平面平行和平面与平面垂直的判定方法。
三、练习:学生自主完成练习题,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学回归课本教案立体几何初步一、基础知识公理1 一条直线。
上如果有两个不同的点在平面。
内.则这条直线在这个平面内,记作:a⊂a.公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。
公理3 过不在同一条直线上的三个点有且只有一个平面。
即不共线的三点确定一个平面.推论l 直线与直线外一点确定一个平面.推论2 两条相交直线确定一个平面.推论3 两条平行直线确定一个平面.公理4 在空间内,平行于同一直线的两条直线平行.定义1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.定义2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直.定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一个平面,则这两条直线平行.定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.定义 5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角.定理4 (三垂线定理)若d为平面。
的一条斜线,b为它在平面a内的射影,c为平面a内的一条直线,若c⊥b,则c⊥a.逆定理:若c⊥a,则c⊥b.定理5 直线d是平面a外一条直线,若它与平面内一条直线b平行,则它与平面a平行定理6 若直线。
与平面α平行,平面β经过直线a且与平面a交于直线6,则a//b.结论2 若直线。
与平面α和平面β都平行,且平面α与平面β相交于b,则a//b.定理7 (等角定理)如果一个角的两边和另一个角的两边分别平行且方向相同,则两个角相等.定义6 平面与平面的位置关系有两种:平行或相交.没有公共点即平行,否则即相交.定理8 平面a内有两条相交直线a,b都与平面β平行,则α//β.定理9 平面α与平面β平行,平面γ∩α=a,γ∩β=b,则a//b.定义7 (二面角),经过同一条直线m的两个半平面α,β(包括直线m,称为二面角的棱)所组成的图形叫二面角,记作α—m—β,也可记为A—m一B,α—AB—β等.过棱上任意一点P在两个半平面内分别作棱的垂线AP,BP,则∠APB(≤900)叫做二面角的平面角.它的取值范围是[0,π].特别地,若∠APB=900,则称为直二面角,此时平面与平面的位置关系称为垂直,即α⊥β.定理10 如果一个平面经过另一个平面的垂线,则这两个平面垂直.定理11 如果两个平面垂直,过第一个平面内的一点作另一个平面的垂线在第一个平面内. 定理12 如果两个平面垂直,过第一个子面内的一点作交线的垂线与另一个平面垂直. 定义8 有两个面互相平行而其余的面都是平行四边形,并且每相邻两个平行四边形的公共边(称为侧棱)都互相平行,由这些面所围成的几何体叫做棱柱.两个互相平行的面叫做底面.如果底面是平行四边形则叫做平行六面体;侧棱与底面垂直的棱柱叫直棱柱;底面是正多边形的直棱柱叫做正棱柱.底面是矩形的直棱柱叫做长方体.棱长都相等的正四棱柱叫正方体. 定义9 有一个面是多边形(这个面称为底面),其余各面是一个有公共顶点的三角形的多面体叫棱锥.底面是正多边形,顶点在底面的射影是底面的中心的棱锥叫正棱锥.定理13 (凸多面体的欧拉定理)设多面体的顶点数为V ,棱数为E ,面数为F ,则 V+F-E=2.定义10 空间中到一个定点的距离等于定长的点的轨迹是一个球面.球面所围成的几何体叫做球.定长叫做球的半径,定点叫做球心.定理14 如果球心到平面的距离d 小于半径R ,那么平面与球相交所得的截面是圆面,圆心与球心的连线与截面垂直.设截面半径为r ,则d 2+r 2=R 2.过球心的截面圆周叫做球大圆.经过球面两点的球大圆夹在两点间劣弧的长度叫两点间球面距离.定义11 (经度和纬度)用平行于赤道平面的平面去截地球所得到的截面四周叫做纬线.纬线上任意一点与球心的连线与赤道平面所成的角叫做这点的纬度.用经过南极和北极的平面去截地球所得到的截面半圆周(以两极为端点)叫做经线,经线所在的平面与本初子午线所在的半平面所成的二面角叫做经度,根据位置不同又分东经和西经.定理15 (祖 原理)夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.定理16 (三面角定理)从空间一点出发的不在同一个平面内的三条射线共组成三个角.其中任意两个角之和大于另一个,三个角之和小于3600.定理17 (面积公式)若一个球的半径为R ,则它的表面积为S 球面=4πR 2。
若一个圆锥的母线长为l ,底面半径为r ,则它的侧面积S 侧=πrl.定理18 (体积公式)半径为R 的球的体积为V 球=334R π;若棱柱(或圆柱)的底面积为s ,高h ,则它的体积为V=sh ;若棱锥(或圆锥)的底面积为s ,高为h ,则它的体积为V=.31sh 定理19 如图12-1所示,四面体ABCD 中,记∠BDC=α,∠ADC=β,∠ADB=γ,∠BAC=A ,∠ABC=B ,∠ACB=C 。
DH ⊥平面ABC 于H 。
(1)射影定理:S ΔABD •cos Ф=S ΔABH ,其中二面角D —AB —H 为Ф。
(2)正弦定理:.sin sin sin sin sin sin CB A γβα== (3)余弦定理:cos α=cos βcos γ+sin βsin γcosA.cosA=-cosBcosC+sinBsinCcos α.(4)四面体的体积公式31=V DH •S ΔABC =γβαγβαcos cos cos 2cos cos cos 161222+---abc ϕsin 611d aa =(其中d 是a 1, a 之间的距离,ϕ是它们的夹角)a32=S ΔABD •S ΔACD •sin θ(其中θ为二面角B —AD —C 的平面角)。
二、方法与例题1.公理的应用。
例1 直线a,b,c 都与直线d 相交,且a//b,c//b ,求证:a,b,c,d 共面。
[证明] 设d 与a,b,c 分别交于A,B,C,因为b 与d 相交,两者确定一个平面,设为a.又因为a//b ,所以两者也确定一个平面,记为β。
因为A ∈α,所以A ∈β,因为B ∈b ,所以B ∈β,所以d ⊂β.又过b,d 的平面是唯一的,所以α,β是同一个平面,所以a ⊂α.同理c ⊂α.即a,b,c,d 共面。
例2 长方体有一个截面是正六边形是它为正方体的什么条件?[解] 充要条件。
先证充分性,设图12-2中PQRSTK 是长方体ABCD-A 1B 1C 1D 1的正六边形截面,延长PQ ,SR 设交点为O ,因为直线SR ⊂平面CC 1D 1D ,又O ∈直线SR ,所以O ∈平面CC 1D 1D ,又因为直线PQ ⊂平面A 1B 1C 1D 1,又O ∈直线PQ ,所以O ∈平面A 1B 1C 1D 1。
所以O ∈直线C 1D 1,由正六边形性质知,∠ORQ=∠OQR=600,所以ΔORQ 为正三角形,因为CD//C 1D 1,所以RO SR R C CR =1=1。
所以R 是CC 1中点,同理Q 是B 1C 1的中点,又ΔORC 1≌ΔOQC 1,所以C 1R=C 1Q ,所以CC 1=C 1B 1,同理CD=CC 1,所以该长方体为正方体。
充分性得证。
必要性留给读者自己证明。
2.异面直线的相关问题。
例3 正方体的12条棱互为异面直线的有多少对?[解] 每条棱与另外的四条棱成异面直线,重复计数一共有异面直线12×4=48对,而每一对异面直线被计算两次,因此一共有=24824对。
例4 见图12-3,正方体,ABCD —A 1B 1C 1D 1棱长为1,求面对角线A 1C 1与AB 1所成的角。
[解] 连结AC ,B 1C ,因为A 1A =//B 1B =//C 1C ,所以A 1A =//C 1C ,所以A 1ACC 1为平行四边形,所以A 1C 1=//AC 。
所以AC 与AB 1所成的角即为A 1C 1与AB 1所成的角,由正方体的性质AB 1=B 1C=AC ,所以∠B 1AC=600。
所以A 1C 1与AB 1所成角为600。
3.平行与垂直的论证。
例5 A ,B ,C ,D 是空间四点,且四边形ABCD 四个角都是直角,求证:四边形ABCD 是矩形。
[证明] 若ABCD 是平行四边形,则它是矩形;若ABCD 不共面,设过A ,B ,C 的平面为α,过D 作DD 1⊥α于D 1,见图12-4,连结AD 1,CD 1,因为AB ⊥AD 1,又因为DD 1⊥平面α,又AB ⊂α,所以DD 1⊥AB ,所以AB ⊥平面ADD 1,所以AB ⊥AD 1。
同理BC ⊥CD 1,所以ABCD 1为矩形,所以∠AD 1C=900,但AD 1<AD,CD 1<CD ,所以AD 2+CD 2=AC 2=2121CD AD +,与2121CD AD +<AD 2+CD 2矛盾。
所以ABCD 是平面四边形,所以它是矩形。
例6 一个四面体有两个底面上的高线相交。
证明:它的另两条高线也相交。
[证明] 见图12-5,设四面体ABCD 的高线AE 与BF 相交于O ,因为AE ⊥平面BCD ,所以AE ⊥CD ,BF ⊥平面ACD ,所以BF ⊥CD ,所以CD ⊥平面ABO ,所以CD ⊥AB 。
设四面体另两条高分别为CM ,DN ,连结CN ,因为DN ⊥平面ABC ,所以DN ⊥AB ,又AB ⊥CD ,所以AB ⊥平面CDN ,所以AB ⊥CN 。
设CN 交AB 于P ,连结PD ,作'CM ⊥PD 于'M ,因为AB ⊥平面CDN ,所以AB ⊥'CM ,所以'CM ⊥平面ABD ,即'CM 为四面体的高,所以'CM 与CM 重合,所以CM ,DN 为ΔPCD 的两条高,所以两者相交。