不等式的性质 导学案 高中数学选修4-5 北师大版
北师版高考总复习一轮文科数学精品课件 选修4—5 不等式选讲 第1课时 绝对值不等式

所以f(x)min=|a+3|,所以|a+3|>-a,即a+3<a或a+3>-a,
选修4—5 第1课时 绝对值不等式
内
容
索
引
01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.绝对值不等式的解法
1.理解绝对值的几何意义,并能利用含绝对
2.与绝对值不等式有关的
值不等式的几何意义证明以下不等式:
参数范围
|a+b|≤|a|+|b|,|a-b|≤|a-c|+|c-b|.
因为|x-3|+|x+4|≥|x-3-x-4|=7,
所以m<7,则m的取值范围是(-∞,7).
考向3.利用绝对值三角不等式求参数范围
典例突破
例4.(2021全国乙,理23)已知函数f(x)=|x-a|+|x+3|.
(1)当a=1时,求不等式f(x)≥6的解集;
(2)若f(x)>-a,求a的取值范围.
a 1 +a 2 +…+a n
均值,即
n
≥
1 2 … ,此式当且仅当 a1=a2=…=an 时取“=”号.
4.柯西不等式
(1)定理1:对任意实数a,b,c,d,有(a2+b2)(c2+d2)≥(ac+bd)2,当向量(a,b)与向
量(c,d)共线时,等号成立.
(2)柯西不等式的向量形式,设α,β是两个向量,则|α·β|≤|α||β|,等号成立的条
高三数学北师大版(理)复习课件选修4-5 不等式选讲

课 堂
要使|a|≥|x+1|+|x-2|有解,
题 型
只需|a|≥3,∴a≥3 或 a≤-3.]
全
突
课 后 限 时 集 训
破
返 首 页
课 前
5.已知 a,b,c
是正实数,且
a+b+c=1,则1a+1b+1c的最小值为________.
真 题
知 识
9 [∵a+b+c=1,
自 主
全
验
通 关
∴1a+1b+1c=3+ba+ab+ac+ac+bc+bc
则 x1-x22+y1-y22+ x2-x32+y2-y32≥ x1-x32+y1-y32. (4)柯西不等式的一般形式:设 a1,a2,a3,…,an,b1,b2,b3,…,bn 是 实数,则(a12+a22+…+a2n)(b21+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2,当且仅当
课 堂 题 型
所以1+1x1+1y=1+1x+1y+x1y=1+x+xyy+x1y=1+x2y≥1+8=9.
全
突 破
当且仅当 x=y=12时,等号成立.
课 后 限 时 集 训
返 首 页
课
真
前
应用不等式解决最值问题
题
知
自
识
主
全 通
►考法 1 利用基本不等式求最值
验 效
关
果
【例 3】 (2014·全国卷Ⅰ)若 a>0,b>0,且1a+1b= ab.
验 效
关
果
(3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法:
①利用绝对值不等式的几何意义求解;
课
堂 题
②利用零点分段法求解;
高中数学选修4-5不等式选讲导学案及课后作业加答案

第一节 不等式和绝对值不等式第一课时 不等式基本性质一、知识要点1.实数大小的比较(1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的 .在数轴上,右边的数总比左边的数 .(2)如果a -b >0,则 ;如果a -b =0,则 ;如果a -b <0,则 . (3)比较两个实数a 与b 的大小,归结为判断它们的 ;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的 2.不等式的基本性质由两数大小关系的基本事实,可以得到不等式的一些基本性质: (1)如果a >b ,那么b <a ;如果b <a ,那么a >b .即 . (2)如果a >b ,b >c ,那么 .即a >b ,b >c ⇒ . (3)如果a >b ,那么a +c > .(4)如果a >b ,c >0,那么ac bc ;如果a >b ,c <0,那么ac bc . (5)如果a >b ,d c >,那么d b c a +>+ (6)如果0,0>>>>d c b a ,那么bd ac > (7)如果a >b >0,那么a n b n (n ∈N ,n ≥2). (8)如果a >b >0n ∈N ,n ≥2).3.对上述不等式的理解使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如:(1)等式两边同乘以一个数仍为等式,但不等式两边同乘以同一个数c (或代数式)结果有三种:①c >0时得 不等式;②c =0时得 ;③c <0时得 不等式.(2)a >b ,c >d ⇒a +c >b +d ,即两个同向不等式可以相加,但不可以 ;而a >b >0,c >d >0⇒ac >bd ,即已知的两个不等式同向且两边为 时,可以相乘,但不可以 .(3)性质(5)、(6)成立的条件是已知不等式两边均为 ,并且n ∈N ,n ≥2,否则结论不成立.而当n 取正奇数时可放宽条件,a >b ⇒a n >b n (n =2k +1,k ∈N),a >b ⇒n a >nb (n =2k +1,k ∈N +).二、考点例题考点一 实数大小的比较[例1] 已知x ,y 均为正数,设m =1x +1y ,n =4x +y,试比较m 和n 的大小.方法规律小结 比较两个数(式子)的大不,一般用作差法,其步骤是:作差—变形—判断差的符号—结论,其中“变形”是关键,常用的方法是分解因式、配方等跟踪训练 1.已知a ,b ∈R ,比较44b a +与33ab b a +的大小.2.在数轴的正半轴上,A 点对应的实数为6a 29+a 4,B 点对应的实数为1,试判别A 点在B 点的左边,还是在B 点的右边?考点二 不等式的证明[例2] 已知a >b >0,c <d <0,e <0. 求证:e a -c >eb -d.方法规律小结 进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.跟踪训练 1.判断下列命题的真假,并简述理由. (1)若a >b ,c >d ,则ac >bd ; (2)若a >b >0,c >d >0,则a c >bd ;(3)若a >b ,c <d ,则a -c >b -d ;(4)若a >b ,则a n >b n ,n a >nb (n ∈N 且n ≥2).2.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证:x x +a >yy +b.考点三 利用不等式的性质求范围[例3] (1)已知:-π2≤α<β≤π2,求α-β的范围.(2)已知:-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的范围.方法规律小结 求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础,在使用不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作差,而要转化为同向不等式后作和.跟踪训练 1.“已知-π2≤α≤π2,-π2≤β≤π2”,求α+β2,α-β2的取值范围.2.已知1≤α+β≤4,-2≤α-β≤-1,求2α-β的取值范围.三、课后作业1.设R d c b a ∈,,,,且d c b a >>,,则下列结论正确的是 ( ) A .d b c a +>+ B .d b c a ->- C .bd ac > D .cb d a > 2.下列不等式成立的是 ( )A .log 32<log 25<log 23B .log 32<log 23<log 25C .log 23<log 32<log 25D .log 23<log 25<log 32 3.设R b a ∈,,若0>-b a ,则下列不等式正确的是( )A .0>-a bB .033<+b a C .022<-b a D .0>+b a 4.若11<<<-βα,则下列各式中恒成立的是 ( )A .02<-<-βαB .12-<-<-βαC .01<-<-βαD .11<-<-βα 5.设11.->>>b a ,则下列不等式中恒成立的是 ( ) A .ba 11< B .b a 11> C .2b a > D .b a 22>6.若0,0<<<<c d a b ,则下列不等式中必成立的是( ) A .bd ac > B .dbc a > C .d b c a +>+ D .a-c>b-d 7.已知3328,8460<<<<y x ,则y x -的取值范围是 . 8.已知c b a ,,为三角形的三边长,则2a 与ac ab +的大小关系是 . 9.若b a Rc b a >∈,,,,则下列不等式成立的是 (填上正确的序号). ①b a 11< ②22b a > ③1122+>+c b c a ④c b c a > 10.已知{}正实数∈b a ,且b a ≠,比较ba ab 22+与b a +的大小. 11.已知31<+<-b a 且42<-<b a ,求b a 32+的取值范围.12.实数z y x ,,满足122-=+-z y x x 且012=++y x ,试比较z y x ,,的大小.第二课时 基本不等式一、知识要点1.基本不等式的理解重要不等式a 2+b 2≥2ab 和基本不等式a +b2≥ab ,成立的条件是不同的.前者成立的条件是 a 与b 都为实数,并且a 与b 都为实数是不等式成立的 ;而后者成立的条件是a 与b 都为正实数,并且a 与b 都为正实数是不等式成立的 ,如a =0,b ≥0仍然能使a +b2≥ab 成立.两个不等式中等号成立的充要条件都是2.由基本不等式可推出以下几种常见的变形形式(1)a 2+b 2≥2)(2b a +;(2)ab ≤a 2+b 22;(3)ab ≤(a +b 2)2;(4)(a +b 2)2≤a 2+b 22;(5)(a +b )2≥4ab .二、考点例题[例1] 已知a 、b 、c ∈R +,且a +b +c =1.求证:1a +1b +1c≥9.方法规律小结 用基本不等式证明不等式时,应首先依据不等式两边式子的结构特点进行恒等变形,使之具备基本不等式的结构和条件,然后合理地选择基本不等式进行证明.跟踪训练 1.已知a 、b 、c 是不全相等的正数,求证:abc b a c a c b c b a 6)()()(222222>+++++2.已知a ,b ,c >0,求证:a 2b +b 2c +c 2a≥a +b +c .考点二 利用基本不等式求最值 [例2] (1)求当x >0时,f (x )=2xx 2+1的值域. (2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >0,y >0,且1x +9y=1,求x +y 的最小值方法规律小结 在应用基本不等式求最值时, 分以下三步进行:(1)首先看式子能否出现和(或积)的定值,若不具备,需对式子变形,凑出需要的定值;(2)其次,看所用的两项是否同正,若不满足,通过分类解决,同负时,可提取(-1)变为同正; (3)利用已知条件对取等号的情况进行验证.若满足,则可取最值,若不满足,则可通过函数单调性或导数解决.跟踪训练 1.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是 ( )A .245B .285C .5D .62.已知x >0,y >0且5x +7y =20,求xy 的最大值. 3.若正数a 、b 满足ab =a +b +3,(1)求ab 的取值范围;(2)求a +b 的取值范围.考点三 利用基本不等式解决实际问题[例3] 某国际化妆品生产企业为了占有更多的市场份额,拟在2012年英国伦敦奥运会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x 万件与年促销费t 万元之间满足3-x 与t +1成反比例的关系,如果不搞促销活动,化妆品的年销量只能是1万件,已知2012年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需要投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完 (1)将2012年的利润y (万元)表示为促销费t (万元)的函数.(2)该企业2012年的促销费投入多少万元时,企业的年利润最大?方法规律小结 利用不等式解决实际应用问题时,首先要仔细阅读题目,弄清要解决的实际问题,确定是求什么量的最值;其次,分析题目中给出的条件,建立y 的函数表达式y =f (x )(x 一般为题目中最后所要求的量);最后,利用不等式的有关知识解题.求解过程中要注意实际问题对变量x 的范围制约.跟踪训练 1.一商店经销某种货物,根据销售情况,年进货量为5万件,分若干次等量进货(设每次进货x 件),每进一次货运费50元,且在销售完该货物时,立即进货,现以年平均x2件货储存在仓库里,库存费以每件20元计算,要使一年的运费和库存费最省,每次进货量x 应是多少? 2.围建一个面积为3602m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其他三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元). (1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.三、课后作业1.设+∈R y x ,,且满足404=+y x ,则y x lg lg +的最大值为 ( ) A .40 B .10 C .4 D .22.设+∈R y x ,且5=+y x ,则yx33+的最小值为 ( ) A .10 B .6C .4D .183.等比数列{}n a 的各项均为正数,公比1≠q ,设7593,2a a Q a a P =+=,则P 与Q 的大小关系是 ( ) A .Q P > B .Q P < C .Q P = D .无法确定 4.已知0,0≥≥b a ,且2=+b a 则 ( ) A .21≤ab B .21≥ab C .222≥+b a D .322≤+b a 5.已知在ABC ∆中,2,1==BC B ,则C 的最大值是 ( )A .6π B .2π C .4π D .3π 6.“1=a ”是“对任意正数12,≥+xax x ”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 7.若正数b a ,满足3++=b a ab ,则ab 的取值范围是 .8.已知0,0>>b a ,且12=+b a ,则2242b a ab S --=的最大值为 . 9.已知0,0>>y x 且满足6=+y x ,则使不等式m yx ≥+91恒成立的实数m 的取值范围为 . 10.已知y x b a ,,,都是正数,且1=+b a ,求证:xy ay bx by ax ≥++))((11.已知y x R y x b a ,,,,,+∈为变量,b a ,为常数,且y x ybx a b a +=+=+,1,10的最小值为18,求b a , 12.(能力挑战题)某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形休闲区1111D C B A 和环公园人行道(阴影部分)组成.已知休闲区1111D C B A 的面积为4000平方米,人行道的宽分别为4米和10米(如图所示). (1)若设休闲区的长和宽的比x C B B A =1111,求公园ABCD 所占面积S 关于x 的函数解析式.(2)要使公园所占面积最小,休闲区1111D C B A 的长和宽应如何设计?第三课时 三个数的算术几何不等式一、知识要点1.定理3如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当时,等号成立,用文字语言可叙述为:三个正数的 不小于它们的 .(1)不等式a +b +c 3≥3abc 成立的条件是: ,而等号成立的条件是:当且仅当 .(2)定理3可变形为:①abc ≤(a +b +c 3)3;②a 3+b 3+c 3≥3abc .(3)三个及三个以上正数的算术-几何平均值不等式的应用条件与前面基本不等式的应用条件是一样的,即“一正,二定,三相等”. 2.定理3的推广对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即 ,当且仅当 时,等号成立.二、考点例题考点一 用平均不等式证明不等式[例1] 已知a ,b ,c ∈R +,求证:b +c -a a +c +a -b b +a +b -cc≥3.方法规律小结 (1)不等式的证明方法较多,关键是从式子的结构入手进行分析.(2)运用三个正数的平均值不等式证明不等式时,仍要注意“一正、二定、三相等”,在解题中,若两次用平均值不等式,则只有在“相等”条件相同时,才能取到等号.跟踪训练 1. 设a 、b 、c ∈R +,求证:(a +b +c )⎝⎛⎭⎫1a +1b +1c ≥9.2.已知n a a a ,,,21⋅⋅⋅都是正数,且121=⋅⋅⋅n a a a ,求证:n a a a n 3)2()2)(2(21≥+⋅⋅⋅++考点二 用平均不等式求最值[例2] (1)求函数y =(x -1)2(3-2x )(1<x <32)的最大值.(2)求函数)1()1(42>-+=x x x y 的最小值.方法规律小结 (1)利用三个正数的算术-几何平均不等式定理求最值,可简记为“积定和最小,和定积最大”.(2)应用平均不等式定理,要注意三个条件“即一正二定三相等”同时具备时,方可取得最值,其中定值条件决定着平均不等式应用的可行性,获得定值需要一定的技巧,如:配系数、拆项、分离常数、平方变形等.跟踪训练 1.设x >0,则f (x )=4-x -12x 2的最大值为 ( )A .4-22 B .4- 2 C .不存在 D .522.已知x ,y +∈R 且42=y x ,试求x +y 的最小值及达到最小值时x 、y 的值.考点三 用平均不等式解应用题 [例3] 如图所示,在一张半径是2米的圆桌的正中央上空挂一盏电灯.大家知道,灯挂得太高了,桌子边缘处的亮度就小;挂得太低,桌子的边缘处仍然是不亮的.由物理学知道,桌子边缘一点处的照亮度E 和电灯射到桌子边缘的光线与桌子的夹角θ的正弦成正比,而和这一点到光源的距离r 的平方成反比,即E =k sin θr2.这里k 是一个和灯光强度有关的常数,那么究竟应该怎样选择灯的高度h ,才能使桌子边缘处最亮?方法规律小结 本题获解的关键是在获得了k E =·sin θcos2θ4后,对E 的表达式进行变形求得E 的最大值.解应用题时必须先读懂题意,建立适当的函数关系式,若把问题转化为求函数的最值问题,常配凑成可以用平均不等式的形式,若符合条件“一正、二定、三相等”即可求解.跟踪训练 1.已知长方体的表面积为定值S ,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值.三、课后作业1.设+∈R z y x ,,且6=++z y x ,则lgx+lgy+lgz 的取值范围是 ( ) A .(∞-,lg6] B .(∞-,3lg2] C .[lg6,+∞) D .[3lg2,+∞)2.若实数y x ,满足0>xy ,且22=y x ,则2x xy +的最小值是 ( )A .1B .2C .3D .43.若c b a ,,为正数,且1=++c b a ,则cb a 111++的最小值为 ( ) A .9 B .8 C .3 D .314.已知632=++z y x ,则zyx842++的最小值为 ( ) A .3B .2C .12D .125.当510≤≤x 时,函数)51(2x x y -=的最大值为 ( ) A .251 B .31 C .6754 D .无最大值6.设+∈R c b a ,,,且1=++c b a ,若)11)(11)(11(---=cb a M ,则必有 ( )A .810<≤MB .181<≤M C .81<≤M D .8≥M7.若0,0>>y x 且42=xy ,则y x 2+的最小值为 . 8.若记号“*”表示求两个实数a 与b 的算术平均的运算,即2ba b a +=*,则两边均含有运算“*”和“+”,且对任意3个实数c b a ,,都能成立的一个等式可以是 .9.设正数c b a ,,满足1=++c b a ,则231,231,231+++c b a 的最小值为 . 10.求函数)250()25()(2<<-=x x x x f 的最大值.11.已知y x ,均为正数,且y x >求证:3221222+≥+-+y y xy x x12.如图(1)所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,如图(2)所示,求这个正六棱柱容器容积的最大值.第四课时 绝对值三角不等式一、知识要点绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当 时,等号成立. 几何解释:用向量a ,b 分别替换a ,b .①当a 与b 不共线时,有|a +b|<|a |+|b |,其几何意义为: .②若a ,b 共线,当a 与b 时,|a +b |=|a |+|b |,当a 与b 时,|a +b |<|a |+|b |. 由于定理1与三角形之间的这种联系,故称此不等式为绝对值三角不等式. ③定理1的推广:如果a ,b 是实数,则||a |-|b ||≤|a ±b |≤|a |+|b |.(2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |.当且仅当 时,等号成立. 几何解释:在数轴上,a ,b ,c 所对应的点分别为A ,B ,C , 当点B 在点A ,C 之间时,|a -c | |a -b |+|b -c |. 当点B 不在点A ,C 之间时:①点B 在A 或C 上时,|a -c | |a -b |+|b -c |; ②点B 不在A ,C 上时,|a -c | |a -b |+|b -c |. 应用:利用该定理可以确定绝对值函数的值域和最值.二、考点例题考点一 含绝对值不等式的判断与证明[例1] 已知|A -a |<s 3,|B -b |<s 3,|C -c |<s3.求证:|(A +B +C )-(a +b +c )|<s .方法规律小结 含绝对值不等式的证明题主要分两类:一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值转化为常见的不等式证明,或利用绝对值三角不等式||a |-|b |≤|a ±b |≤|a |+|b |,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明跟踪训练 1.设a 、b 是满足ab <0的实数,则下列不等式中正确的是 ( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b || D .|a -b |<|a |+|b |2.设ε>0,|x -a |<ε4,|y -a |<ε6.求证:|2x +3y -2a -3b |<ε.考点二 绝对值不等式三角形的应用[例2] (1)求函数y =|x -3|-|x +1|的最大值和最小值.(2)设a ∈R ,函数)11()(2≤≤--+=x a x ax x f .若|a |≤1,求|f (x )|的最大值.方法规律小结 (1)利用绝对值不等式求函数最值,要注意利用绝对值的性质进行转化,构造绝对值不等式的形式.(2)求最值时要注意等号成立的条件,它也是解题的关键.跟踪训练 1.若a ,b ∈R ,且|a |≤3,|b |≤2则|a +b |的最大值是________,最小值是________2.求函数f (x )=|x -1|+|x +1|的最小值.3.若对任意实数,不等式|x +1|-|x -2|>a 恒成立,求a 的取值范围.三、课后作业1.已知实数b a ,满足0<ab ,下列不等式成立的是 ( )A .b a b a ->+B .b a b a -<+C .b a b a -<-D .b a b a +<- 2.设1,1<<b a ,则b a b a -++与2的大小关系是 ( )A .2>-++b a b aB .2<-++b a b aC .2=-++b a b aD .不能比较大小 3.若关于x 的不等式a x x <++-32的解集为∅,则实数a 的取值范围为( ) A .(∞-,1] B .(∞-,1) C .(∞-,5] D .(∞-,5)4.不等式a a x x 3132-≥-++对任意实数x 恒成立,则实数a 的取值范围为 ( ) A .[1-,4] B .(∞-,1-]∪[4,+∞) C .(∞-,2-]∪[5,+∞) D .[2-,5] 5.若不等式a x x ≥-+622对于一切实数x 均成立,则实数a 的最大值是 ( ) A .7 B .9 C .5 D .116.对于实数y x ,,若12,11≤-≤-y x ,则12+-y x 的最大值为 ( ) A .5 B .4 C .8 D .77.已知13)(+=x x f ,若当b x <-1时,有),0(,,4)(+∞∈<-b a a x f ,则b a ,满足的关系为 . 8.若N n x ∈<,5,则下列不等式:①1lg 51lg+<+n n n n x ②1lg 51lg +<+n nn n x ③1lg 51lg+<+n n n n x ④1lg 51lg +<+n nn n x 其中能够成立的有 .(填序号) 9.若关于x 的不等式21-++≥x x a 存在实数解,则实数a 的取值范围是 .10.已知函数41)(,23)(++-=--=x x g x x f ,若函数1)()(+≥-m x g x f 的解集为R ,求m 的取值范围.11.已知函数1,13)(2<-+-=a x x x x f .求证:)1)((2)()(+<-a f a f x f .12.两个加油站B A ,位于某城市东akm 和bkm 处(b a <),一卡车从该城市出发,由于某种原因,它需要往返B A ,两加油站,问它行驶在什么情况下到两加油站的路程之和是一样的?第五课时 绝对值不等式的解法一、知识要点1.|ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法只需将ax +b 看成一个整体,即化成|x |≤a ,|x |≥a (a >0)型不等式求解.|ax +b |≤c (c >0)型不等式的解法:先化为 ,再由不等式的性质求出原不等式的解集. 不等式|ax +b |≥c (c >0)的解法:先化为 或 ,再进一步利用不等式性质求出原不等式的解集 2.|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 型不等式的解法①利用绝对值不等式的 求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.②以绝对值的 为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键.③通过构造函数,利用函数的图像求解,体现函数与方程的思想,正确求出函数的零点并画出函数图像(有时需要考查函数的增减性)是解题关键.二、考点例题考点一 c b ax ≤+和)0(>≥+c c b ax 型不等式的解法[例1] 解下列不等式: (1)|5x -2|≥8;(2)2≤|x -2|≤4.方法规律小结 |ax +b |≥c 和|ax +b |≤c 型不等式的解法:①当c >0时,|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c ,|ax +b |≤c ⇔-c ≤ax +b ≤c . ②当c =0时,|ax +b |≥c 的解集为R ,|ax +b |<c 的解集为∅. ③当c <0时,|ax +b |≥c 的解集为R ,|ax +b |≤c 的解集为∅. 跟踪训练 1.解下列不等式:(1)|3-2x |<9;(2)|x -2x -2|>2x -3x -4;(3)|2x -3x -4|>x +1(4)213+<-x x (5)x x ->-213 (6) |2||1|x x -<+ (7)4|23|7x <-≤ (8)01222<---x x x2.已知{23}A x x a =-<,{B x x =≤10},且A B ⊂≠,求实数a 的范围.考点二 c b x a x ≤-+-和c b x a x ≥-+-型不等式的解法[例2] 解不等式|x -3|-|x +1|<1.方法规律小结 |x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图像法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图像法直观,但只适用于数据较简单的情况 跟踪训练1.解不等式|x -2|-|x +7|≤3 2.解不等式|2x -1|+|3x +2|≥8. 3.解不等式512≥-+-x x 考点三 含绝对值不等式恒成立的问题 [例3] 已知不等式|x +2|-|x +3|>m .(1)若不等式有解; (2)若不等式解集为R ;(3)若不等式解集为∅,分别求出m 的范围.方法规律小结 问题(1)是存在性问题,只要求存在满足条件的x 即可;不等式解集为R 或为空集时,不等式为绝对不等式或矛盾不等式,属于恒成立问题,恒成立问题f (x )<a 恒成立⇔a x f <max )(,f (x )>a 恒成立⇔a x f >min )(跟踪训练 1.把本例中的“>”改成“<”,即|x +2|-|x +3|<m 时,分别求出m 的范围.2.把本例中的“-”改成“+”,即|x +2|+|x +3|>m 时,分别求出m 的范围.3.不等式 31++-x x >a ,对一切实数x 都成立,则实数a 的取值范围是 4.已知关于x 的不等式|x +2|+|x -3|<a 的解集是非空集合,则实数a 的取值范围是_________.课堂练习1..1122>-x 2.01314<--x 3.423+≤-x x . 4.x x -≥+21. 5.1422<--x x 6.212+>-x x . 7.42≥-+x x8..631≥++-x x 9.21<++x x 10..24>--x x 11.已知不等式a x ≤-2)0(>a 的解集为{}c x R x <<-∈1|,求c a 2+的值12.解关于x 的不等式2||x a a -<(a R ∈)13.解关于x 的不等式:① 解关于x 的不等式31<-mx ;② a x <-+132)(R a ∈三、课后作业1.若11+>+x xx x ,则实数x 的取值范围是 ( ) A .(1-,0) B .[1-,0] C .(∞-, 1-)∪(0,∞+) D .(,∞-1-]∪[0,∞+ 2.若1>a ,则不等式1>+a x 的解集是 ( )A .{}a x a x -<<-11B .{}a x a x x ->-<11或 C .∅ D .R 3.已知集合{}{}312,0652>-=≤+-=x x B x x x A ,则B A 等于 ( ) A .[]3,2 B .[)3,2 C .(]3,2 D .)3,1(- 4.若规定bc ad dc b a -=,则不等式0111log2<x的解集为 ( )A .(0,1)B .(1,2)C .(0, 2)D .(0,1)∪(1,2)5.不等式a xax >-1的解集为M ,且M ∉2,则a 的取值范围为 ( ) A .⎪⎭⎫⎝⎛+∞,41 B .⎪⎭⎫⎢⎣⎡+∞,41 C .⎪⎭⎫ ⎝⎛21,0 D .⎥⎦⎤ ⎝⎛21,0 6.已知)2(log ax y a -=在(0,1)上是增函数,则不等式3log 1log ->+x x a a 的解集为 ( ) A .{}1-<x x B .{}1<x x C .{}11-≠<x x x 且 D .{}1>x x7.设2,,>-∈b a R b a ,则关于实数x 的不等式2>-+-b x a x 的解集是 . 8.在实数范围内,不等式112≤--x |的解集为 .9.若关于x 的不等式0212<++-a x ax 的解集为空集,则实数a 的取值范围是 . 10.已知R a ∈,设关于x 的不等式4232+≥++-x x a x 的解集为A (1)若1=a ,求A(2)若R A =,求a 的取值范围.11.已知实数b a ,满足:关于x 的不等式164222--≤++x x b ax x 对一切R x ∈均成立. (1)请验证8,2-=-=b a 满足题意.(2)求出所有满足题意的实数b a ,,并说明理由.(3)若对一切2>x ,均有不等式15)2(2--+≥++m x m b ax x 成立,求实数m 的取值范围. 12.已知关于x 的不等式1+>ax a 的解集为{}0≤x x 的子集,求a 的取值范围.第二节 证明不等式的基本方法第一课时 比较法一、知识要点1.作差比较法(1)作差比较法的理论依据a -b >0⇔ ,a -b <0⇔ ,a -b =0⇔ . (2)作差比较法解题的一般步骤:①作差;②变形整理,③判定符号,④得出结论. 其中变形整理是解题的关键,变形整理的目的是为了能够直接判定 ,常用的手段有:因式分解,配方,通分,分子或分母有理化等. 2.作商比较法(1)作商比较法的理论依据是不等式的基本性质:①b >0,若 ,则a >b ;若 则a <b ; ②b <0,若 则a <b ;若 则a >b .(2)作商比较法解题的一般步骤:①判定a ,b 符号;②作商;③变形整理;④判定 ;⑤得出结论.二、考点例题考点一 作差比较法证明不等式[例1] 设△ABC 的三边长分别是a 、b 、c ,求证:2)()(4c b a ac bc ab ++>++方法规律小结 (1)作差比较法中,变形具有承上启下的作用,变形的目的在于判断差的符号,而不用考虑差能否化简或值是多少.(2)变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.(3)因式分解是常用的变形手段,为了便于判断“差式”的符号,常将“差式”变形为一个常数,或几个因式积的形式,当所得的“差式”是某字母的二次三项式时,常用配方法判断符号.有时会遇到结果符号不能确定,这时候要对差式进行分类讨论. 跟踪训练 1.求证:)1(222--≥+b a b a2.已知a ,b ∈R +,n ∈N +,求证:)(2))((11+++≤++n n nnb ab a b a考点二 作商比较法证明不等式 [例2] 设a >0,b >0,求证:2)(b a baab b a +≥方法规律小结 当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法,用作商比较法时,如果需要在不等式两边同乘某个数,要注意该数的正负,且最后结果与1比较.跟踪训练 1.设0>>b a ,求证:b a ba ba b a +->+-2222.2.如果a ,b 都是正数,且a ≠b ,求证422466b a b a b a +>+考点三 比较法的实际应用[例3] 甲、乙二人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半以速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n 行走.如果m ≠n ,问甲、乙二人谁先到达指定地点? 方法规律小结 应用不等式解决实际问题时, 关键是如何把等量关系、不等量关系转化为不等式的问题来解决.也即建立数学模型是解应用题的关键,最后利用不等式的知识来解.在实际应用不等关系问题时,常用比较法来判断数的大小关系,若是选择题或填空题则可用特殊值加以判断.跟踪训练5.某人乘出租车从A 地到B 地,有两种方案;第一种方案:乘起步价为10元.每千米1.2元的出租车,第二种方案:乘起步价为8元,每千米1.4元的出租车.按出租车管理条例,在起步价内.不同型号的出租车行驶的路程是相等的,则此人从A 地到B 地选择哪一种方案比较合适?三、课后作业1.设m b a ,,都是正数,且b a <,则下列不等式中恒成立的是 ( )A .1<++<m b m a b a B .m b m a b a ++≥ C .1≤++≤m b m a b a D .bam b m a <++<12.“1>a ”是“11<a”的 ( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 3.设b a B b a A R b a +=+=∈+,,,,则B A ,的大小关系是 ( )A .B A ≥ B .B A ≤C .B A >D .B A <4.已知下列不等式:①x x 232>+;②322355b a b a b a +>+;③)1(222--≥+b a b a .其中正确的个数为 ( )A .0B .1C .2D .3 5.设0,0>>b a ,下列不等式中不正确的是 ( )A .ab b a 222≥+ B .2≥+b a a b C .b a b a a b +≥+22D .ba b a +≤+111 6.在等比数列{}n a 和等差数列{}n b 中,313311,0,0a a b a b a ≠>=>=则5a 与5b 的大小关系为 ( ) A .55b a > B .55b a < C .55b a = D .不确定 7.已知xc x b x a x -=+==<<11,1,2,10,则其中最大的是 . 8.若x 是正数,且23=-x x ,则x 与45的大小关系为 .9.设)0,0(2,2121>>+=+=b a ba Bb a A 则B A ,的大小关系为 .10.已知0,0>>b a ,求证:b a ab ba +≥+11.若n m b a ,,,都为正实数,且1=+n m 求证:b n a m nb ma +≥+12.已知函数b ax x x f ++=2)(,当q p ,满足1=+q p 时,证明:)()()(qy px f y qf x pf +≥+对于任意实数y x ,都成立的充要条件是10≤≤p .第二课时 综合法与分析法一、知识要点1.综合法(1)证明的特点:综合法又叫顺推证法或 法,是由 和某些数学定义、公理、定理等,经过一系列的 ,最后推出所要证明的结论成立. (2)证明的框图表示:用P 表示已知条件或已有的不等式,用Q 表示所要证明的结论,则综合法可用框图表示为 P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→……→Q n ⇒Q2.分析法(1)证明的特点:分析法又叫逆推证法或 法,是从要证明的不等式出发,逐步寻找使它成立的 条件.直到最后把要证明的不等式转化为判定一个已知或明显成立的不等式为止. (2)证明过程的框图表示:用Q 表示要证明的不等式,则分析法可用框图表示为Q ⇐P 1→P 1⇐P 2→P 1⇐P 3→……→得到一个明显成立的条件二、考点例题[例1] 已知x >0,y >0,且x +y =1,求证:(1+1x )·(1+1y)≥9.方法规律小结 综合法证明不等式,揭示出条件和结论之间的因果联系,为此要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键跟踪训练 1.已知a ,b ,c ∈R +,证明不明式:a +b +c ≥ab +bc +ca ,当且仅当a =b =c 时取等号.2.已知a ,b ,c 都是实数,求证:a 2+b 2+c 2≥13(a +b +c )2≥ab +bc +ca .考点二 用分析法证明不等式[例2] 已知x >0,y >0,求证31332122)()(y x y x +>+方法规律小结(1)当所证不等式与重要不等式、基本不等式没有什么直接联系,或条件与结论之间的关系不明显时,可用分析法来寻找证明途径.(2)分析法证明的关键是推理的每一步都必须可逆. 跟踪训练 1.求证:3+7<2 52.a ,b ∈R +,且2c >a +b .求证:c -c 2-ab <a <c +c 2-ab .考点三 综合法和分析法的综合应用[例3] 设a >0,b >0,且a +b =1,求证:a +1+b +1≤ 6.方法规律小结(1)通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式易于证明. (2)有些不等式的证明,需要一边分析一边综合,称之为分析综合法,或称“两头挤”法,如本例,这种方法充分表明了分析法与综合法之间互为前提,互相渗透,相互转化的辩证统一关系.跟踪训练1.已知a ,b ,c 都是正数,求证:2⎝⎛⎭⎫a +b 2-ab ≤3⎝ ⎛⎭⎪⎫a +b +c 3-3abc . 三、课后作业。
高中数学:不等式选讲教案北师大版选修4-5

选修4-5 不等式选讲课 题: 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。
怎么证呢? 二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。
不等式的性质-北师大版选修4-5不等式选讲教案

不等式的性质-北师大版选修4-5 不等式选讲教案一、不等式的定义不等式是表示不等关系的数学式子。
在不等式中,我们主要会遇到以下三种符号:•大于号 >,表示大于的关系;•小于号 <,表示小于的关系;•不等于号≠,表示不等于的关系。
二、不等式的性质1. 加减不等式如果对不等式的两边同时加上(减去)同一个数,则不等式的关系不变。
例如:如果a < b,则有a + c < b + c。
2. 乘除不等式如果两边同时乘(除)以同一个正数,则不等式的关系不变。
例如:如果a < b 且 c > 0,则有ac < bc。
如果两边同时乘(除)以同一个负数,则不等式的关系会变化。
例如:如果a < b 且 c < 0,则有ac > bc。
需要注意的是,当两边同时乘(除)以同一个负数时,一定要颠倒不等式的方向。
3. 绝对值不等式对于任何实数a和b,都有|a + b| ≤ |a| + |b|。
根据这个不等式,我们可以推得以下两个结论:•|a - b| ≥ |a| - |b|;•|a - b| ≥ |b| - |a|。
4. 平方不等式对于任何实数a和b,有以下公式成立:•(a + b)² ≥ 4ab;•(a - b)² ≥ 0。
这两个公式分别叫做“算术-几何平均值不等式”和“平方差公式”。
需要注意的是,当取等号时,等号右边的值必须是非负实数,否则不等式就不成立了。
5. 根式不等式对于一般的不等式,有以下公式成立:√(a² + b²) ≥ |a| + |b|。
这个公式也叫做“柯西不等式”。
需要注意的是,当取等号时,等号右边的值必须是非负实数,否则不等式就不成立了。
三、例题讲解例题1已知x > 0,y < 0,则下列不等式中正确的是()。
A. xy < 0B. x + y < xC. x - y < xD. x + y < 0解:由于x > 0 和 y < 0,因此可以得出以下不等式:xy < 0。
选修4-5《不等式的基本性质和证明的基本方法》

山东省新人教B 版2012届高三单元测试24 选修4-5《不等式的基本性质和证明的基本方法》(时间120分钟 满分150分)一、选择题。
(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,有一项是符合题目要求的。
) 1.已知集合{}{}224,230M x x N x x x =<=--<,则集合M ∩N 等于( )A .{}2x x <-B .{}3x x >C .{}12x x -<<D .{}23x x << 2.若110a b <<,则不等式①a+b<ab;②;a b >③;a b <④2b aa b+>中正确的有( ) A . 1个B .2个C .3个D .4个3.设0ab >,下列4个不等式:①a b a +>;②a b b +<;③a b a b +<-; ④a b a b +>-,其中正确的是( )A .①和②B .①和③C .①和④D .②和④ 4.已知a 、b 、c ∈R ,下列命题正确的是( )A .22a b ac bc >⇒> B .2211,0a b a b a b -->+≠⇒<C .3311,0a b ab ab -->>⇒< D .2211,0a b ab a b -->>⇒<5.不等式113x <+<的解集为( )A .(0,2)B .(—2,0)∪(2,4)C .(—4,0)D .(—4,-2)∪(0,2) 6.在下列函数中,当x 取正数时,最小值为2的是 ( )A .4y x x=+B .1lg lg y x x=+C .y =D .223y x x =-+7.不等式22331x x x -+<-的解集是( )A .{}1x x ≤B .{}4x x >C .{}14x x x <>或D .{}14x x <<8.若01a <<,则不等式1()()0a x x a-->的解集是 ( )A .1xx a a ⎧⎫<<⎨⎬⎩⎭B .1x a x a ⎧⎫<<⎨⎬⎩⎭C .1,x x a x a ⎧⎫<>⎨⎬⎩⎭或 D .1,x x x a a ⎧⎫<>⎨⎬⎩⎭或 9.设a ,b ,c ,d ∈R ,且221a b +=,221c d +=,则abcd 的最大值等于 ( )A .14B .14-C .12D .12- 10.若x ∈R ,则2x <是11x +<的什么条件( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件11.已知不等式220ax bx ++>的解集为{}12x x -<<,则不等式220x bx a ++<的解集为( )A .112x x ⎧⎫-<<⎨⎬⎩⎭B .11,x 2x x ⎧⎫<->⎨⎬⎩⎭或C .{}21x x -<<D .{}2,1x x <->或x12.设111(1)(1)(1)1M a b c a b c=---++=且(a ,b ,c ∈R +),则M 的取值范围是( )A .1[0,)8B .1[,1)8C .[]1,8D .[)8,+∞二、填空题。
平均值不等式 导学案 高中数学选修4-5 北师大版

§3 平均值不等式1.掌握定理1和定理2及其证明,并能灵活应用. 2.理解定理3和定理4及其证明,并能简单应用. 3.会用相关定理解决简单的最大(最小)值问题.1.二元均值不等式 (1)定理1:对任意实数a ,b ,有a 2+b 2≥____(此式当且仅当a =b 时取“=”号). (2)定理2:对任意两个正数a ,b ,有______≥ab (此式当且仅当a =b 时取“=”号). 我们称______为正数a 与b 的算术平均值,______为正数a 与b 的几何平均值. 定理2可叙述为:两个正数的__________不小于它们的__________. 【做一做1-1】函数y =1x -3+x (x >3)的最小值是( ). A .5 B .4 C .3 D .2 【做一做1-2】“a >b >0”是“ab <a 2+b 22”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 2.三元均值不等式及其推广 (1)定理3:对任意三个正数a ,b ,c ,有a 3+b 3+c 3≥____(此式当且仅当a =b =c 时取“=”号). (2)定理4:对任意三个正数a ,b ,c ,有a +b +c3≥3abc (此式当且仅当a =b =c 时取“=”号).定理4可叙述为:三个正数的__________不小于它们的__________. (3)n 个正数的算术几何平均不等式:一般地,对n 个正数a 1,a 2,…,a n (n ≥2),我们把数值______________,__________分别称为这n 个正数的算术平均值与几何平均值,且有______________≥na 1a 2…a n ,此式当且仅当____________时取“=”号,即n 个正数的算术平均值不小于它们的__________.【做一做2】设x ,y ,z ∈R +,且x +y +z =1.求证:1x +4y +9z≥36.答案: 1.(1)2ab (2)a +b 2a +b2ab 算术平均值 几何平均值【做一做1-1】A 原式变形为y =1x -3+x -3+3. ∵x >3,∴x -3>0,∴1x -3>0. ∴y ≥2x -3 ·1x -3+3=5. 当且仅当x -3=1x -3,即x =4时等号成立. 【做一做1-2】A 当a >b >0时,a 2+b 22>2ab2=ab 成立,当ab <a 2+b 22时,不能推出“a >b >0”,故选A .2.(1)3abc (2)算术平均值 几何平均值 (3)a 1+a 2+…+a n n n a 1a 2…a n a 1+a 2+…+a nna 1=a 2=…=a n 几何平均值【做一做2】分析:本题需变式出现积为定值的情况,而条件中是和为定值x +y +z =1,所以对所证不等式的左边需变形出现积为定值的情况.证明:1x +4y +9z =x +y +z x +4 x +y +z y +9 x +y +zz=14+⎝⎛⎭⎪⎫y x +4x y +⎝⎛⎭⎪⎫z x +9x z +⎝⎛⎭⎪⎫4z y +9y z≥14+4+6+12=36. 当且仅当y x =4x y ,z x =9x z ,4z y =9y z ,且x +y +z =1,即x =16,y =13,z =12时取等号.对定理1和定理2的理解 剖析:(1)a 2+b 2≥2ab 与a +b2≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数.有些同学易忽略这一点,例如:(-1)2+(-4)2≥2×(-1)×(-4)成立,而 -1 + -42≥ -1 × -4 不成立.(2)这两个不等式都带有等号,应从两方面理解,“当且仅当……时,取‘=’号”这句话:①当a =b 时,取等号,其意义是a =b ⇒a +b2=ab ;②仅当a =b 时,取等号,其意义是a +b2=ab ⇒a =b .综合起来,其意义是:a =b 是a +b2=ab 成立的充要条件.(3)从这两个不等式我们可以得到如下结论:a b +b a≥2(ab >0);21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0).(4)式子中的a ,b 可以是数字,也可以是复杂的代数式.题型一 利用平均值不等式证明不等式【例1】若x >0,y >0,x +y =1,求证:⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y ≥9.分析:本题是有条件的证明不等式问题,要巧用“x +y =1”来证明.反思:利用平均值不等式证明不等式时,要注意把握平均值不等式的结构特点,以便灵活地用于解题,另外,式子的灵活变形,进行拆项、凑项,也是常用的方法.题型二 利用平均值不等式求最值【例2】设x ≥0,y ≥0,x 2+y 22=1,求x 1+y 2的最大值.分析:利用x 2+y 22=1,将式子进行变形再利用定理进行求解.反思:在解题过程中,要拼凑出和为定值,利用ab ≤a +b2(a >0,b >0)来求解最大值.【例3】求函数f (x )=x (5-2x )2⎝⎛⎭⎪⎫0<x <52的最大值.分析:对于x (5-2x )2无法直接利用平均值不等式求最值,可先拼凑出平均值不等式的形式后再求最值.反思:利用a +b +c ≥33abc 应注意不等式成立的条件.在求最值时,除了注意“一正”、“二定”、“三相等”之外,还要掌握配项、凑系数等变形技巧,有时为了便于应用公式,还用换元法,多用于分母中有根式的情况.题型三 利用平均值不等式解决实际问题【例4】如图,为处理含有某种杂质的污水,要制造一个底面宽为2 m 的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长为a m ,高为b m ,已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60 m 2,问当a ,b 各为多长时,沉淀后流出的水中该杂质的质量分数最小?(A ,B 孔的面积忽略不计)分析:题意中的“杂质的质量分数”可按“杂质的含量”理解,设为y .由题意y 与ab 成反比,可设比例系数为k ,则y =kab.又由于箱体材料多少的限制,a ,b 之间应有一定的关系式,即2×2b +2ab +2a =60,因此该题的数学模型是:已知ab +a +2b =30,a >0,b >0,求a ,b 为何值时,y =kab最小. 反思:(1)对于分母是一次式,分子是二次式的分式Ax 2+Bx +CDx +E,可采用本题中的变形方法.(2)本题的难度不在于建立数学模型,而在于建模后如何求函数的最值,这需要扎实的数学知识和灵活应用基本定理、公式解题的能力.(3)可以说解应用题需要过两关:一关是如何对由文字给出的应用问题建立数学模型;另一关就是对于建模后的数学模型,如何用相关的数学知识将其解答出来.题型四 易错辨析【例5】设a ,b ,x ,y ∈R ,且有a 2+b 2=3,x 2+y 2=6,求ax +by 的最大值. 错解:∵ax ≤a 2+x 22,by ≤b 2+y 22,∴ax +by ≤12(a 2+b 2+x 2+y 2)=92,∴ax +by 的最大值为92.错因分析:错解中不等式取等号的条件是当且仅当x =a ,y =b ,由条件知这是不可能的,所以不可能取到上述的最大值.反思:在利用平均值不等式进行证明或求解时,一定要注意等号取得的条件是否满足,即“一正、二定、三相等”的原则.答案:【例1】证明:证法一:左边=1+1x +1y +1xy =1+x +y xy +1xy =1+2xy≥1+2⎝ ⎛⎭⎪⎫x +y 22=9=右边.当且仅当x =y =12时,等号成立.证法二:左边=⎝⎛⎭⎪⎫1+x +y x ⎝ ⎛⎭⎪⎫1+x +y y =⎝ ⎛⎭⎪⎫2+y x ⎝ ⎛⎭⎪⎫2+x y =5+2⎝ ⎛⎭⎪⎫y x +x y ≥5+4=9=右边. 当且仅当x =y =12时,等号成立.证法三:利用三角函数来证明. 令x =cos 2θ,y =sin 2θ,0<θ<π2.左边=⎝ ⎛⎭⎪⎫1+1cos 2θ⎝ ⎛⎭⎪⎫1+1sin 2θ=1+1cos 2θ+1sin 2θ+1cos 2θsin 2θ=1+2sin 2θcos 2θ=1+8sin 22θ≥1+8=9=右边.当0<2θ<π,且θ=π4,即x =y =12时取等号.【例2】解:∵x ≥0,y ≥0,x 2+y 22=1,∴x 1+y 2=x 21+y 2=2x 2·1+y 22≤2·x 2+1+y 222=2·x 2+y 22+122=324.当且仅当x =32,y =22时⎝ ⎛⎭⎪⎫即x 2=1+y 22时,x 1+y 2取得最大值324. 【例3】解:f (x )=14×4x ×(5-2x )(5-2x )≤14⎝ ⎛⎭⎪⎫4x +5-2x +5-2x 33=25027.当且仅当4x =5-2x ,即x =56时,等号成立.∴当x =56时,函数f (x )=x (5-2x )2⎝⎛⎭⎪⎫0<x <52有最大值25027. 【例4】解:设流出的水中杂质的质量分数为y ,由题意,得y =k ab,其中k 为比例系数(k >0).根据题意,得2×2b +2ab +2a =60(a >0,b >0).∴b =30-a2+a(由a >0,b >0,可得0<a <30).。
选修4-5不等式导学案

选修4-5 不等式(1)导学案预习案不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么? 分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。
怎么证呢? 探究案一、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。
(对称性)②、如果a>b ,且b>c ,那么a>c ,即a>b ,b>c ⇒a>c 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 不等式的性质1.理解用两个实数差的符号来规定两个数大小的意义,掌握求差比较法和求商比较法.2.掌握不等式的性质,并能进行证明.3.会用不等式的基本性质判断不等关系和用比较法、反证法证明简单不等式.1.实数大小的比较(1)求差比较法.①a >b ⇔______;②______⇔a -b <0;③a =b ⇔______.判断两个实数a 与b 的大小归结为判断它们的差a -b 的符号,至于差究竟是多少则是无关紧要的.(2)求商比较法.当a >0,b >0时,①a b >1⇔______;②______⇔a <b ;③a b=1⇔______. 答案:(1)①a -b >0 ②a <b ③a -b =0 (2)①a >b ②a b<1 ③a =b 【做一做1-1】比较大小:x 2+3__________3x (其中x ∈R ).【做一做1-2】比较1816与1618的大小.2.不等式的性质(1)性质1:如果a >b ,那么______;如果b <a ,那么______.(2)性质2:如果a >b ,b >c ,那么______.(3)性质3:如果a >b ,那么a +c >______.推论:如果a >b ,c >d ,那么a +c >______.(4)性质4:如果a >b ,c >0,那么ac ____bc ;如果a >b ,c <0,那么ac ____bc . 推论1:如果a >b >0,c >d >0,那么ac >____.推论2:如果a >b >0,那么a 2____b 2.推论3:如果a >b >0,那么a n ____b n (n 为正整数).推论4:如果a >b >0,那么1n a ____1nb (n 为正整数).(1)引导学生掌握性质的证明方法,举反例是证明命题错误的主要方法,证明过程体现数学的严谨性.(2)特别注意性质4使用的前提,不等号方向取决于c 的符号.【做一做2-1】判断下列命题的真假,并说明理由.(1)如果a >b ,那么a -c >b -c .(2)如果a >b ,那么a c >b c. 【做一做2-2】若a >b >c ,则下列不等式成立的是( ).A .1a -c >1b -cB .1a -c <1b -cC .ac >bcD .ac <bc 答案:1.(1)①a -b >0 ②a <b ③a -b =0 (2)①a >b ②a b<1 ③a =b 【做一做1-1】> (x 2+3)-3x =x 2-3x +3=⎝⎛⎭⎫x -322+3-94=⎝⎛⎭⎫x -322+34≥34>0, 即x 2+3>3x .【做一做1-2】分析:两个数是幂的形式,比较大小一般采用求商的方法.解:18161618=⎝⎛⎭⎫181616·1162=⎝⎛⎭⎫9816·⎝⎛⎭⎫1216=⎝⎛⎭⎫98216, ∵982∈(0,1),∴⎝⎛⎭⎫98216<1. ∵1816>0,1618>0,∴1816<1618.2.(1)b <a a >b (2)a >c (3)b +c b +d (4)> < bd > > >【做一做2-1】分析:从不等式的性质找依据,与性质相符的为真,与性质不相符的为假.解:(1)真命题.理由:根据不等式的性质3,由a >b ,可得a +(-c )>b +(-c ),即a -c >b -c .(2)假命题.理由:由不等式的性质4可知,如果a >b ,c <0,则a c <b c,即不等式的两边同乘以一个数时,必须明确这个数的正负.【做一做2-2】B ∵a -c >b -c >0,∴1a -c <1b -c.1.比较两个实数的大小剖析:比较两个实数a ,b 的大小,可以转化为a ,b 的差与0的大小比较,这种比较大小的方法称为求差比较法.它的主要步骤是:(1)作差;(2)变形(分解因式,配方等);(3)判断差的符号;(4)下结论.其中最关键的是第(2)步,变形要有利于判断差的符号才行.比较两个实数a ,b 的大小,也可以转化为a 与b 的商与1的大小比较,这种比较大小的方法称为求商比较法.它的主要步骤是:(1)作商;(2)变形;(3)判断商与1的大小关系;(4)下结论.其中最关键的是第(3)步,在第(4)步中要注意不等号的方向,不等号的方向受分母的符号的影响.2.不等式和等式的基本性质的区别与联系剖析:区别:在等式的两边同乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况:若这个数为正数,则不等号方向不变,若这个数为负数,则不等号方向改变.联系:不等式的基本性质和等式的基本性质,对等式(或不等式)两边形式的变化相同,讨论的都是两边同时加上或减去,同时乘以或除以(除数不为0)同一个数时的情况.题型一 利用作差法比较大小【例1】比较(a +3)(a -5)与(a +2)(a -4)的大小.分析:此题为两个代数式比较大小,可先作差,然后展开,合并同类项后,判断差值的正负.反思:利用作差法比较大小,实际上是把比较两数大小的问题转化为数的运算符号问题.作差时,只需看差的符号,至于差的值究竟是多少,这里无关紧要.如本题,只需看差-7的正负即可.题型二 利用作商法比较大小【例2】已知a >b >c >0,比较a 2a b 2b c 2c 与a b +c b c +a c a +b 的大小.分析:用求差比较法不易变形,所以用求商比较法.反思:用求商比较法比较两个式子的大小时,第(2)步的变形要向着有利于判断商与1的大小关系的方向变形,这是最重要的一步.题型三 利用不等式的性质证明不等式【例3】已知a >b >c >d >0,且a b =c d,求证:a +d >b +c . 分析:利用不等式的性质,将已知等式进行适当变形,注意符号的变化.反思:在证明不等式时,往往不等式的性质和比例式的性质联合使用,使式子间转换更迅速.如本题,不仅有不等式性质应用的信息,更有比例的信息.因此这道题既要重视性质的运用技巧,也要重视比例性质的应用技巧.题型四 易错辨析【例4】已知函数f (x )=ax 2-c ,-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.错解:依题意,得⎩⎪⎨⎪⎧ -4≤a -c ≤-1,-1≤4a -c ≤5, 1 2由(1),(2)利用不等式的性质进行加减消元,得0≤a ≤3,1≤c ≤7,(3)∴由f (3)=9a -c ,可得-7≤f (3)≤26.错因分析:由(1)(2)得到不等式(3)是利用了不等式的性质中的加法法则,而此性质是单向的,不具有可逆性,从而使得a ,c 的范围扩大,这样f (3)的范围也随之扩大了.反思:解本题时,利用f (1),f (2)设法表示a ,c ,然后再代入f (3)的表达式中,从而用f(1)和f (2)来表示f (3),最后运用已知条件确定f (3)的取值范围.答案:【例1】解:由题意,作差得(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0,所以(a +3)(a -5)<(a +2)(a -4).【例2】解:由a >b >c >0,得a 2a b 2b c 2c >0,a b +c b c +a c a +b >0. 所以a 2a b 2bc 2c a b +c b c +a ca +b =a a a a b b b bc c c ca b a c b c b a c a c b =a a -b ·a a -c ·b b -c ·b b -a ·c c -a ·c c -b =⎝⎛⎭⎫a b a -b ·⎝⎛⎭⎫ac a -c ·⎝⎛⎭⎫b c b -c .∵a >b >0,∴a b>1,a -b >0,即⎝⎛⎭⎫a b a -b >1. 同理⎝⎛⎭⎫b c b -c >1,⎝⎛⎭⎫a c a -c >1. ∴a 2a b 2b c 2ca b +c b c +a ca +b >1, 即a 2a b 2bc 2c >a b +c b c +a c a +b . 【例3】证明:∵a b =cd ,∴a -b b =c -d d. ∴(a -b )d =(c -d )b .又∵a >b >c >d >0,∴a -b >0,c -d >0,b >d >0且b d>1, ∴a -b c -d =b d>1, ∴a -b >c -d ,即a +d >b +c .【例4】正解:由⎩⎪⎨⎪⎧a -c =f 1 ,4a -c =f 2 ,解得⎩⎨⎧ a =13[f 2 -f 1 ],c =13f 2 -43f 1 .∴f (3)=9a -c =83f (2)-53f (1). ∵-4≤f (1)≤-1,∴53≤⎝⎛⎭⎫-53f (1)≤203.(1) 又-1≤f (2)≤5,故-83≤83f (2)≤403.(2) 把(1),(2)两边分别相加,得-1≤83f (2)-53f (1)≤20,∴-1≤f (3)≤20.1对于实数a ,b ,c ,有下列命题:①若a >b ,则ac <bc ;②若ac 2>bc 2,则a >b ;③若a <b <0,则a 2>ab >b 2;④若c>a >b >0,则a c -a >b c -b;⑤若a >b ,1a >1b ,则a >0,b <0.其中真命题的个数是( ). A .2 B .3 C .4 D .52若a <0,-1<b <0,则有( ).A .a >ab >ab 2B .ab 2>ab >aC .ab >a >ab 2D .ab >ab 2>a 3设a >1,-1<b <0,则a ,b ,-a ,-b ,-ab 按由大到小的顺序排列是__________. 4若x ∈R ,则x 2-x 与x -2的大小关系是__________.答案:1.C ①∵c 的正、负或是否为零未知,∴无法判断ac 与bc 的大小,故该命题是假命题.②由ac 2>bc 2,知c ≠0.又c 2>0,∴a >b .故该命题是真命题.③ ⎭⎬⎫a <b <0a <0⇒a 2>ab ,⎭⎬⎫a <b b <0⇒ab >b 2, ∴a 2>ab >b 2.故该命题为真命题.④a >b >0⇒-a <-b ⇒c -a <c -b .∵c >a ,∴c -a >0,∴0<c -a <c -b .两边同乘以1 c -a c -b ,得1c -a >1c -b>0. 又a >b >0,∴a c -a >b c -b .故该命题为真命题.。