高一新课第六讲:对应、映射和函数
映射和函数的关系

映射和函数的关系在数学中,映射和函数是两个非常重要的概念,它们之间存在着密切的关系。
本文将从不同的角度介绍映射和函数,并探讨它们之间的联系和特点。
一、映射的定义和特点映射是数学中一个基本的概念,它描述了两个集合之间的元素之间的对应关系。
具体来说,设A和B是两个非空集合,如果对于A中的每个元素a,都有一个元素b与之对应,那么就称这种对应关系为映射。
映射具有以下特点:1. 一对一映射:如果对于A中的不同元素a1和a2,其对应的b1和b2也是不同的,那么称这种映射为一对一映射。
2. 多对一映射:如果对于A中的不同元素a1和a2,其对应的b1和b2是相同的,那么称这种映射为多对一映射。
3. 映射的定义域和值域:对于映射f:A→B,A称为定义域,B称为值域。
4. 映射的像和逆像:对于映射f:A→B,对于B中的任意元素b,称在A中所有与b对应的元素的集合为b的逆像,称在B中与A的所有元素对应的元素的集合为A的像。
二、函数的定义和性质函数是一种特殊的映射,它具有以下性质:1. 定义域和值域:函数f:A→B的定义域为A,值域为B。
2. 唯一性:对于定义域A中的每个元素a,函数f只能有一个值b 与之对应。
3. 图像和原像:对于函数f:A→B,对于B中的任意元素b,称在A 中与b对应的元素为b的原像,称在B中与A的所有元素对应的元素的集合为A的图像。
4. 单调性:函数可以是单调递增的,也可以是单调递减的,或者不具备单调性。
三、映射与函数的关系映射是一个更加一般的概念,而函数是映射的一种特殊情况。
具体来说,函数是一种满足每个元素只有一个唯一值与之对应的映射。
在映射中,元素之间的对应关系可以是一对一的或多对一的,但在函数中,元素之间的对应关系必须是一对一的。
因此,函数是映射的一种特殊情况。
映射和函数都具有定义域和值域的概念,用来描述元素的取值范围。
只不过在函数中,定义域中的每个元素只能有一个对应的值域元素,而在映射中可以有多个。
映射与函数知识点总结

映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。
对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。
记作f:A→B。
2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。
对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。
记作f:A→B。
3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。
二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。
换句话说,每个元素a∈A都对应着集合B中唯一的元素。
2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。
3.双射:即同时满足单射和满射的函数,也称为一一映射。
4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。
5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。
这样的函数g称为函数f的反函数。
三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。
通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。
2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。
高一数学映射知识点

高一数学映射知识点数学是一门综合性科学,映射是其中的重要概念之一。
在高一数学学习中,映射是一个需要深入理解和掌握的知识点。
本文将从映射的定义、映射的性质以及映射的应用等方面进行详细介绍。
一、映射的定义映射是一种对应关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。
映射常常用符号“f”表示,表示一个元素或者一组元素通过某种规则对应到另一个集合中。
对于集合A和集合B,如果存在一个映射f,使得对于A中的任意元素a,都有唯一的对应元素b在集合B中,即f(a)=b,那么我们可以说A中的元素通过映射f对应到B中的元素。
二、映射的性质1. 单射:如果映射f中不同的元素在B中有不同的对应元素,即对于任意的a1和a2,如果f(a1)=f(a2),则a1=a2。
这种映射被称为单射或一一映射。
单射保证了映射的唯一性。
2. 满射:如果映射f中的所有元素都有对应的元素存在于B中,即对于任意的b∈B,都存在a∈A,使得f(a)=b。
这种映射被称为满射。
满射保证了映射的完备性。
3. 双射:既是单射又是满射的映射被称为双射。
双射保证了映射的一一对应关系,即A中的每一个元素都有唯一对应的元素在B中,B中的每一个元素也都有唯一对应的元素在A中。
4. 逆映射:如果映射f是一个双射,那么它存在一个逆映射g,使得g(f(a))=a对于任意的a∈A成立,同时f(g(b))=b对于任意的b∈B也成立。
逆映射可以实现映射的互逆。
三、映射的应用映射在数学中的应用非常广泛,尤其在解决实际问题时起到了重要的作用。
以下是映射在几个常见领域的应用示例:1. 函数关系:函数是一种特殊的映射关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。
函数在数学中有着广泛的应用,例如描述物理规律、经济关系以及建立模型等。
2. 图论:映射在图论中有重要作用。
图是由一系列的顶点和边组成的数学模型,而映射则常常用于描述顶点之间的关系,例如在社交网络中描述用户之间的关注关系。
高一数学基础知识讲义函数及其性质

第二讲 函数及其性质函数及其相关概念 ⑴映射:设,A B 是两个非空集合,如果按照某种对应法则f,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素与它对应,这样的对应关系叫做从集合A 到集合B 的映射。
记作::f A B →。
⑵象与原象:给定一个集合A 到集合B 的映射,且,a A b B ∈∈,如果,a b 对应那么元素b 叫做元素a 的象,元素a 叫做元素b 的原象。
⑶一一映射:设,A B 是两个非空集合,:f A B →是集合A 到集合B 的映射,并且对于集合B 中的任意一个元素,在集合A 中都有且只有一个原象,把这个映射叫做从集合A 到集合B 的一一映射。
⑷函数:设集合A 是一个非空数集,对A 中的任意数x ,按照确定的法则f,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数,记作:(),y f x x A =∈这里x 叫自变量,自变量的取值范围叫做这个函数的定义域,所有函数值构成的集合,叫做这个函数的值域。
这里可以看出一旦一个函数的定义域与对应法则确定,则函数的值域也被确定,所以决定一个函数的两个条件是:定义域和对应法则。
⑸函数的表示方法:解析法、图像法、列表法。
⑹区间:定 义名 称 符 号{}x a x b ≤≤ 闭区间 [],a b {}x a x b << 开区间 (),a b{}x a x b ≤< 半开半闭区间 [),a b {}x a x b <≤半开半闭区间(],a b闭区间是包括端点,开区间不包括端点。
实数集R 可以表示为(),-∞+∞,“∞”读作“无穷大”,例如:“3x ≥”可以表示为[)3,+∞,“4x <-”可以表示为(),4-∞-。
高考要求:了解映射的概念,理解函数的有关概念,掌握对应法则图像等性质,能够熟练求解函数的定义域、值域。
例题讲解: 夯实基础一、判断下列关系哪些是映射。
1),,:A Z B Z f ==平方; 2),,:A R B R f +==平方;3){}11,,:A x x B R f =-≤<=求倒数;4){},0,1,:A N B f ==当n 为奇数时,1n →;当n 为偶数时,0n →;5){},Z A C Z B -==正奇数,:21,f n m n →=-其中,n A m B ∈∈; 二、已知()23,1x f x x +=-求()(),2f t f x +。
湘教版高中数学必修一课件1.2.1对应、映射和函数

课堂讲义
• 要点三 映射的个数问题 • 例3 已知A={x,y},B={a,b,c},集合A
到集合B的所有不同的映射有多少个?
解 分两类考虑: (1)集合 A 中的两个元素都对应 B 中相同元素的映射有 3 个.
课堂讲义
(2)集合 A 中的两个元素对应 B 中不同元素的映射有 6 个.
∴A 到 B 的映射共有 9 个.
• (2)已知集合A={a,b},B={2,0,-2},f是 从A到B的映射,且f(a)+f(b)=0,求这样的映
解 射(1f)的可以个建数立.以下 8 个不同的映射:
课堂讲义
(2)符合要求的映射 f 有以下 3 个:
课堂讲义
要点四 函数的概念 例 4 下列对应或关系式中是 A 到 B 的函数的是( )
有当y≥-1时,它在A中才有原象,而当y< -1时,它在A中就没有原象,即集合B中小于 -1的元素没有原象.
课堂讲义
• 规律方法 1.解答此类问题的关键是: • (1)分清原象和象; • (2)搞清楚由原象到象的对应法则; • 2.对A中元素,求象只需将原象代入对应法
则即可,对于B中元素求原象,可先设出它的 原象,然后利用对应法则列出方程(组)求解.
60°相对应的 B 中的元素是________,与 B 中元素
2 2
相对应的 A 中的元素是________.
答案
(1)D
3 (2) 2
45°
课堂讲义
解析 (1)由映射定义知,B 中至少有元素 1,2,3,4,即 B 中至少 有 4 个元素,选 D. (2)60°角的正弦等于 23,45°角的正弦等于 22,所以 60°的象是 23, 22的原象是 45°.
都有 2 个 y 值与之对应,不是函数,C 项中由于 x-2≥0 且 1
高数课件映射与函数

3
图像和原像的关系
图像和原像之间存在一对多或多对一的关系,取决于映射的特性。
函数的定义和性质
什么是函数?
函数是一种特殊的映射,它 将定义域中的每个元素映射 到值域中唯一的元素。
函数的性质
函数具有单调性、有界性和 奇偶性等重要性质,可应用 于各个领域。
示例
举例说明具体函数的定义和 性质,在实际问题中的应用。
映射与函数的关系
1 映射与函数的相同点
映射和函数都是描述元素之间的对应关系,具有相似的数学概念和性质。
2 映射与函数的不同点
映射是一个更普遍的概念,而函数是一种特殊的映射。
3 映射与函数的交叉应用
通过具体案例来展示映射和函数在高等数学中的应用。
映射与函数在高数中的应用
微积分
映射和函数是微积分中研究函数 极限、导数和积分等重要工具。
高数课件映射与函数
欢迎来到高数课件映射与函数的世界!本课程将带你深入了解映射和函数的 定义、性质以及它们在高等数学中的应用。准备好开始探索吧!
映射的定义和性质
1 什么是映射?
映射是一个将一个集合中的每个元素映射到另一个集合中的元素的规则。
2 映射的性质
映射可以是单射、满射或双射,具有重要的代数和几何意义。
图论
映射和函数被广泛应用于图论中 的图的表示和性质研究。
最优化问题
映射和函数为解决最优化问题提 供了数学建模的基础。
ห้องสมุดไป่ตู้
什么是复合函数?
复合函数是将两个函数结合在 一起形成一个新的函数。
复合函数的性质
复合函数的定义域和值域取决 于两个函数的定义域和值域。
示例
通过具体的数学表达式和图形 展示复合函数的概念和性质。
映射、对应和函数1

中都有唯一的元素和它对应.
8
四.映射与函数的联系和区别
映射、对应和函数 2019/4/29
映射:
设A,B是两个非空集合,如果按照某种对应法则f,
对A中的任意一个元素x,在B中有一个且仅有一个元素y
与x对应,则称f是集合A到集合B的映射。
记作 f: A → B 函数: 设集合A是一个非空的数集,对A内任意数x,按
如果A、B是非空数集,那么A到B 的映射f:A B 就叫做A到B的函数
记作: y=f(x)
函数是一种特殊的映射
10
映射、对应和函数
例3:在下列对应中、哪些是映射、那些映射是20函19/4数/29 、
那些不是?为什么?
(1)设A={1,2,3,4},B={3,5,7,9},对应关系:
f(x)=2x+1,x∈A .
设A,B是两个非空集合,如果按照 某种对应法则f,对A中的任意一个 元素x,在B中有且仅有一个元素y与 x对应,则称f是集合A到集合B的映 射.
这时, X称作y的原象,y称作是x在映射f的作
用的象,记作f(x), 于是
y=f(x).
映射f也可记为:
f: A →B
X → f(x)
4
二、对概念的认识
映射、对应和函数 2019/4/29
照 确定的法则f,都有唯一确定的数值y与它应,则这 种对应关系叫做集合A上的一个函数。
记作 y=f(x),x∈A
联系:都是从A到B 的单值对应 区别:构成函数的两个集合必须是数集,而构成映射的两个集
合可以是其它集合
9
四.映射和函数的联系和区别
映射、对应和函数 2019/4/29
因此还可以用映射的概念来定义函数:
高考数学知识点解析映射与函数的关系

高考数学知识点解析映射与函数的关系高考数学知识点解析:映射与函数的关系在高考数学中,映射与函数是非常重要的概念,理解它们之间的关系对于解决相关问题至关重要。
首先,咱们来聊聊什么是映射。
映射就像是一个“对应规则”,它把一个集合中的元素与另一个集合中的元素对应起来。
比如说,有集合A 和集合 B,通过某种规则,集合 A 中的每一个元素都能在集合B 中找到唯一对应的元素,这就是映射。
那函数又是什么呢?函数其实是一种特殊的映射。
它特殊在哪里呢?函数要求集合 A(通常称为定义域)中的每一个元素,在集合 B(通常称为值域)中都有唯一确定的元素与之对应。
为了更清楚地理解,咱们来看几个例子。
假设集合A ={1, 2, 3},集合 B ={4, 5, 6}。
如果我们规定映射规则是:1 对应 4,2 对应 5,3 对应 6,那么这就是一个映射。
但如果规定 1 对应4 和 5,那就不是函数了,因为 1 对应的元素不唯一。
再比如,我们有一个函数 f(x) = 2x,当 x 取 1 时,f(1) = 2;当 x取 2 时,f(2) = 4。
对于定义域中的每一个 x,都有唯一确定的 f(x)与之对应,这就是函数的特点。
从定义上看,函数是映射的一种,但映射不一定是函数。
可以说函数是“规矩”的映射,必须满足每一个输入都有唯一的输出。
映射和函数在数学中的应用非常广泛。
在解决实际问题时,我们常常需要建立映射或函数关系来描述事物之间的联系。
比如在物理学中,路程和时间的关系可以用函数 s = vt 来表示(其中 s 表示路程,v 表示速度,t 表示时间)。
通过这个函数,我们可以根据给定的速度和时间计算出路程,或者已知路程和时间求出速度。
在经济学中,成本和产量之间的关系、收益和销售量之间的关系等也常常可以用函数来描述。
对于高考来说,掌握映射与函数的关系,能够帮助我们更好地解决各种类型的题目。
比如在求函数的定义域和值域时,就需要清楚函数的定义和映射的规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 函数的概念和性质 1.2.1 对应、映射和函数一、对应与映射的概念(一)映射的概念(1)先看几个对应的例子:两个集合A 、B 之间的一些确定的对应关系:(2)一般地,设A 、B 是两个非空集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一....确定的元素y 与之对应,那么就称对应:f A B →为从.集合..A 到集合...B 的.一个映射....(.mapp ....ing...).。
记作“:f A B →”。
其中A 为映射的定义域.......。
若,a A b B ∈∈,元素a 与元素b 对应,即:()f a b f a →=,则称元素b 叫做元素a 的象.,元素a 叫做元素b 的原象..。
A 中所有元素的象构成的集合C 叫做象.集合..,则C B ⊆。
(注意B 不能为C 的真子集,否则不能形成映射) 说明:①映射的概念可以概括为“取元任意性、成象唯一性...........”; ②映射的三要素:原象、象、对应关系; ③A 中元素不可剩,B 中元素可剩; ④多对一行,一对多不行;⑤映射具有方向性::f A B →与:f B A →一般是不同的映射。
其中f 表示具体的对应法则,可以用汉字、符号等叙述。
⑥*一一映射:设:f A B →是集合A 到集合B 的映射,若对集合A 中的不同元素,在集合B 中有不同的象,且B 中的每一个元素都有原象,则称这种映射叫一一映射。
例1.下列哪些对应是从集合A 到集合B 的映射?(1){}{},(,),A P P B x y x R y R ==∈∈是平面直角坐标系中的点,对应关系f :平面直角坐标系中的点与它的坐标对应;(2),A x x B x x ==是重庆一中的班级是重庆一中的学生,对应关系f :每一个班级都对应班里的学生。
(3){}{},A x x B y y ==是三角形是圆,对应关系f :每一个三角形都对应它的内切圆;(4){}{},A x x B y y ==是圆是三角形,对应关系f :y 是x 的内接三角形;(5)5,,:A Z B Q f x y x==→=;(6){}{}12,13A x x B y y =≤≤=≤≤,对应关系2:f x y x →=。
(二)求象与原象例2.(1)设映射:(,)(,)22x y x yf x y +-→,那么(5,2)-在f 下的象为__________________; (5,2)-在f 下的原象是_________________________。
(2)已知,a b 为两个不相等的实数,集合{}{}224,1,41,2M a a N b b =--=-+-,映射:f x x →,则a b +等于( )A .1B .2C .3D .4(3)已知集合A 到集合10,1,2B ⎧⎫=⎨⎬⎩⎭的映射为1:1f x x →-, 那么集合A 中的元素最多有 ( ) A .3个 B .4个 C .5个D .6个(4)设映射2:2f x x x →-+是实数集M 到实数集N 的映射,若对于实数p N ∈,在M 中不存在原象,则p 的取值范围是( )A.(1,)+∞B.[1,)+∞C.(,1)-∞D.(,1]-∞(三)映射个数的计算例3.设{}{},,,,1,0,1M a b c d N ==-,取适当的对应法则f 。
求: (1)从M 到N 建立不同映射的个数;(2)从N 到M 建立不同映射的个数;(3)从{},,,M a b c d =到{}1,2,3,4P =的一一映射的个数。
练习:若集合{}{},,,3,0,3M x y z N ==-,f 是从M 到N 的映射,则满足()()f x f y ++()0f z =的映射有( )A .6个B .7个C .8个D .9个课后作业1:1.设集合{}{}12,14A x x B y y =≤≤=≤≤,则下述对应法则f 中,不能构成A 到B 的映射的是( )2:A f x y x →=. :32B f x y x →=-. :4C f x y x →=-+. 2:4D f x y x →=-. 2.设从集合A 到集合B 的对应法则为f ,则“通过f ,集合A 中的任何一个元素,在集合B 中都有元素与它对应”是“f 是集合A 到集合B 的映射”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分又非必要条件 3.设集合{}{}02,02A x x B y y =≤≤=≤≤,并给出下列图形:则在这些图形中,能表示A 到B 的映射或一一映射的是哪一些,说明理由。
4.设集合A 和B 都是自然数集合N ,映射:f A B →把A 中的元素n 映射到B 的元素2nn +,则在映射f 下,象11的原象是( )A .1B .3C .9D .115.设集合{}(,),A B x y x R y R ==∈∈,映射:f A B →使A 中的元素(,)x y 映射成B 中的元素(,)x y xy +,则在映射f 下,象11(,)66--的原象为________________。
6.设{}(,),110,110,A x y x Z y Z x y B Z =∈∈≤≤≤≤=且,设映射:f A B →使集合A 中的元素(,)x y 映射成集合B 中的元素5y xy -, (1)求(3,4)在映射f 下的象; (2)求12在映射f 下的原象。
7.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且**,,,,:a N k N x A y B f x y ∈∈∈∈→31x =+是集合A 到集合B 的映射,求,a k 的值。
8.集合A 到集合{}2,1,0B =--的映射f 将A 中的元素x 映射到B 的元素23x x -,求Ca r d A 最大时的集合A 。
9.设集合{,,},{1,2,3}A a b c B ==,则从A 到B 可以构成不同的一一映射f 的个数是( ) A .1个 B .3个 C .6个 D .9个 10.设集合{}{},,,1,0,1A a b c B ==-,从A 到B 的映射f 满足关系式()()()f a f b f c =+,求这种映射f 的个数,并作图表示所有的这种映射。
11.设集合{}{}1,0,1,2,1,0,1,2M N =-=--,如果从M 到N 的映射f 满足:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,则映射f 的个数是( )8A.个 12B .个 16C .个 18D .个 12.设{,,},{1,0,1}M a b c N ==-,则从集合M 到集合N 的映射f 个数为___________;从集合M 到集合N 的一一映射f 个数为___________;满足()()()f a f b f c >≥的映射::f M N →的个数为_________________。
13.集合{,,,},{0,1,2}A a b c d B ==,现建立从A 到B 的映射,使B 中每一个元素都有原象,则这样的映射有 个。
课后作业1答案:1. D2. B3. 表示A 到B 的映射的有①④⑤⑥;一一映射的有④。
4. B5.11(,)23-或11(,)32- 6.(1)8; (2)(1,3),(2,4),(3,6)。
7. 2,5a k ==8. CardA 最大值为11,此时集合33331,1,2,2,,3,32222A ⎧⎫++⎪⎪=-----⎨⎬⎪⎪⎩⎭。
9. C10.满足条件的映射f 共有7个,作图表示如下:11. D 12. 27;6;4 13.36二、函数的概念(1)函数的传统定义(运动观):设在某个变化过程中有两个变量x y 、,对于每一个在一定范围内变化着的自变量x 的值,按照一定的对应法则,都有一个唯一确定的y 值与之它对应,那么,就说y 是x 的函数。
其中x 叫自变量, x 的上述变化范围就叫函数的定义域;y 叫函数值(因变量),函数值的变化范围叫做该函数的值域。
如初中学过的正比例、反比例函数,一次、二次函数等。
问题1:1()y x R =∈是函数吗?问题2:()y x x R =∈与2x y x=是同一函数吗?(2)函数的近代定义:引例:炮弹距地面的高度h 随时间t 变化规律:21305h t t =-(*),t 变化的数集{}026A t t =≤≤,h 变化的数集{}0845B h h =≤≤。
对于数集A 中的任意一个时间t ,按照对关系(*),在数集B 中都有唯一确定的高度h 和它对应。
函数、定义域、对应法则、值域的概念 设A 、B 都是非空的数集.....,如果按照某种确定的对应法则f ,使对于集合....A 中的任意一个......数.x ,在集合....B 中都有唯一确定的数.........()f x 和它对应....,那么就称对应:f A B →为从集合A 到集合B 的一个函数(function )。
记作(),y f x x A =∈。
其中,x 叫自变量,x 的取值范围A 叫函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{}()|C f x x A =∈叫函数的值域(range )。
显然,值域C 是集合B 的子集。
注意:①从映射的观点定义函数(近代定义):1︒. 函数实际上就是建立在非空数集A 到非空数集B 的一个映射:f A B →,这里 A , B为非空数集而已。
函数是映射的特例,映射是函数的扩充。
2︒. A :定义域,即原象集合;C :值域,即象集合,其中C B ⊆;f :对应法则。
,x A y B ∈∈。
②“()y f x =”是函数符号,可以用任意的字母表示,如“()y g x =”;③函数符号“()y f x =”中的()f x 表示与x 对应的函数值,是一个数,而不是f 乘x ; ④函数的三要素:定义域A ,对应法则f 和值域C 。
⑤两函数相同,必须三要素完全相同。
口答:(1)一次函数(0)y ax b a =+≠的定义域和值域是什么?(2)二次函数2(0)y ax bx c a =++≠的定义域和值域是什么?(3)反比例函数xky =的定义域、值域是什么?(3)函数概念巩固例1.下列各图中,可表示函数()y f x =(定义域为[1,1]-,值域为[0,1])的图象只可能是 ( )变式练习:(1)253x y +=中y 是x 的函数吗?253x y +=中y 是x 的函数吗?(2)()f x =,0()1,0x x g x x ≥⎧=⎨≤⎩表示函数吗?变式发散:函数()y f x =的图象与直线5x =的公共点共有_____________个。