近代光学测试技术
近代测试技术及方法

吸收光谱法
吸收光谱法是利用光通过燃烧介质时,介质对光的吸收效应来测量温度和浓度的方法。
激光诱导荧光法
激光诱导荧光法是一种高灵敏度的检测浓度和温度的方法。其原理是当激光波长调谐到分子的某两个特定能级时,分子就发生共振并吸收光子能量而激发到高能态,在从高能态返回基态过程中,分子就会发出荧光;荧光用光电倍增管接收,
随着激光技术、光波导技术、光电子技术、光纤技术、计算机技术的发展,以及傅里叶光学、现代光学、二元光学和微光学的出现与发展,光学测试技术无论从测试方法、原理、准确度、效率,还是适用的领域范围都得到了巨大的发展,是现在科学技术与社会生产快速发展的重要技术支撑和高新技术之一。
其中运用先进的实验手段和方法来开展内燃机缸内燃烧过程的研究,获得缸内燃咦产焰的有关信息(例如温度场·浓度场·速度场),具有十分重要的学术价值和广阔的应用前景。内燃机缸内燃烧的光学测试方法是目前最有效的研究手段之一,在国内外得到越来越广泛的运用。采用这种方法来研究内燃机的燃烧过程,能够进一步加深对燃烧过程的理解,为燃烧系统的评价和改进提供依据,对于指导内燃机燃烧系统的设计,提高内燃机工业整体水平具有重要的现实意义。
【正文】:
光在传播中,波前受到与波长尺度相当的隙孔或颗粒的限制,以受限波前处各元波为源的发射在空间干涉而产生衍射和散射,衍射和散射的光能的空间(角度)分布与光波波长和隙孔或颗粒的尺度有关。用激光做光源,光为波长一定的单色光后,衍射和散射的光能的空间(角度)分布就只与粒径有关。对颗粒群的衍射,各颗粒级的多少决定着对应各特定角处获得的光能量的大小,各特定角光能量在总光能量中的比例,应反映着各颗粒级的分布丰度。按照这一思路可建立表征粒度级丰度与各特定角处获取的光能量的数学物理模型,进而研制仪器,测量光能,由特定角度测得的光能与总光能的比较推出颗粒群相应粒径级的丰度比例量。激光粒度分析仪就是利用这种原理来测试粉末的粒度的。
光学近代物理学实验报告

一、实验目的1. 了解光学近代物理学的基本实验原理和方法。
2. 掌握光学近代物理学实验的基本操作技能。
3. 通过实验,加深对光学近代物理学理论知识的理解。
二、实验内容本次实验共分为四个部分:光纤通讯、光学多道与氢氘、法拉第效应、液晶物性。
1. 光纤通讯(1)实验目的:探究光纤的一些特性,包括光纤耦合效率的测量,光纤数值孔径的测定。
(2)实验原理:利用光纤的传输特性,通过测量光信号在光纤中的传输损耗,计算光纤的耦合效率。
(3)实验步骤:①搭建实验装置,包括光源、光纤、探测器等。
②调节光源,使其发出特定波长的光信号。
③将光信号输入光纤,通过探测器测量光信号在光纤中的传输损耗。
④根据传输损耗计算光纤的耦合效率。
2. 光学多道与氢氘(1)实验目的:观察光学多道仪的工作原理,测量氢原子和氘原子的能级。
(2)实验原理:利用光学多道仪,通过测量光子的能量,确定氢原子和氘原子的能级。
(3)实验步骤:①搭建实验装置,包括激光器、光学多道仪、探测器等。
②调节激光器,使其发出特定波长的光信号。
③将光信号输入光学多道仪,测量光子的能量。
④根据测量结果,确定氢原子和氘原子的能级。
3. 法拉第效应(1)实验目的:观察法拉第效应,研究光在磁场中的传播特性。
(2)实验原理:根据法拉第效应,当光在磁场中传播时,光偏振面的旋转角度与磁场强度成正比。
(3)实验步骤:①搭建实验装置,包括激光器、法拉第盒、探测器等。
②调节激光器,使其发出特定波长的光信号。
③将光信号输入法拉第盒,测量光偏振面的旋转角度。
④根据测量结果,研究光在磁场中的传播特性。
4. 液晶物性(1)实验目的:观察液晶的光学特性,研究液晶在不同温度下的液晶态。
(2)实验原理:液晶具有液体的流动性和晶体的各向异性,其光学特性受温度、电场等因素影响。
(3)实验步骤:①搭建实验装置,包括液晶样品、激光器、探测器等。
②调节温度,观察液晶的光学特性变化。
③在液晶样品上施加电场,观察液晶的光学特性变化。
近代光学测试技术- 动态干涉测试技术

移相干涉的抗震算法-CSI方法
第1幅图
……
第2幅图
……
移相干涉图
……
重组干涉图
傅里叶变换
移相干涉图中存在 载频,重组干涉图 频谱中的误差谱与 相位谱相互分离, 可将误差消除
背景 滤波窗g(fx,fy)
fx
误差谱 相位谱
李博,陈磊 等。 Carrier squeezing interferometry… Optics Letters,36(6),2011.3
Example of VC measurement of flat
ZYGO动态干涉仪DynaFiz
关键特征: • 在空气湍流和极端振动的环境下进行动态测量。 • 优化的光学系统提供了清晰可见的中间空间频率特征。 • LivePhase™ 软件可以进行实时Zernike分析。 • Movie模式获取随时间变化的波前。 • 高功率,长寿命稳频氦氖激光器。
由重组干涉图恢复相位的过程
傅里叶变换
频谱S(fx,fy)
反正切计算恢复相位
其中g为滤波窗
恢复到原始尺寸
几种算法计算结果对比
含有振动误差 的移相干涉图 的一帧
四步法结果
de Groot七步法结果
CSI法结果
时域抗振-CSI用于Φ600干涉仪
四步法计算结果
减
CSI计算结果
等于
相位偏差
CSI用于Φ600干涉仪测试结果
长干涉腔长测量
气流的影响
空气梯度对干涉测量的影响
干涉腔有空气折射率温度梯度分布时的波面测试结果
干涉腔空气折射率均匀分布时的波面测试结果
震动严重时的测试结果
没有震动时 的波面图
震动较小时 的波面图
近代光学测试技术

方法及应用: ○光扫描技术的其他应用;三维扫描技术;无定向激光扫描; 案例: ●◎○符合教学要求的诸多例题,不限定 9.激光多普勒技术 基础原理: ●激光多普勒技术;激光多普勒测速技术原理及特点; 激光多普勒信号处理系统 ○流速方向判别和多维测量); 方法及应用: ●激光多普勒技术的应用;管道内水流的测量;激光测量二相流;血液流动的研究 ○丙烷气火焰流速的测量;大气风速测量;固体表面速度的测量;振动的测量 案例: ●◎○符合教学要求的诸多例题,不限定 10.光学纳米技术 基础原理: ●纳米传感技术;扫描测试系统;扫描隧道显微镜;原子力显微镜; 方法及应用: ●纳米测量技术的应用; ○纳米测量的几个问题 案例: ●◎○符合教学要求的诸多例题,不限定 11.拓展知识 基础原理:: ●同步辐射光技术原理; 方法及应用: ●同步辐射光的应用 案例: ●◎○符合教学要求的诸多例题,不限定
大连海事大学 《近代光学测试技术》课程教学大纲
Syllabus for INTRODUCTION OF MODERN OPTICAL MEASURING & TESTING TECHNIQUE
绪论近代光学测试技术

广泛应用于结构健康监测、石油化工、航空航天等领域。
光谱分析测量技术
光谱分析测量原理
利用物质对光的吸收、发射或散射作用,通过测量光谱信息来分析物质的成分、结构或状 态。
光谱分析测量系统组成
包括光源、光谱仪、样品室、光电探测器、信号处理器等部分。
光谱分析测量技术应用
广泛应用于化学分析、生物医学、环境监测等领域。例如,通过红外光谱分析可以鉴定有 机化合物的结构和官能团;通过拉曼光谱分析可以研究物质的振动和转动能级;通过荧光 光谱分析可以检测生物样品中的荧光物质等。
在环境监测中的应用
大气污染监测
运用差分吸收光谱、激光雷达等技术,实时监测大气中的污染物浓 度、分布及传输过程。
水质监测
采用光谱分析、荧光分析等方法,对水体的化学需氧量、重金属离 子等污染物进行快速、准确的检测。
生态环境评估
利用遥感技术、地理信息系统等手段,对生态环境进行大范围、长 期的监测和评估,为环境保护和治理提供科学依据。
在生物医学中的应用
生物组织成像
运用光学显微镜、共聚焦显微镜等技术,对生物组织进行高分辨率 成像,观察细胞、组织等微观结构。
生物分子检测
利用荧光光谱、拉曼光谱等方法,对生物分子进行特异性检测,实 现疾病诊断、药物筛选等应用。
生物医学光学治疗
通过激光、光动力等手段,对病变组织进行局部治疗,具有非侵入性、 副作用小等优点。
测试成本的降低
随着市场竞争的加剧,降低光学测试技术的成本对于推广其应用具有重要意义。如何在保证测试性能的 前提下降低成本是当前需要关注的重要问题。
未来发展方向预测
01超精密光学测试技术随着光学器件性能的不断提升,对超精密光学测试技术的需求将不断增
01 近代光学测试技术绪论

非球面干涉图
10.6um泰曼型红外干涉仪
68
600mm近红外平面移相干涉仪
目前国内最大口径的近红外干涉仪
69
600mm可见光平面移相干涉仪
大口径矩形镜面形检测
730mm镜面检测
SiC镜面工序检测
干涉仪系列产品
各种口径数字移相干涉仪
2014.11.12
干涉成像光谱仪
复原的高光谱图像
自适应光学系统工作原理
像差波前
分光镜 控 制 系 统
变 形 镜
哈 特 曼 波前传感器
校正后波前
目标像探测
实现仪器化的人眼视网膜 高分辨力成像仪(2004年)
对人眼校正前后波前误差测量实例
校正前:PV =2.796 RMS=0.654
校正后: P V = 0.454
RMS= 0.09
黄斑区视觉细胞成像及其特性
/opticalmetrolog y.html
大口径光学镜面的检测
College of Optical Sciences,University of Arizona
Figure 1. LAMOST telescope, showing corrector plate (inside dome), primary (in nearer tower) and prime focus
修复哈勃
HST主镜:2.4m 补偿镜的偏差 主镜边缘与理论 值相差2微米
哈勃望远镜修复前后
JWST的模型检测实验系统
Phase Retrieval for JWST
2012年10月,8.4m镜面磨 制完成,表面精度低于19nm。 将构成25m超级望远镜(大 麦哲伦望远镜GMT)。 如何检测?
近代光学实验讲义

实验8基于线扩散函数测量光学系统MTF值8.1 引言光学传递函数理论是在傅里叶分析理论的基础上发展起来的。
最早在1938年,德国人弗里塞对鉴别率法进行了改进,提出用亮度呈正弦分布的分划板来检验光学系统,并且证实了这种鉴别率板经照相系统成像后像的亮度分布仍然是同频率的正弦分布,只是振幅受到了削弱。
1946年法国科学家P.M.Duffheux正式出版了一本阐述傅立叶方法在光学中的应用的书,并首次提出传递函数的概念,从此开拓了像质评价的新领域。
8.2 实验目的1.学习了解光学传递函数理论;2.光学调制传递函数(MTF)测量。
8.3 实验原理调制传递函数(Modular Transfer Function,简称MTF)是信息光学领域引入的概念。
光学成像系统作为最基本的光学信息处理系统,可以用来传递二维的图像信息。
对于一个给定的光学系统而言,输入图像信息经过光学系统后,输出的图像信息取决于光学系统的传递特性。
由于光学系统是线性系统,而且在一定条件下还是线性空间不变系统,因此可以沿用通信理论中的线性系统理论来研究光学成像系统性能。
对于相干与非相干照明下的衍射受限系统,可以分别给出它们的本征函数,把输入信息分解为由这些本征函数构成的频率分量,并考察每个空间频率分量经过系统后的振幅衰减和相位移动情况,可以得出系统的空间频率特性,即传递函数。
这是一种全面评价光学系统传递光学信息能力的方法,当然也可以用来评价光学系统的成像质量。
与传统的光学系统像质评价方法(如星点法和分辨率法)相比,用光学传递函数方法来评价光学系统成像能力更加全面,且不依赖于观察个体的区别,评价结果更加客观,有着明显优越性。
随着近年来微型计算机及高精度光电测试工具的发展,测量光学传递函数的方法日趋完善,已成为光学成像系统的频谱分析理论的一种重要应用。
另外,光学成像系统的传递函数分析方法作为光学信息处理技术的理论基础,有得于推动光学信息处理技术在信息科学中得到广泛的应用。
第一章 光学测量基础知识

光学产业金字塔中各组成产业及其产值的大致比例, 这是1990年日本公布的统计值。
《日本公布近 三年光学产业 国内产值的调 查结果》
2、技术现状
从原理上说近代光学测试技术的现状主要是三点:
1)从主观光学发展成为客观光学,也就是用光电探
测器来取代人眼这个主观探测器,提高了测试精度与 测试效率;
基本原理:控制电信号经换能器后产生一定频率的声 表面波,声表面波在声光介质中传播,使介质折射率 发生周期性变化,形成了一个运动的衍射光栅,当入 射光束满足布拉格衍射条件时,就可引起光的偏转, 偏转角由声波的频率和入射光波长决定。
声光光开关的切换速度在毫秒量级,该技术可方便 地用来制作端口数较少的光开关。
物理意义上的微光学其单元尺寸已在光波长量级, 因此,建立在单元尺度远大于光波长的常规光学,其 主要理论及设计方法已不适用微光学或其计算结果不 够精确。
微光学是一个知识密集、前沿和技术先进的新的 光学学科分支。
闭环控制
输出量直接或间接地反馈到输入端,形成闭环参与 控制的系统称为闭环控制系统。也叫反馈控制系统。
3)光学检测-对光学元件及光学系统进行质量 评估。
4)光学测试-用光学方法进行精密测试。
自70年代开始由于激光技术、光波导技术、数字技 术、计算机技术以及傅里叶光学的出现,使光学发展成 近代光学。以激光为代表的近代光学促使光学测试技术 出现更多新方法和新技术,从而开始形成近代光学测试 技术。
近代光学测试技术的出现适应了近代科学和工业技术上提 出的高灵敏度、高效率、自动化的测试要求,实现了计量上的 三维性、实时性和相关性。进入80年代,又提出了亚微米、 纳米级灵敏度的测试要求,产生了无损检测、在线光学诊断等 新技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近代光学测试技术
随着激光技术、光波导技术、光电子技术、光纤技术、计算机技术的发展,以及傅里叶光学、现代光学、二元光学和微光学的出现与发展,光学测试技术无论从测试方法、原理、准确度、效率,还是适用的领域范围都得到了巨大的发展,是现在科学技术与社会生产快速发展的重要技术支撑和高新技术之一。
光学测试技术的复杂性随着科学的发展而日渐增加,大量需要处理的数据更加远离使用者的直观感觉。
因此必须发展面向科学实践的、能对现代光学测试技术产生深入的了解
其中运用先进的实验手段和方法来开展内燃机缸内燃烧过程的研究,获得缸内燃咦产焰的有关信息(例如温度场·浓度场·速度场),具有十分重要的学术价值和广阔的应用前景。
内燃机缸内燃烧的光学测试方法是目前最有效的研究手段之一,在国内外得到越来越广泛的运用。
采用这种方法来研究内燃机的燃烧过程,能够进一步加深对燃烧过程的理解,为燃烧系统的评价和改进提供依据,对于指导内燃机燃烧系统的设计,提高内燃机工业整体水平具有重要的现实意义。
在内燃机燃烧的各种光学测试方法中,主要有双色法(Two一ColorMethod)、全息法(Holo脚phMeth-od)、吸收光谱法(Abso甲tionSpeetroseopyMeth-od)、激光诱导荧光法(肠ser一IndueedFluores-cenceSpectroscopy,简称LIF法)、喇曼散射光谱法(RamanSeatteringSpeetroseopy)和相干反斯托克斯光谱法(CoherentAnti
一StokesRamanscattering,简称CARS法)等。
这些光学测试方法的应用,使内燃机缸内燃烧的研究向微观化、定量化和可视化方向发展[z]。
双色法
双色法是一种传统的测高温的方法。
热辐射是自然界中普遍存在的现象,一切物体,只要其温度高于绝对零度,都要不同程度地产生辐射。
双色法的基本原理在于,通过测量两个波长的发光强度拟合黑体辐射曲线,从而可以推断物体的温度。
与其它测量方法相比较,双色法有以下不足之处:
温度测量值仅是统计平均值,而且得不到温度的空间分布;·试验装置比较复杂,试验结果还必须进行标定;·双色法是利用物质的发射谱测量的,当波长落在红外和可见光波段时,由于与火焰高温辐射谱重叠,使得测量精度受到影响。
全息法
全息照相术是根据物理化学原理,利用光波的干涉现象,在感光底片上同时记录下物光波的振幅和位相,并通过衍射现象再现出物体的立体像,或者说把物体光波重新显示出来。
采用激光全息干涉法,同时与高速摄影机相结合,可以连续记录燃烧室内温度场的变化过程,获得二维温度图像;但是,这种试验装置一般须在减展台上进行,抗震性极差,严重影响其实际使用。
吸收光谱法
吸收光谱法是利用光通过燃烧介质时,介质对光的吸收效应来测量温度和浓度的方法。
激光诱导荧光法(llr)
激光诱导荧光法是一种高灵敏度的检测浓度和温度的方法。
其原理是当激光波长调谐到分子的某两个特定能级时,分子就发生共振并吸收光子能量而激发到高能态,在从高能态返回基态过程中,分子就会发出荧光;荧光用光电倍增管接收,
喇曼散射光谱法
当光通过气体分子时,部分光会被分子散射,并且发生频移
相干反斯托克斯光谱法【CARS)
相干反斯托克斯光谱法的原理为,当两束频率为。
;和。
2的高能激光束聚在一点人射到某一介质中时,如果。
=201一。
2正好是分子的某一共振谱线,且满足非线性光学中的相位匹配条件,那么。
3频率的光会极大地增强。
用这一信号就可以对燃气成分和浓度进行鉴别,这就是cARs法。
综上所述,双色法、全息法、吸收光谱法、激光诱导荧光法(UF)、喇曼散射光谱法和相干反斯托克斯光谱法(CARS)等方法各有特点,在实际应用中,必须根据实际情况,合理选择。
近年来,国外对激光诱导荧光法(LIF)的研究和运用格外活跃,这代表了一种发展趋势,其主要原因在于激光诱导荧光法灵敏度极高,且可获得高空间分辨率的二维图像。
因此,在未来内燃机缸内燃烧测试的方法中,激光诱导荧光法将占据重要的一席,有着广阔的前途。
同时,双色法作为一种传统的测高温的方法,在迅速发展的新技术的带动下,也勃发出新的生机。
最新发展的光纤传像技术和高速图像采集及处理技术与双色法相结合,使得人们可以简便、迅速地获得内燃机燃烧过程的二维温度图像闹,克服了以往传统的方法只能获得空间少数点的温度值,而不能获得二维温度分布的困难。
因而,双色法以其简便易行和对燃烧室本身的影响极小等优越性,也得到广泛应用。
通过对现代光学测试技术的基本原理和实际应用系统的讲授和讨论,是我们了解了现代光学测试技术是发展历史、现状和趋势,建立光学测量的基本概念,掌握现代光学测试技术的基本原理和方法,熟悉常用光电检测系统和仪器,具备近代现代光学测试系统分析和设计的能力。