高中代数数学公式

合集下载

高中数学代数部分常用公式及常用结论

高中数学代数部分常用公式及常用结论

高中数学代数部分常用公式及常用结论1.2.3.四种命题的相互关系:4.充要条件:(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.5.函数的单调性:(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.6. 如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.7.奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.8.函数()y f x =的图象的对称性:函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.9.两个函数图象的对称性:(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.10.互为反函数的两个函数的关系:a b f b a f =⇔=-)()(1.11. 若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-], 而函数)([1b kx fy +=-]是])([1b x f ky -=的反函数.12.几个常见的函数方程:(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.13.根式的性质:(1)n a =.(2)当n a =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩.14.有理指数幂的运算性质:(1) (0,,)r s r sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rsa a a r s Q =>∈.(3)()(0,0,)r r rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.15.指数式与对数式的互化式:log b a N b a N =⇔=(0,1,0)a a N >≠>.16.对数的换底公式 :log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).17.对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log a a a MM N N=-; (3)log log ()n a a M n M n R =∈.18.等差数列的通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.19.等比数列的通项公式:1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.20.常见三角不等式:(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.21.同角三角函数的基本关系式:22sin cos 1θθ+=, tan θ=θθcos sin , tan 1cot θθ⋅=.22.正弦、余弦的诱导公式:212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩23.和角与差角公式:sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= .22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=).24.二倍角公式:sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.25. 三倍角公式:3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.26.三角函数的周期公式:函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R (A , ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A ,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.27.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.28. 简单的三角方程的通解:sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.29.最简单的三角不等式及其解集:sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.30.组合数公式:m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).31.组合数的两个性质:(1)m n C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .32.组合恒等式:(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C .(6)nn n r n n n n C C C C C 2210=++++++ . (7)1425312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n nn n n n n nC C C C .(9)rn m rn rm n r m n rm C C C C C C C +-=+++011. (10)nn n n n n n C C C C C 22222120)()()()(=++++ . 二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,,=.33.复数的相等:,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈)34.复数z a bi =+的模(或绝对值):||z =||a bi +35.复数的四则运算法则:(1)()()()()a bi c di a c b d i +++=+++;(2)()()()()a bi c di a c b d i +-+=-+-; (3)()()()()a bi c di ac bd bc ad i ++=-++; (4)2222()()(0)ac bd bc ada bi c di i c di c d c d +-+÷+=++≠++.36.实系数一元二次方程的解:实系数一元二次方程20ax bx c ++=,①若240b ac ∆=->,则1,2x =②若240b ac ∆=-=,则122b x x a==-;③若240b ac ∆=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根240)x b ac =-<.。

高中数学必学公式大全

高中数学必学公式大全

高中数学必学公式大全在高中数学学习过程中,掌握数学公式是非常重要的,它们能够帮助我们解决问题、推导定理、证明结论,是数学思维的基石。

本文将为您提供关于高中数学中必学的公式大全,方便您在学习和应用过程中的参考。

一、代数1. 贝叶斯公式:对于事件A和B,且P(B)不为零,贝叶斯公式如下:P(A|B) = P(B|A) * P(A) / P(B)2. 二项式定理:对于任意实数a和b和非负整数n,二项式定理如下:(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, r)a^(n-r)b^r + ... + C(n, n)a^0b^n3. 三重角恒等式:sin(A + B + C) = sinAcosBcosC + cosAsinBcosC + cosAcosBsinC - sinAsinBsinC4. 欧拉公式:对于任意实数x,欧拉公式如下:e^(ix) = cosx + isinx5. 椭圆的离心率定义公式:对于椭圆的离心率e、长半轴a和短半轴b,离心率定义公式如下:e = √(1 - (b^2 / a^2))二、几何1. 直线的斜率公式:对于直线上两点A(x1, y1)和B(x2, y2),斜率公式如下:k = (y2 - y1) / (x2 - x1)2. 三角形的三边关系:对于三角形的三边a、b和c,及其对应角A、B和C,三边关系如下:a/sinA = b/sinB = c/sinC3. 圆的面积公式:对于圆的半径r,面积公式如下:S = πr^24. 球的表面积公式:对于球的半径r,表面积公式如下:S = 4πr^25. 三角形的海伦公式:对于三角形的三边a、b和c,半周长s,海伦公式如下:S = √(s(s-a)(s-b)(s-c))三、数列1. 等差数列通项公式:对于等差数列的首项a1、公差d和第n项an,通项公式如下:an = a1 + (n-1)d2. 等比数列通项公式:对于等比数列的首项a1、公比q和第n项an,通项公式如下:an = a1 * q^(n-1)3. 斐波那契数列通项公式:对于斐波那契数列的第n项Fn,通项公式如下:Fn = (φ^n - (-φ)^(-n)) / √5其中φ为黄金分割率,约等于1.618。

高中数学公式大全完整版

高中数学公式大全完整版

高中数学公式大全完整版1.代数公式:a)二次方程求根公式:对于二次方程ax²+bx+c=0,其解为:x = (-b±√(b²-4ac))/(2a)b)平方差公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²c)三次方差公式:(a+b)(a²-ab+b²) = a³+b³d)和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA± tanB)/(1 ∓ tanAtanB) e)二项式定理:(a+b)ⁿ=nC₀aⁿb⁰+nC₁aⁿ⁻¹b¹+nC₂aⁿ⁻²b²+...+nCₙa⁰bⁿ2.几何公式:a)三角形:面积公式:S=1/2*底边*高正弦定理:sinA/a = sinB/b = sinC/c余弦定理:c² = a² + b² - 2abcosCb)圆:周长公式:C=2πr面积公式:A=πr²弧长公式:L=2πr(θ/360)c)立体图形:容积公式:立方体:V=a³正方体:V=a³圆柱体:V=πr²h圆锥体:V=1/3πr²h球体:V=4/3πr³d)平移、旋转、缩放公式:平移:(x,y)→(x+a,y+b)旋转:逆时针旋转θ度:(x,y) → (xcosθ - ysinθ, xsinθ + ycosθ)缩放:横向缩放k倍,纵向缩放k倍:(x,y) → (kx, ky)3.概率公式:a)排列组合公式:排列:A(n,m)=n!/(n-m)!组合:C(n,m)=n!/(m!(n-m)!)b)期望公式:对于离散型随机变量X,期望值E(X)=Σ(x*p(x)),其中x为X的可能取值,p(x)为对应x的概率对于连续型随机变量X,期望值E(X) = ∫(x*f(x))dx,其中f(x)表示X的概率密度函数c)标准差公式:方差σ²=Σ(x-μ)²*p(x),其中μ为随机变量X的期望值标准差σ=√σ²d)独立事件公式:P(A∩B)=P(A)P(B)4.数列与级数公式:a)等差数列通项公式:aₙ=a₁+(n-1)db)等比数列通项公式:aₙ=a₁*r^(n-1)c)等差数列求和公式:Sn=(n/2)(a₁+aₙ)d)等比数列求和公式:Sn=a₁*(rⁿ-1)/(r-1)以上是高中数学公式的一个完整版,涵盖了代数、几何、概率、数列与级数等多个方面的公式。

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。

解为 x = b/a。

2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。

解为 x =[b ± sqrt(b^2 4ac)] / 2a。

3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。

解为x = [b ± sqrt(b^2 3ac)] / 3a。

4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。

解为x = [b ± sqrt(b^2 4ac)] / 2a。

5. 分式方程:分子和分母均为多项式。

解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。

6. 二元一次方程组:由两个一元一次方程组成的方程组。

解法为消元法或代入法。

7. 二元二次方程组:由两个一元二次方程组成的方程组。

解法为消元法或代入法。

8. 三元一次方程组:由三个一元一次方程组成的方程组。

解法为消元法或代入法。

9. 等差数列:首项为 a1,公差为 d。

第 n 项为 an = a1 + (n 1)d。

前 n 项和为 Sn = n/2(a1 + an)。

10. 等比数列:首项为 a1,公比为 q。

第 n 项为 an = a1q^(n 1)。

前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。

二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。

(2)圆:圆心为 (a, b),半径为 r。

圆的方程为 (x a)^2 +(y b)^2 = r^2。

(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。

椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。

(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。

高中数学公式大全

高中数学公式大全

当涉及高中数学,有许多常见的公式,涵盖了代数、几何、三角学等不同领域。

以下是一些常见的高中数学公式:1. 二次方程的根:对于ax^2 + bx + c = 0,根的公式为x = (-b ±√(b^2 - 4ac)) / 2a2. 四则运算:加法、减法、乘法和除法的基本运算法则。

3. 平方差公式:(a + b)(a - b) = a^2 - b^24. 平方和公式:(a + b)^2 = a^2 + 2ab + b^25. 立方和公式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^36. 二项式定理:(a + b)^n = Σ(C(n, k) * a^(n-k) * b^k),其中C(n, k)表示组合数。

7. 因式分解公式:如a^2 - b^2 = (a + b)(a - b)8. 一次函数:y = kx + b9. 平行线之间的角:对应角、内错角、同位角10. 三角函数的基本关系:sinθ= 对边/斜边,cosθ= 邻边/斜边,tanθ= 对边/邻边11. 三角函数的倒数关系:cscθ= 1/sinθ,secθ= 1/cos θ,cotθ= 1/tanθ12. 三角函数的诱导公式:sin(-θ) = -sinθ,cos(-θ) = cos θ,tan(-θ) = -tanθ13. 正交三角函数的和差化积公式:sin(α±β) = sinαcos β±cosαsinβ,cos(α±β) = cosαcosβ∓sinαsinβ14. 三角函数的倍角公式:sin2θ= 2sinθcosθ,cos2θ= cos^2θ- sin^2θ= 2cos^2θ- 1 = 1 - 2sin^2θ15. 三角函数的半角公式:sin(θ/2) = ±√((1 - cosθ)/2),cos(θ/2) = ±√((1 + cosθ)/2)16. 三角函数的二倍角公式:sin2θ= 2sinθcosθ,cos2θ= cos^2θ- sin^2θ= 2cos^2θ- 1 = 1 - 2sin^2θ17. 三角函数的和差化积公式:sin(α±β) = sinαcosβ±cosαsinβ,cos(α±β) = cosαcosβ∓sinαsinβ当然,还有更多常见的高中数学公式:33. 正弦定理:a/sinA = b/sinB = c/sinC34. 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA35. 正切定理:a/(b + c) = tan(A/2) / tan((B + C)/2)36. 面积公式(三角形):Δ= 1/2 * b * h37. 面积公式(梯形):Δ= 1/2 * (a + b) * h38. 面积公式(圆):A = π* r^239. 面积公式(扇形):A = (θ/360) * π* r^240. 面积公式(正多边形):A = (n * s^2) / (4 * tan(π/n))41. 三角函数的周期性:sin(θ) = sin(θ+ 2πk),cos(θ) = cos(θ+ 2πk)42. 三角函数的相互关系:tanθ= sinθ/ cosθ,cotθ= 1 / tanθ,secθ= 1 / cosθ,cscθ= 1 / sinθ43. 三角函数的值域:-1 ≤sinθ≤1,-1 ≤cosθ≤1,-∞< tanθ< ∞44. 平行线内角和定理:对平行线,同旁内角和为180°45. 三角形内角和定理:三角形内角和为180°46. 相似三角形的比例定理:相似三角形的对应边成比例47. 同分异构定理:在直角三角形中,两个直角边的平方和等于斜边的平方:a^2 + b^2 = c^248. 等腰三角形的性质:等腰三角形的底角相等,顶角相等,底边相等49. 等边三角形的性质:等边三角形的三个内角都是60°50. 圆心角和弧度的关系:圆心角的弧度数等于弧长与半径的比值:θ= l / r51. 弧长和弧度的关系:弧长等于半径乘以圆心角的弧度数:l = rθ52. 弧长和圆心角的关系:弧长和圆心角成正比53. 相交弦定理:两条相交弦之积等于两条弦分别在圆上所夹的弧之积54. 切线和弦的关系:切线和半径垂直,切线和半径的交点为切点55. 同位角性质:同位角相等56. 同旁内角性质:同旁内角相等57. 对顶角性质:对顶角相等58. 重心性质:三角形的三条中线交于一点,该点为重心,且到三角形三顶点的距离相等59. 垂心性质:三角形的三条高线交于一点,该点为垂心,且到三角形三边的距离相等60. 外心性质:三角形的三条外心线交于一点,该点为外心,且到三角形三顶点的距离相等61. 内切圆性质:三角形的三条角平分线交于一点,该点为内心,且到三角形三边的距离相等62. 正多边形的内角和:对于n边正多边形,内角和为(2n - 4) * 90°63. 圆的切线性质:切线与半径垂直,切线长度相等64. 圆周角定理:圆周角等于180°65. 等差数列通项公式:an = a1 + (n - 1)d66. 等差数列求和公式:Sn = (n/2) * (a1 + an)67. 等比数列通项公式:an = a1 * r^(n-1)68. 等比数列求和公式:Sn = a1 * (1 - r^n) / (1 - r)69. 等差数列前n项和公式:Sn = n * (a1 + an) / 270. 幂函数:f(x) = ax^k,其中a和k为常数,a ≠071. 对数函数:y = log_a(x),其中a为底数,a > 0,且a ≠172. 自然对数函数:y = ln(x),以e为底数,e ≈2.7182873. 指数函数:y = a^x,其中a为底数,a > 0,且a ≠174. 二次函数:f(x) = ax^2 + bx + c,其中a、b和c为常数,a ≠075. 一元一次方程:ax + b = 0,其中a和b为常数,a ≠076. 一元一次不等式:ax + b > 0,其中a和b为常数,a ≠077. 二元一次方程组:ax + by = c,dx + ey = f,其中a、b、c、d、e和f为常数,a^2 + b^2 ≠078. 一元二次不等式:ax^2 + bx + c > 0,其中a、b和c 为常数,a ≠0。

数学的全部公式

数学的全部公式

数学的全部公式数学作为一门科学,是研究数量、结构、变化和空间等概念的学科。

在数学中,公式是一种最基本、最重要的表达方式。

公式可以描述数学概念和规律,是数学中最精确的表达方式之一。

本文将以《数学的全部公式》为主题,探讨数学中的各种公式及其应用。

一、基础数学公式1.1 代数公式代数公式是指代数运算中的基本公式,包括加减乘除、平方、立方等运算。

其中,加减乘除是代数中最基本的运算,它们的公式如下:加法公式:a + b = b + a减法公式:a - b = -(b - a)乘法公式:a × b = b × a除法公式:a ÷ b = a/b平方公式:(a + b) = a + 2ab + b立方公式:(a + b) = a + 3ab + 3ab + b1.2 几何公式几何公式是指几何学中的基本公式,包括各种图形的周长、面积、体积等公式。

其中,最基本的几何公式是直角三角形的勾股定理:勾股定理:a + b = c此外,还有圆的周长和面积公式、长方形的周长和面积公式、正方形的周长和面积公式、三角形的周长和面积公式等。

1.3 微积分公式微积分公式是指微积分学中的基本公式,包括导数、积分、极限等公式。

其中,最基本的微积分公式是导数公式:导数公式:f'(x) = lim (f(x + h) - f(x))/h (h → 0)此外,还有积分公式、微分方程公式、泰勒公式等。

二、高级数学公式2.1 线性代数公式线性代数公式是指线性代数学中的基本公式,包括向量、矩阵、行列式、特征值等公式。

其中,最基本的线性代数公式是向量的内积和外积公式:向量内积公式:a · b = |a| |b| cosθ向量外积公式:|a × b| = |a| |b| sinθ此外,还有矩阵的逆矩阵公式、行列式的展开公式、特征值和特征向量公式等。

2.2 微分几何公式微分几何公式是指微分几何学中的基本公式,包括曲率、切向量、法向量等公式。

数学函数公式大全

数学函数公式大全

数学函数公式大全一、代数函数1. 线性函数:y = ax + b,其中a和b是常数,x是自变量。

2. 二次函数:y = ax^2 + bx + c,其中a、b和c是常数,x是自变量。

3. 三次函数:y = ax^3 + bx^2 + cx + d,其中a、b、c和d是常数,x是自变量。

4. 指数函数:y = a^x,其中a是常数,x是自变量。

5. 对数函数:y = log_a(x),其中a是常数,x是自变量。

二、三角函数1. 正弦函数:y = sin(x),其中x是自变量。

2. 余弦函数:y = cos(x),其中x是自变量。

3. 正切函数:y = tan(x),其中x是自变量。

4. 余切函数:y = cot(x),其中x是自变量。

5. 正割函数:y = sec(x),其中x是自变量。

6. 余割函数:y = csc(x),其中x是自变量。

三、反三角函数1. 反正弦函数:y = arcsin(x),其中x是自变量。

2. 反余弦函数:y = arccos(x),其中x是自变量。

3. 反正切函数:y = arctan(x),其中x是自变量。

4. 反余切函数:y = arccot(x),其中x是自变量。

5. 反正割函数:y = arcsec(x),其中x是自变量。

6. 反余割函数:y = arccsc(x),其中x是自变量。

四、双曲函数1. 双曲正弦函数:y = sinh(x),其中x是自变量。

2. 双曲余弦函数:y = cosh(x),其中x是自变量。

3. 双曲正切函数:y = tanh(x),其中x是自变量。

4. 双曲余切函数:y = coth(x),其中x是自变量。

5. 双曲正割函数:y = sech(x),其中x是自变量。

6. 双曲余割函数:y = csch(x),其中x是自变量。

数学函数公式大全五、积分函数1. 不定积分:∫f(x)dx,其中f(x)是函数,x是自变量。

2. 定积分:∫a^bf(x)dx,其中f(x)是函数,a和b是积分区间。

高中数学公式全集(代数部分)

高中数学公式全集(代数部分)

高中数学公式全集(代数部分)【函数】【集合】指定的某一对象的全体叫集合。

集合的元素具有确定性、无序性和不重复性。

【集合的分类】【集合的表示方法】名称定义图示性质子集真子集交集并集补集【不等式】不等式用不等号把两个解析式连结起来的式子叫做不等式不等式的性质含绝对值不等式的性质几个重要的不等式一元一次不等式的解法形式解集R一元二次不R等式的解法绝对值不等式的解法无理不等式的解法【数列】【三角函数】角一条射线绕着它的端点旋转所产生的图形叫做角。

旋转开始时的射线叫角的始边,旋转终止时的射线叫角的终边,射线的端点叫做角的顶点。

角的单位制关系弧长公式扇形面积公式角度制弧度制角的终边位置角的集合在x轴正半轴上在x轴负半轴上在x轴上在y轴上在第一象限内在第二象限内在第三象限内在第四象限内特殊角函数/角sina 0 1 0 -1 0cosa 1 0 -1 0 1的三角函数值tana1不存在不存在cota不存在10 不存在不存在三 角函 数 的性质函数定义域值域 奇偶性周期性 单 调 性y=sinxR奇函数y=cosxR偶函数y=tanxR奇函数 y=cotxR奇函数角/函数 正弦 余弦 正切 余切-a-sinacosa -tana -cota900a cosa sina cota tana 900+a cosa -sina -cota -tana 1800-asina -cosa -tana -cota 1800+a-sina -cosa tana cota2700-a-cosa -sina cota tana2700+a-cosa sina -cota -tana3600-a-sinacosa -tana -cotasina cosa tana cota同角 公式倒数关系商数关系平方关系和差 角 公 式倍 角 公 式万 能 公 式半 角 公式积 化 和 差 公 式和 差 化积 公 式【复数】复数的定义引入虚数单位i ,规定i 2=1,i 可以和实数一起进行通常的四则运算,运算时原有加乘运算仍然成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中代数函数
【集合】指定的某一对象的全体叫集合。

集合的元素具有确定性、无序性和不重复性。

【集合的分类】
【集合的表示方法】


定义图示性质











上一页主目录下一页
高中代数函数
函数的性质定义判定方法
函数的奇偶性函如果对一函数f(x)定义域任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数;函如果对一函数f(x)定义域任意一个
x,都有f(-x)=f(x),那么函数f(x)叫做偶
函数
函数的单调性对于给定的区间上的函数f(x):
函数的周期性对于函数f(x),如果存在一个不为零的常
数T,使得当x取定义域的每一个值时,
f(x+T)=f(x)都成立,那么就把函数y=f(x)
叫做周期函数。

不为零的常数T叫做这个函
数的周期。

(1)利用定义
(2)利用已知函数的周期
的有关定理。

上一页主目录下一页
高中代数函数




解析式定义域值域奇偶性单调性





R R 奇函数





奇函数




R R




R
上一页主目录下一页
高中代数数列


定义通项公式前n项的和公式其它
数列按照一定次序排成一列的数
叫做数列,记为{an}
如果一个数列{an}
的第n项an与n之
间的关系可以用一
个公式来表示,这
个公式就叫这个数
列的通项公式








数列前n项和与通项的关系:无穷等比数列所有项的和:
数学归纳法适用围证明步骤注意事项
只适用于证明与自然数n有
关的数学命题
设P(n)是关于自然n的一个命题,如果(1)
当n取第一个值n0(例如:n=1或n=2)时,
命题成立(2)假设n=k时,命题成立,由此推
出n=k+1时成立。

那么P(n)对于一切自然数
n都成立。

(1)第一步是递推的基础,第
二步的推理根据,两步缺一不可
(2)第二步的证明过程中必须
使用归纳假设。

主目录高中代数复数
复数的定义引入虚数单位i,规定i2=1,i可以和实数一起进行通常的四则运算,运算时原有加乘运算仍然成立。

形如:a+bi(a,b为实数) a---实部 b----虚部
复数的表示
形式代数形式三角形式
复数的运算代





主目录
高中代数不等式
不等式用不等号把两个解析式连结起来的式子叫做不等式
不等式
的性质
含绝对值不等式的性质
几个重要的不等式
上一页主目录下一页高中代数不等式










形式解集
R





R






















上一页主目录高中代数三角函数
角一条射线绕着它的端点旋转所产生的图形叫做角。

旋转开始时的射线叫角的始边,旋转终止时的射线叫角的终边,射线的端点叫做角的顶点。

角的单
位制
关系弧长公式扇形面积公式角度制?
弧度制
角的
位置角的集合在x轴正半轴上
在x轴负半轴上
在x轴上


在y轴上
在第一象限
在第二象限
在第三象限
在第四象限
特殊角的三角函数值函数/角0
sina 0 1 0 -1 0 cosa 1 0 -1 0 1 tana 0 1
不存

0 不存在0 cota 不存在 1 0 不存在0 不存在
三角函数的性质
函数定义域值域奇偶性周期性???? 单调性y=sinx R 奇函数
y=cosx R 偶函数
y=tanx R 奇函数
y=cotx R 奇函数
主目录下一页
高中代数三角函数
诱导公式角/函数正弦余弦正切余切-a -sina cosa -tana -cota 900a cosa sina cota tana 900+a cosa -sina -cota -tana 1800-a sina -cosa -tana -cota 1800+a -sina -cosa tana cota 2700-a -cosa -sina cota tana 2700+a -cosa sina -cota -tana 3600-a -sina cosa -tana -cota
sina cosa tana cota
同角? 公式倒数关系商数关系平方关系
和差角公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB coa(A+B)=cosAcosB-sinAsinB coa(A-B)=cosAcosB+sinAsinB
倍角公

万能公

半角公

积化和
差公式
和差化
积公式
上一页主目录
高中代数排列、组合、二项式定理
分类计数原理分步计数原理
做一件事,完成它有n类不同的办法。

第一类办法中有m1种方法,第二类办法中有m2种方法……,第n类办法中有mn种方法,则完成这件事共有:N=m1+m2+…+mn种方法。

做一件事,完成它需要分成n个步骤。

第一步中有m1种方法,第二步中有m2种方法……,第n步中有mn种方法,则完成这件事共有:N=m1 m2 … mn种方法。

注意:处理实际问题时,要善于区分是用分类计数原理还是分步计数原理,这两个原理的标志是“分类”还是“分步骤”。

排列组合
从n个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n个不同的元素中取m个元素的排列。

从n个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n个不同的元素中取m个元素的组合。

排列数组合数
从n个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Pnm 从n个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为Cnm
选排列数全排列数二项式定理
二项展开式的性质(1)项数:n+1项
(2)指数:各项中的a的指数由n起依次减少1,直至0为止;b的指出从0起依次增加1,直至n为止。

而每项中a与b的指数之和均等于n 。

(3)二项式系数:
各奇数项的二项式数之和等于各偶数项的二项式的系数之和
主目录。

相关文档
最新文档