《锐角三角函数》(第一课时)教学设计
锐角三角函数(第一课时) 优质课评选教案

锐角三角函数(第一课时说课稿)单位:广东省翁源县龙仙中学姓名:张丽萍年级:九年级锐角三角函数(第一课时)教材:新人教版九年级下册《数学》尊敬的各位领导、老师:大家好!今天我说课的内容是新人教版九年级下册第二十八章《锐角三角函数》第一课时。
我从下面七个方面对本节课的教学进行说明。
一、教材分析(一)教材的内容:锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA 、cosA 、tanA 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
本节内容是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展。
(二)地位及作用:“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
在初中阶段我们主要研究锐角三角函数和解直角三角形的内容。
本节课的学习为类比得到余弦、正切的概念作好了铺垫、也为解直角三角形等知识奠定了基础。
二、学情分析(一)学生的知识基础:九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础 (二)学生的认知能力:九年级学生的思维活跃,接受能力较强,逻辑思维从经验型逐步向理论型发展,具备了一定的数学探究活动经历和应用数学的意识。
(三)学生的感悟收获:体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。
三、教学目标分析:(一)教学目标新课标指出,教学目标应从知识技能、解决问题、情感态度等三个方面阐述,而这三维目标又应是紧密联系的一个完整的整体,学生学知识技能的过程同时成为学会学习,形成教材分析学情分析教学目标分析教学评价分析教学过程设计教法和学法分教学反思《锐角三角函数》第一课时教学说明正确价值观的过程,借此结合以上教材分析,我将三个目标进行整合,确定本节课的教学目标为:教学目标知识技能了解三角函数和锐角的正弦的意义,并会求锐角的正弦值;掌握根据锐角的正弦值及直角三角形的一边求其他边长的方法。
28。1锐角三角函数第1课时正弦函数教学设计

28.1锐角三角函数第1课时正弦函数教学设计教师活动学生活动环节一:创设情境、问题探究教师活动1问题1:如何测量旗杆的高度?问题2:现在学校操场上有一根旗杆,有一条开旗用的绳子(绳子足够长),你有什么办法可以测量旗杆的长度?(1)王同学拿了一把卷尺,并且向数学老师借了一把含300的三角板去度量旗杆的高度。
若王同学将旗杆上绳子拉成与地面的夹角为300,如图量出BD=8米,你能求出旗杆AB的长吗?(2)若王同学将旗杆上绳子拉成与地面的夹角为600 如图量出CB=4米,你能求出旗杆AB的长吗?(3)若王同学将旗杆上绳子拉成与地面的夹角为400,如图量出CB=4米,你能求出旗杆AB的长吗?学生活动1学生思考并解决老师提出的问题(1)王同学拿了一把卷尺,并且向数学老师借了一把含300的三角板去度量旗杆的高度。
若王同学将旗杆上绳子拉成与地面的夹角为300,如图量出BD=8米,你能求出旗杆AB的长吗?(2)若王同学将旗杆上绳子拉成与地面的夹角为600 如图量出CB=4米,你能求出旗杆AB的长吗?(3)若王同学将旗杆上绳子拉成与地面的夹角为400,如图量出CB=4米,你能求出旗杆AB的长吗?设计意图:创设情境引出课题,目的是让学生开阔视野并使学生感受到“数学问题来源于生活,同时又服务于生活”的真谛设计意图:根据问题情境中的数据,我们无法用已有的知识和方法解决这个实际问题,但学习本章之后就可以解决了,这样可以引起学生的好奇心,激发学生的学习兴趣。
环节二:自主探究、合作交流问题3:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上建一座扬水站,对坡面绿地进行喷灌. 先测得斜坡的坡脚(∠A )为30°,为使出水口的高度为35 m,需要准备多长的水管?问题1 :为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?如果出水口的高度为50米,那需要准备多长的水管呢?问题2:如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A 的对边与斜边的比.设计意图:1.培养学生用数学语言表达实际问题的意识,提高表达能力。
《锐角三角函数》教学设计

2.5m 5m 4.5mB C A D E 第 一 组F2.5m 《锐角三角函数》(第一课时)一 、教学目标(1)经历探索直角三角形中边角关系的过程,理解正切的意义,并能举例说明。
(2)经历观察、猜想等数学活动过程,发展合情推理能力。
体验数形之间的联系,提高学生应用数学的意识和能力。
(3) 使学生在学习数学的过程中体会数学与生活的密切联系,激发学生学习数学的兴趣,增强学好数学的信心。
二、教学重点、难点教学重点:1、对正切的理解,能运用正切函数表示直角三角形中两边的比。
2、能根据直角三角形中的边角关系进行简单的计算。
3、对坡度的理解并能运用来解决实际问题。
教学难点:对正切函数的理解。
三、教法和学法本节课的教法采用的是情境引导法和探究发现法。
本节课的学习方法采用自主探究法与合作交流法相结合。
四、教学过程(一)创设情境 引入新课1、 利用多媒体播放“设计过山车路线”的游戏.“同学们,你们坐过过山车吗?今天请同学们和老师一起重新体味一下坐过山车的感受吧!”“请大家仔细观察哪段滑道更刺激更好玩?”2、通过截取两段过山车的滑道,提炼出以下数学问题:下列图形中的每一个小格为正方形,三角形的三个顶点均在格点上. 问题1 比一比哪个滑道长?问题2 你能判断出哪个滑道陡吗?学生能直观的发现倾斜角越大滑道越陡.还有其它方法吗?细心的同学观察出通过边来进行判断:“当高等时,底边越短滑道越陡.”若改变高等的条件,你能利用边来判断哪个滑道更陡吗?今天我们来学习锐角三角函数(板书课题)(二)学练结合 探究新知 探究一:比一比 A B C F E D比较下列各组中哪个滑道更陡,你有哪些判断方法? 底等高不等(2)底与高都不等 要求学生 (1)学生独立思考后小组内合作探究判断方法. (2)全班交流展示探究结果.交流展示:对学生探究的不同方法进行引导总结, 为后面引入正切、正弦、余弦的概念奠定基础. 今天我们来探究滑道的倾斜程度与底和高的比之间的关系.探究二:想一想如图,B1、B2是滑道AB 上的点,B1C1⊥AC ,垂足为点C1,B2 C2⊥AC2,垂足为点C2,1. Rt △AB1C1与Rt △AB2C2有什么关系? 2、 与 有什么关系?3.如果改变点B2在AB1上的位置并保持B2C2⊥AC1(垂足是点C2)呢?由此你能得出什么结论?引导学习基础较差的学生动手测量、求值来发现结论,学习基础较好的学生进行推理证明.(板书)结论1:在Rt △ABC 中,锐角A 确定,则∠A 的对边与∠A 的邻边 的比值也确定.这个比叫作∠A 的正切,记作tanA 即若将上图中三角形进行平移,比值会改变吗?旋转呢?结论还成立吗?对定义的几点说明:1、tanA 是一个完整的符号,表示∠A 的正切习惯上省略“∠”的符号.2、本章我们只研究锐角∠A 的正切.3、对边、邻边是在直角三角形中相对角而言的.练一练 想一想111B C AC 222B C AC 2.2m F D E 5m 2m BA C 4m 第 二 组B 1 B 2C 1 A C B C 2 A A ∠∠的对边的邻边tanA = A C B ∠A 的邻边 ∠A 的对边问题1: 判断对错(学生口答) (1)如图 (1) ( )(2)如图 (2) ( ) (3)如图 (2) ( ) (4)如图 (2) ( ) (5)若锐角∠A=∠B ,则tanA=tanB ( )问题2:如图,将Rt △ABC 各边扩大100倍,则tanA 的值( )A.扩大100倍B.缩小100倍C.不变D.不确定问题3:第一题图,你会表示tanB 吗?(学生板演)(1)AC=3,AB=6, 求tanB (2)BC=3,tanA=0.6,求AC.(3)若BC=2AB,求tanB问题4:如图,平面直角坐标系中点P (3,- 4),OP 与x 轴的夹角为∠1,求tan ∠1的值.说明:1、学生板演,借机指出学生出现的错误并提问tanA 能为负吗?2、对两种构造直角三角形的方法进行肯定,体会数形结合的方法.小组交流1.tanA 是在什么三角形中定义的?若所给图形不符合要求可以怎样解决?2.求tanA 还需要注意哪些问题?师生共同完善交流结果.探究三:议一议1、若锐角A 改变,则tanA 会怎样变化 ?2、滑道的倾斜程度与tanA 有怎样的关系?(板书)结论2:tanA 值越大,滑道越陡.练一练:下图表示两个自动扶梯,哪一个自动扶梯比较陡?AC BC A =tan AB BC A =tan m A 7.0tan =710tan =B C (2) A B C (1) B A 7m 10m B AC) β 乙 13m 5m 6m 8m α 甲探究四:辨一辨你知道坡度在数学中怎样表示吗?(请到课本P4找找答案.)1、自主学习坡度、坡角的概念2、全班交流坡度与坡角的关系.练一练:如图,某人从山脚下的点A 走了200m 后到达山顶的点B.已知山顶B 到山脚下的垂直距离是55m,求山坡的坡度(结果精确到0.001m).(三)应用新知 巩固拓展拓展一:如图, ∠C=90°CD ⊥AB. 若BD=6,CD=12. 求tanA 的值.拓展二:学以致用 (播放高山滑雪的视频)高山滑雪回转比赛的场地应建在坡度20度~27度的山坡上.场地宽不得小于40米.起点与终点的高度差,男子为140米~220米,女子为120~180米.在选取冬奥会场地的过程中,发现一处斜坡长为425米,坡顶到地面的垂直高度为200米.根据我们今天所掌握的知识,(1)找出上面不符合数学意义的表述;(2)请你帮忙计算出该备选场地的坡度.(四)回顾课堂、感悟收获1.通过本节课的学习,你认识正切函数了吗?2.求一个锐角的正切要注意哪些问题?3.你还有其它收获吗?(五)达标检测、反思成长 (小组竞赛、交流展示)1、比较“探究一”中的两组滑道,哪个更陡?哪几个一样陡?A C BD B 2.5m 5m 4.5m B C A DE 第 一 组F 2.5m 2.2m FD E5m 2m BA C 4m第 二 组2、在等腰△ABC,AB=AC=13,BC=10,求tanB.反思(1):测验评价结果:_______;对自己想说的一句话是:__ _______________.反思(2)错题整理:(六)课下作业、巩固发展1、课本习题1.1第1、2、3题2、选做题:(1)运用你所学的知识设计一个好玩的过山车滑道,并注明相应的坡度.(2)搜集有关高山滑雪的资料,结合本节课的知识自编一道数学题.设计意图:对本节课所学的知识进行进一步巩固,并能运用解决实际问题.让学生学以致用,感受学数学、用数学的乐趣。
人教版数学九下28.1《锐角三角函数》教学设计

3.锐角三角函数的计算:介绍计算器计算三角函数值的方法,并进行示范操作,让学生掌握计算技巧。
4.锐角三角函数的应用:以实际案例为例,如测量旗杆的高度、计算三角形面积等,讲解如何运用三角函数解决实际问题。
3.拓展提高题:完成课本第28.1节后的拓展题4,该题目涉及锐角三角函数的综合应用,旨在提高学生的逻辑思维和问题解决能力。
4.小组合作探究题:以小组为单位,从以下选题中任选一道,进行合作探究,并在下节课上分享解题过程和结论。
(1)在直角三角形中,已知一个锐角和斜边长度,如何求解其他两个角的度数?
(2)运用三角函数,设计一个测量远处物体高度的方案。
二、学情分析
九年级下学期的学生已经具备了一定的数学基础,掌握了平面几何的基本知识和基本的代数运算。在此基础上,他们对锐角三角函数的概念已有初步的了解,但可能对三角函数在实际问题中的应用还不够熟悉。此外,学生在空间想象、逻辑思维和问题解决能力方面存在一定差异。
多数学生能够通过观察、思考,发现三角函数的性质,但对于将三角函数应用于解决实际问题,可能还需进一步引导和培养。在情感态度上,学生对数学学科的兴趣和信心参差不齐,部分学生可能对数学学习存在恐惧心理。
(2)终结性评价:通过课后作业、单元测试等方式,评估学生对三角函数知识的掌握程度。
(3)个性化评价:针对学生的个体差异,给予有针对性的评价,鼓励学生发挥优势,弥补不足。
4.教学策略:
(1)关注学生的情感态度,营造轻松愉快的学习氛围,增强学生的自信心。
(2)注重启发式教学,引导学生主动探究、发现、解决问题,培养学生的思维能力。
一堂课的设计 锐角三角函数(第一课时)教学设计

锐角三角函数(第一课时)教学设计教材版本:人民教育出版社 课型:新授 年级:九年级教学任务分析一、教学目标 (一)知识目标1.理解掌握锐角三角函数的定义及锐角三角函数的表示方法:Sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠,tan A=的邻边的对边A A ∠∠2.掌握锐角三角函数的取值范围。
(二)能力目标1.能根据直角三角形的边长计算锐角三角函数值;2.培养学生从特殊到一般的分析能力。
3正确认识直角三角形中的边角关系 (三)情感态度通过三角函数概念的形成过程,增强数形结合的数学思想意识。
通过一系列的探究学习活动,培养学生合作交流的思想意识,感受数学知识的严谨性 二、教学重点:理解锐角三角函数的定义,计算锐角三角函数值。
三、教学难点:锐角三角函数概念的形成。
教学方法设计一、体现学生的主体地位:学生通过自主完成导学案中的学习任务,真正实现学生是学习的主体,切实提高学生的数学学习能力。
二、体现教师的主导作用:教师通过设计导学案体现教师的主导作用。
以PPT 多媒体课件的播放形式,展示知识的形成过程,体现数学思想方法,反应教学思路。
三、教前准备:(一)教具:三角板、直尺等。
(二)PPT 多媒体课件。
(三)导学案(附后)。
教学流程安排教学过程设计(一)创设情境1、情境之一: ——实际生活情境。
据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。
假设某成年人脚前掌到脚后跟长为15厘米,可算出鞋跟高度在3厘米左右最佳。
怎样将11度的锐角、15厘米的边长用于计算鞋跟的高度呢?显然,高跟鞋的鞋底、鞋跟与地面围成了一个直角三角形,这就需要建立边与角的特殊联系。
由此情境引出课题——“锐角三角函数”2、情境之二:自主探究 ——本节课的新知情境。
探索的问题任务: 如图1, 在Rt △ABC 中,∠A 的度数不变时,斜边的邻边A ∠、斜边的对边A ∠、的邻边的对边A A ∠∠的值是否发生变化?探索的方式、方法:学生分成10个小组,实践一由5个小组完成,另外5个小组完成实践二。
《锐角三角函数》第一课时_说课

《锐角三角函数》教学设计锐角三角函数(1)——正弦学习目标:1.理解锐角正弦的意义,并会求锐角的正弦值;2掌握根据锐角的正弦值及直角三角形的一边,求直角三角形的其他边长的方法;3经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究问题的能力;学习重点:理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实.学习难点:当直角三角形的锐角固定时,它的对边与斜边的比值是固定值的事实。
导学过程:一、自学提纲:1.在Rt△ABC中,∠C=90°,∠A=30°,BC=10m,求AB2.在Rt△ABC中,∠C=90°,∠A=30°,AB=20m,求BC二、创设情景,提出问题:利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用边求出斜塔的倾斜角吗?”这就是今天我们要学习锐角三角函数(板书课题)三、自主学习:自主阅读课本74页中的问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数30°,为使出水口的高度为35m,那么需要准备多长的水管?思考1:如果使出水口的高度为50m,那么需要准备多长的水管?;如果使出水口的高度为am,那么需要准备多长的水管?。
结论:直角三角形中,30°角的对边与斜边的比值。
思考2:在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值。
四、教师点拨:从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于1/2,是个固定值;当∠A=45°时,∠A的对边与斜边的比都等于√2/2,也是一个固定值.这就引发我们产生这样一个疑问:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?探究:任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′=a,那么它们的对边与斜边的比有什么关系.你能解释一下吗?因为∠C=∠C′,∠A=∠A′,所以△ABC∽A′B′C′所以BC/ B′C′=AB/ A′B′所以根据比例的基本性质可以得到BC/ AB= B′C/ A′B′结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比。
28.1.1锐角三角函数(正弦)教学设计

第二十八章 锐角三角函数28.1锐角三角函数第1课时 正弦知识与技能1、经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实,从而理解正弦的概念。
2、能根据正弦概念正确进行计算.过程与方法通过思考和探究,让学生发现“这个角的对边与斜边的比是一个固定值”的过程.情感、态度与价值观引导学生通过探索数量的比值关系,发现规律,从而培养学习数学的兴趣.重点理解正弦(sinA )概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值 . 难点当直角三角形的锐角固定时,它的对边与斜边的比值是固定值的事实.导入新课一、阅读教材73页引言部分,导入新知识.问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35 m ,那么需要准备多长的水管?分析:问题转化为在Rt △ABC 中,∠C =90°,∠A =30°,BC =35 m ,求AB.根据“在直角三角形中,30°角所对的直角边等于斜边的一半”,即∠A 的对边斜边=BC AB =12, 可得AB =2BC =70 m ,即需要准备70 m 长的水管.思考1:在上面的问题中,如果使出水口的高度为50 m ,那么需要准备多长的水管?学生按与上面相似的过程,自主解决.结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于12. 思考2:如图,任意画一个Rt △ABC ,使∠C =90°,∠A =45°,计算∠A 的对边与斜边的比BC AB,能得到什么结论?分析:在Rt △ABC 中,∠C =90°,由于∠A =45°,所以Rt △ABC 是等腰直角三角形,由勾股定理得AB 2=AC 2+BC 2=2BC 2,AB=2BC,BC AB=BC2BC=12=22.结论:在一个直角三角形中,如果一个锐角等于45°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于2 2.从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于12,是一个固定值.当∠A=45°时,∠A的对边与斜边的比都等于22,也是一个固定值.这就引发我们产生这样一个疑问:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?探究:任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′=α,那么BCAB与B′C′A′B′有什么关系?你能解释一下吗?分析:由于∠C=∠C=90°,∠A=∠A′=α,所以Rt△ABC∽Rt△A′B′C′,则BCAB=B′C′A′B′.结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何改变,∠A的对边与斜边的比都是一个固定值.二、正弦的概念:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sin A=∠A的对边斜边=ac.例如,当∠A=30°时,sin A=sin30°=1 2;当∠A=45°时,sin A=sin45°=2 2.注意:1.sin A不是sin与A的乘积,而是一个整体.2.正弦的三种表示方式:sin A,sin56°,sin∠DEF.3.sin A是线段之间的一个比值,sin A没有单位.提问:∠B的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?sin B=∠B的对边斜边=bc.三、举例应用,巩固新知例1如图,在Rt△ABC中,∠C=90°,求sin A和sin B的值.解:如图(1),在Rt △ABC 中,由勾股定理得AB =AC 2+BC 2=42+32=5.因此sin A =BC AB =35, sin B =AC AB =45. 如图(2),在Rt △ABC 中,由勾股定理得 AC =AB 2-BC 2=132-52=12.因此sin A =BC AB =513, sin B =AC AB =1213. 四、练习新知1、77页练习2、在△ABC 中,∠C=90º ,BC=2,sinA=21,求AC 的长.板书设计:一、讨论交流:结论:①直角三角形中,30°角的对边与斜边的比值②直角三角形中,45°角的对边与斜边的比值③在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比二、正弦函数概念:规定:在Rt △ABC 中,∠C=90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c . 在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA=ca .本节课采用问题引入法,从探究性问题入手,让学生主动参与学习活动,用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图、找边角、计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后探究:三角函数与直角三角形的边、角有什么关系?三角函数与三角形的形状有关系吗?整节课都在紧张而愉快的气氛中进行.学生非常活跃,大部分人都能积极动脑、积极参与.。
锐角三角函数第1课时教案

斜边c对边a bCB A(2)1353CB A(1)34CB A课题:28.1 锐角三角函数(第1课时)【学习目标】1.经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实,从而理解正弦的概念。
2.能根据正弦概念正确进行计算。
学习重、难点:理解正弦概念,当锐角固定时,它的对边与斜边的比值是固定值。
【学习过程】 一、 理解正弦概念任务一:回忆函数的定义1.函数的定义:一般地,如果在一个变化过程中,有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有惟一确定的值与其对应,那么我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数。
2.阅读课本 3.探究当锐角固定时,它的对边与斜边的比值是固定值。
4.正弦函数的概念 规定:在Rt △BC 中,∠C =90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦, 记作sinA ,即sinA= =ac. sinA =A a A c ∠=∠的对边的斜边 ( 0<sinA <1) 5.根据定义填空 sin30°=sin45°= sin60°= 。
二、正弦函数的运用任务二:例1.如图,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值【要求】 1.先自主阅读书本P61—P63例1以上部分,并划出中心句,时间5分钟. 2.作好展示准备,随机抽取,全班共同交流.【要求】独立思考后两位同学上黑板演示,其余同学在下面完成,最后全班一起交流.变式:在△ABC 中,∠C=90°,BC=4,sinA= ,求边AC 的长。
任务三:1.练习书本P64的12. 在Rt △ABC 中,锐角A 的对边和斜边同时扩大100倍, sinA 的值( )A.扩大100倍B.缩小C.不变D.不能确定3. 如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= .三、围绕问题,反思总结1. 什么是正弦函数?2.求一个角的正弦值,有哪些方法?四、达标检测,反馈提升1.在平面直角平面坐标系中,已知点A(3,0)和B(0,-4),则sin ∠OAB 等于____2.在Rt △ABC 中,∠C=90°,AD 是BC 边上的中线,AC=2,BC=4, 则sin ∠DAC=_____.3.如图,已知点P 的坐标是(a ,b ),则sin α等于( )A .a bB .ba C 2222D a ba b ++4.在△ABC 中,∠B 为直角,已知AC=200, sinA=0.6.求BC 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《锐角三角函数》(第一课时)教学设计
一、教材分析 (一)、教材的地位与作用 本节课选自鲁教版实验教科书九年级上册第一章解直角三角形的第一节锐角三角函数(第一课时)。锐角三角函数反映了直角三角形中边角之间的关系,它在解决实际问题中起着重要的作用。相比之下,正切是生活当中应用最多的三角函数概念。通过本节课的学习使学生进一步体会比和比例、图形的相似、推理证明等数学知识之间的联系。感受数形结合的思想,体会数形结合的方法,为一般性的学习锐角三角函数、利用锐角三角函数解决实际问题奠定基础。 (二)、学情分析 1、从学生的年龄特征和认知特征来看 九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。 2、从学生已具备的知识和技能来看 九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力。 3、从学生有待于提高的知识和技能来看 学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。 (三)、教学目标 1、知识目标 (1)经历探索直角三角形中边角关系的过程,理解正切的意义,并能举例说明。 (2)能运用tanA表示直角三角形中的两边之比,表示物体的倾斜度、坡度等,能利用直角三角形中的边角关系进行简单的计算。 2、能力目标 (1)经历观察、猜想等数学活动过程,发展合情推理能力。 (2)体验数形之间的联系,提高学生应用数学的意识和能力。 3、情感价值目标 使学生在学习数学的过程中体会数学与生活的密切联系,激发学生学习数学的兴趣,增强学好数学的信心。 (四)、教学重点、难点 教学重点: 1、对正切的理解,能运用正切函数表示直角三角形中两边的比。 2、能根据直角三角形中的边角关系进行简单的计算。 3、对坡度的理解并能运用来解决实际问题。 教学难点:对正切函数的理解。 二、教法和学法 本节课的教法采用的是情境引导法和探究发现法。在教学过程中,通过适宜的问题情境引发新的认知冲突;建立知识间的联系。教师通过引导、指导、反馈、评价,不断激发学生对问题的好奇心,使其在积极的自主活动中主动参与概念的建构过程,并运用数学知识解决实际问题,享受数学学习带来的乐趣。 本节课的学习方法采用自主探究法与合作交流法相结合。本节课数学活动贯穿始终,既有学生自主探究的,也有小组合作交流的,旨在让学生从自主探究中发展,从合作交流中提高。 三、教学过程 本节课的教学过程我设计了以下六个环节: 1. 创设情境、引入新知 2.学练结合、探索新知 3、应用新知、巩固拓展 4、回顾课堂、感悟收获 感悟收获 5、达标检测、反思成长 6、课后作业、巩固发展 (一)创设情境 引入新课 1、 利用多媒体播放“设计过山车路线”的游戏. “同学们,你们坐过过山车吗?今天请同学们和老师一起重新体味一下坐过山车的感受吧!”“请大家仔细观察哪段滑道更刺激更好玩?” 2、通过截取两段过山车的滑道,提炼出以下数学问题: 下列图形中的每一个小格为正方形,三角形的三个顶点均在格点上. 问题1 比一比哪个滑道长? 问题2 你能判断出哪个滑道陡吗?
A B
C F
E D 2.5m 5m 4.5m
B
C A
D
E
第 一 组 F 2.5m
学生能直观的发现倾斜角越大滑道越陡.还有其它方法吗?细心的同学观察出通过边来进行判断:“当高等时,底边越短滑道越陡.” 若改变高等的条件,你能利用边来判断哪个滑道更陡吗?今天我们来学习锐角三角函数(板书课题) 设计意图:通过游戏的的展示极大地调动了学生们学习的积极性,让学生体会到了数学与生活的联系,点燃了学生的求知欲.问题1旨在让学生复习勾股定理,为能正确求出锐角三角函数打下基础.问题2旨在概括出判断滑道倾斜程度的直观方法和依据,并引出本节课所要探究的问题. (二)学练结合 探究新知 探究一:比一比 比较下列各组中哪个滑道更陡,你有哪些判断方法? (1) 底等高不等
(2)底与高都不等 2.2m F D
E
5m 2m
B
A C
4m
第 二 组
要求学生(1)学生独立思考后小组内合作探究判断方法. (2)全班交流展示探究结果. 交流展示:对学生探究的不同方法进行引导总结,为后面引入正切、正弦、余弦的概念奠定基础. 今天我们来探究滑道的倾斜程度与底和高的比之间的关系. 设计意图:(1)底等高不等的图形,本质就是高等底不等图形的旋转对称变换,目的是进一步引导学生发现倾斜程度与边之间的关系;(2)高与底都不相等的对比旨在引导学生用边与边之比进行比较,有一定难度需要学生进行合作探究. 探究二:想一想 如图,B1、B2是滑道AB上的点,B1C1⊥AC,垂足为点C1,B2C2
⊥AC2,垂足为点C2,
1. Rt△AB1C1与Rt△AB2C2有什么关系? 2、 与 有什么关系? 3.如果改变点B2在AB1上的位置并保持B2C2⊥AC1(垂足是点C2)呢?由此你能得出什么结论?
引导学习基础较差的学生动手测量、求值来发现结论,学习基础B1 B
2
C1 A C
B C2 较好的学生进行推理证明. (板书)结论1:在Rt△ABC中,锐角A确定,则∠A的对边与∠A的邻边 的比值也确定. 这个比叫作∠A的正切,记作tanA 即 若将上图中三角形进行平移,比值会改变吗?旋转呢?结论还成立吗? 设计意图:将图形进行变式训练旨在让学生进一步明确这一比值只与倾斜角有关,而与直角三角形的大小无关,渗透正切函数的对应关系.也为拓展一做好铺垫. 对定义的几点说明: 1、tanA是一个完整的符号,表示∠A的正切习惯上省略“∠”的符号. 2、本章我们只研究锐角∠A的正切. 3、对边、邻边是在直角三角形中相对角而言的. 练一练 想一想 问题1: 判断对错(学生口答) (1)如图 (1) ( ) (2)如图 (2) ( ) (3)如图 (2) ( ) (4)如图 (2) ( ) (5)若锐角∠A=∠B,则tanA=tanB ( )
ACBCAtan
ABBCAtan
mA7.0tan710tanB
C (2)
A B C (1)
B
A 7m 10m
AA的对边的邻边tanA= A C
B
∠A的邻边 ∠A的对边 问题2:如图,将Rt△ABC各边扩大100倍,则tanA的值( ) A.扩大100倍 B.缩小100倍 C.不变 D.不确定 问题3:如上图,你会表示tanB吗?(学生板演) (1)AC=3,AB=6, 求tanB (2)BC=3,tanA=0.6,求AC. (3)若BC=2AB,求tanB 问题4:如图,平面直角坐标系中点P(3,- 4),OP与x轴的夹角为∠1,求tan∠1的值. 说明:1、学生板演,借机指出学生出现的错误并提问tanA能为负吗? 2、对两种构造直角三角形的方法进行肯定,体会数形结合的方法. 小组交流 1.tanA是在什么三角形中定义的?若所给图形不符合要求可以怎样解决? 2.求tanA还需要注意哪些问题? 师生共同完善交流结果. 设计意图:通过以上练习让学生总结出1、注意数形结合,构造直角三角形.2、 tanA是一个比值(直角边之比.注意比的顺序,且tanA﹥0,无单位)3、 当∠A确定时,正切值也确定. 探究三:议一议
B A
C
O P(3,- 4) 1
y
x 1、若锐角A改变,则tanA会怎样变化 ? 2、滑道的倾斜程度与tanA有怎样的关系? (板书)结论2:tanA值越大,滑道越陡. 练一练:下图表示两个自动扶梯,哪一个自动扶梯比较陡?
设计意图:旨在让学生进一步体会锐角A改变,则tanA也随着改变.所以我们把tanA叫做锐角A的一个三角函数.体会正切的函数思想. 探究四:辨一辨 你知道坡度在数学中怎样表示吗?(请到课本P4找找答案.) 1、自主学习坡度、坡角的概念 2、全班交流坡度与坡角的关系. 练一练:如图,某人从山脚下的点A走了200m后到达山顶的点B.已知山顶B到山脚下的垂直距离是55m,求山坡的坡度(结果精确到0.001m). 设计意图:通过创设恰当的问题情境,促进学生自觉地认识正切函数在现实中的应用,把知识和经验系统化、数学化. (三)应用新知 巩固拓展
β 乙 13m 5m 6m
8m α
甲
A C B D
B A C
┌