第1章线性规划详解只是分享
线性规划讲义

线性规划讲义一、引言线性规划是一种数学优化方法,用于解决一类特定的优化问题。
它的基本思想是在一组线性约束条件下,找到使目标函数达到最大或者最小值的最优解。
线性规划广泛应用于工业、经济、管理、运筹学等领域,对于决策问题的求解具有重要意义。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
目标函数通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为决策变量。
2. 约束条件:线性规划的约束条件是一组线性等式或者不等式,用于限制决策变量的取值范围。
约束条件通常表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中a₁₁、a₁₂、...、aₙₙ为常数,b₁、b₂、...、bₙ为常数,m为约束条件的个数。
3. 非负约束:线性规划中通常要求决策变量的取值非负,即x₁ ≥ 0,x₂≥ 0,...,xₙ ≥ 0。
三、线性规划的解法1. 图形法:对于二维线性规划问题,可以使用图形法求解。
首先,将目标函数和约束条件转化为直线或者半平面的图形表示,然后通过图形的分析找到最优解的位置。
2. 单纯形法:对于高维线性规划问题,单纯形法是一种常用的求解方法。
该方法通过不断迭代改进当前解,直到找到最优解为止。
单纯形法的基本思想是从一个可行解出发,通过改变决策变量的取值逐步挨近最优解。
3. 整数规划:当决策变量的取值限制为整数时,称为整数规划。
整数规划是线性规划的一个特例,解决整数规划问题的方法包括分支定界法、割平面法等。
四、线性规划的应用案例1. 生产计划问题:假设某工厂生产两种产品,产品A和产品B,每天可用的资源有限。
产品A每单位利润为10元,产品B每单位利润为15元。
运筹学第一章线性规划

0
X1
约束条件所组成的可行 域为空集,无可行解。
《运筹学》 第一章 线性规划
Slide 19
二、线性规划的标准形式
1、目标函数:max z c1x1 c2x2 cnxn
a x11 1 a x12 2 a x1n n b1 a x21 1 a x22 2 a x2n n b2
《运筹学》 第一章 线性规划
Slide 9
方案 根数
ABC
下料
3m 2 3 0
4m 1 0 2
合计 (m)
10
9
8
料头 (m)
0
1
2
P70 习题1-1: 设按这三种方案下料的原材料
根数分别为x1、x2、x3 。 min x1+x2+x3 S.t. 2x1+3x2>=90 x1+2x3>=60 Xi>=0
minz=2X1+3X2+5X3
s.t. X1+X2-X3>=-5 -6X1+7X2-9X3=15 ︱19X1-7X2+5X3︱<=13
X1>=0, X2>=0
令X3=X3`-X3`` -X1-X2+X3 `-X3`` +X4=5 -6X1+7X2-9X3`+9X3``=15 19X1-7X2+5X3`-5X3``+X5=13 -19X1+7X2-5X3 `+5X3``+X6=13 maxz=-2X1-3X2-5X3 `+5X3`` +0X4+0X5+0X6 X1,X2,X3`,X3``,X4,X5,X6>=0 三、线性规划的解的概念(参考P12例1.7) 1、可行解和最优解:满足约束条件的解(X1,X2, …,Xn)T称为线性规划的可行解。而使得目标函数达到 最优值的可行解称为最优解。 2、基:(注意课本P15的定义对“基”的定义有误) 设A是约束方程组m×n维的系数矩阵,其秩为m,B是 矩阵A中m×m阶非奇异子矩阵(B的行列式│B│≠0),则 称B是线性规划问题的一个基。
第一章线性规划

x11 + x12 + x13 + x14 = 2000 x21 + x22 + x23 + x24 = 1100 x11 + x21 = 1700 x12 + x22 = 1100 x13 + x23 = 200 x14 + x24 = 100 xij ≥ 0(i = 1,2;j = 1,2,3,4).
其中c =(c1,c2,…,cn)为行向量,称为价值向量,
a11 a A = 21 a m1 a12 a22 am 2
C
单500
75
解:(1) 确定决策变量:设x1,x2为下一个 生产周期产品甲和乙的产量;
(2) 所满足的约束条件:
对资源A的限制:3x1 + 2x2 ≤ 65 对资源B的限制:2x1 + x2 ≤ 40
对资源C的限制: 3x2 ≤ 75
基本要求:x1,x2 ≥ 0 ; (3) 明确目标函数: 获利最大,即求Z= 1500x1 + 2500x2的最大值,用 max表示最大值,s.t.(subject to的简写)表示约束条件,则该模型 可记为: max Z = 1500 x1 + 2500 x2 s.t. 3 x1 + 2 x2 ≤ 65 2 x1 + x2 ≤ 40 3 x2 ≤ 75
标准形式
max z = c1 x1 + c2 x2 + … + cn xn (1.2a)
第一章1、线性规划问题的基本概念讲解

•通常称 x1, x2 ,, xn 为决策变量,c1,c2 ,,cn 为价值系数, a11, a12, , amn 为消耗系数,b1 , b2 ,, bm 为资源限制系数。
3
运筹学这一名词最早出现于1938年。当时英,美等国盟军 在与德国的战争中遇到了许多错综复杂的战略和战术问题难以 解决,比如
(1)防空雷达的布置问题:
(2)护航舰队的编队问题:
为了应付上述各种复杂问题,英美等国逐批召集不同专业 背景的科学家,在三军组织了各种研究小组,研究的问题都是 军事性质的,在英国称为“Operational Research”,其他英语 国家称为“Operations Research”,意思是军事行动研究。这 些研究小组运用系统优化的思想,应用数学技术分析军事问题, 取得了非常理想的效果。
例1:某制药厂生产甲、乙两种药品,生产这两种药品要消 耗某种维生素。生产每吨药品所需要的维生素量,所占用的 设备时间,以及该厂每周可提供的资源总量如下表所示:
维生素(公斤) 设备(台)
每吨产品的消耗
甲
乙
30
20
5
1
每周资源总量
160 15
已知该厂生产每吨甲、乙药品的利润分别为5万元和2万 元。但根据市场需求调查的结果,甲药品每周的产量不应超 过4吨。问该厂应如何安排两种药品的产量才能使每周获得 的利润最大?
8
4. 学习要求
掌握主要的优化模型的数学计算方法. 了解现代优化方法及其数学原理. 熟练掌握应用数学软件计算优化问题.
9
5. 参考书目
主要参考书目: 理论方面: (1) 解可新、韩健,《最优化方法》,天津大学出版社,2004 (2) 何坚勇, 《最优化方法》, 清华大学出版社, 2007 计算方面: (3) 马昌凤,《最优化方法及其MATLAB程序设计》,科学出版社, 2010 (4) 朱德通,《最优化模型与实验》, 同济大学出版社, 2003
第一章_线性规划

第 一 节 线性规划问题及其数学模型
一、线性规划问题的数学模型
线性规划问题主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
在生产管理和经济活动中,经常会遇到线性规划问 题,如何利用线性规划的方法来进行分析,下面举例 来加以说明。
表1-2
成分
产品来源
分析:很明显,该厂可以有多种不同的方案从A,B 两处采购原油,但最优方案应是使购买成本最小的一 个,即在满足供应合同单位的前提下,使成本最小的 一个采购方案。
解:设分别表示从A,B两处采购的原油量(单位:万 吨),建立的数学模型为:
m in S 200 x1 290 x2
3. 若存在无非负要求的变量。即有某一个变 量 xj 取正值或负值都可以。这时为了满足标准型 对变量的非负要求,可令 xj = xjˊ- xj〞, 其中: xjˊ、 xj〞 0 ,由于xjˊ可能大于也可能小于xj〞,故 xj 可以为正也可以为负。
上述的标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7
x13x1x2
x4 x2
x5 2x4
x7 2 2x5 5
x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
例1-1:(计划安排问题)某工厂在计划期内安排 生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的 设备A、B的台时、原材料的消耗及两种产品每件 可获利润见表所示:
运筹学第1章-线性规划

下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
第一章 线性规划

线性规划
【开篇案例】
一、人力资源分配的问题
某旅行社为了迎接旅 游黄金周的到来,对一日 游导游人员的需求经过统 计分析如表所示。为了保 证导游充分休息,导游每 周工作 5天,休息两天, 并要求休息的两天是连续 的。问应该如何安排导游 人员的作息,既满足工作 需要,又使配备的导游人
下午5时14分
什么是规划?
• 以上问题无一例外都属于规划问题,涉及到求解最大值 和最小值
• 人们经常谈规划,比如国家有5年规划、10年规划、城市 有城市规划,个人有自己的人生规划.
• 规划是在现有的人力、物力水平下,使得目标达到最优 的全面、理性的计划
下午5时14分
线性规划
• 线性规划简介: • 运筹学中最成熟的一个分支 • 静态规划:单周期决策
第一节 下午5时14分 线性规划的一般模型
三、线性规划模型的特征
1. 模型隐含假定
作为严密的数学模型,线性规划蕴含着以下假定: (1)线性化假定
函数关系式f(x)= c1x1+c2x2+… +cnxn,称线性函数。 经济学中大多数函数都是非线性,通过偏导求最优。但在企业
运营决策中,经常考虑比较短时间内的计划安排,通过线性化 更便于应用。
乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?
甲
乙
丙
资源限制
铸造工时(小时/件)
5
10
7
8000
机加工工时(小时/件)
6
4
8
12000
装配工时(小时/件)
3
2
2
10000
自产铸件成本(元/件)
3
5
4
外协铸件成本(元/件)
第1章 线性规划问题

7连续加工问题
一工厂在第一车间用一单位M可加工成3单位产品 A,2单位产品B,A可以按每单位售价8元出售, 也可以在第二车间继续加工,每单位生产费用增 加6元,加工后每单位售价为16元;B可以按每 单位售价7元出售,也可以在第三车间继续加工, 每单位生产费用增加4元,加工后每单位售价为 12元.原料M的单位购入价为2元。上述生产费用 不包括工资在内.三个车间每月最多有20万工时, 每工时工资0.5元.每加工一单位M需1.5工时,如 A继续加工,每单位需3工时;如B继续加工,每 单位需1工时。每月最多能得到的原料M为10万 单位。问如何安排生产,使工厂获利最大?
23
管
理
运
筹
学
三、线性规划标准型及解的概念
• 线性规划的一般形式 max (min) z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2
xj 0
x j ; j 1,2,...,n
c (c1 , c 2 , , c n )
( j 1,2, , n)
为待定的决策变量,
为价值向量, c j ; j 1, 2,...,n 为价值系数,
b ( b1 , b 2 ,...,b m ) 为右端向量,
矩阵
a 11 a 21 A a m1 a 12 a 22 am2 a mn a1n a 2n
线性规划理论与模型应用
授课人 葛金辉
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14/39
数学 建模
例1.3 求解线性规划问题
min z = 2x1 + 3x2 + x3 ,
min w = - 2x1 - 3x2 + 5x3,
s.t.
轾 犏- 2 犏 臌1
5 3
-1 1
轾 犏x1 犏 犏x2 犏 臌x3
£
轾 犏- 10 犏 臌12
,
[1, 1, 1]?[ x1, x2, x3]T 7.
11/39
数学 建模
(2)求解的 Matlab 程序如下 f=[-2; -3; 5]; a=[-2,5,-1;1,3,1]; b=[-10;12]; aeq=[1,1,1]; beq=7; [x,y]=linprog(f,a,b,aeq,beq,zeros(3,1)); x, y=-y
第1章线性规划详解
数学 建模
1.1 线性规划问题
在人们的生产实践中,经常会遇到如何利用现有资源 来安排生产,以取得最大经济效益的问题。此类问题构成 了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记 LP)则是数学规划的一个重要分支。自 从 1947 年 G. B. Dantzig 提出求解线性规划的单纯形方法 以来,线性规划在理论上趋向成熟,在实用中日益广泛与 深入。特别是在计算机能处理成千上万个约束条件和决策 变量的线性规划问题之后,线性规划的适用领域更为广泛 了,已成为现代管理中经常采用的基本方法之一。
j= 1
(1.3)
s.t.
åìïïïïíïïïïî
n
aij x j
j= 1
xj ? 0
= j
bi i = 1, 2,L 1, 2,L , n.
,m,
其中bi ³ 0,i = 1, 2,L , m 。
(1.4)
6/39
数学 建模
可行解 满足约束条件(1.4)的解 x = [x1,L , xn]T , 称为线性规划问题的可行解,而使目标函数(1.3)达 到最大值的可行解叫最优解。
可行域 所有可行解构成的集合称为问题的可行 域,记为 R。
7/39
数学 建模
1.1.3 线性规划的Matlab标准形式及软件求解
线性规划的目标函数可以是求最大值,也可以是求最
小值,约束条件的不等号可以是小于号也可以是大于号。
为了避免这种形式多样性带来的不便,Matlab 中规定线
性规划的标准形式为
@for(row(i):@sum(col(j):a(i,j)*x(j))<b(i));
@sum(col:x)=7;
13/39
end
数学 建模
例 1.2 求解下列线性规划问题 max z = 2x1 + 3x2 - 5x3, s.t. x1 + x2 + x3 = 7, 2x1 - 5x2 + x3 ? 10, x1 + 3x2 + x3 ? 12, x1, x2 , x3 ³ 0.
min f T x,
x
s.t.
ìïïïíïïïïî
A祝x Aeq ?x lb #x
b, beq, ub.
其中 f , x,b,beq,lb,ub为列向量, f 称为价值向量,b称为
资源向量, A, Aeq为矩阵。
8/39
数学 建模
Matlab 中求解线性规划的命令为 [x,fval] = linprog(f,A,b) [x,fval] = linprog(f,A,b,Aeq,beq) [x,fval] = linprog(f,A,b,Aeq,beq,lb,ub) 其中 x 返回的是决策向量的取值,fval 返回的是目标函 数的最优值,f 为价值向量,A,b 对应的是线性不等式 约束,Aeq,beq 对应的是线性等式约束,lb 和 ub 分 别对应的是决策向量的下界向量和上界向量。
12/39
数学 建模
(3)求解的Lingo程序如下
model:
sets:
row/1..2/:b;
col/1..3/:c,x;
links(row,col):a;
endsets
data:
c=2 3 -5;
a=-2 5 -1 1 3 1;
b=-10 12;
enddata
max=@sum(col:c*x);
变量 x1, x2称之为决策变量,(1.1)式被称为问题的目
标函数,(1.2)中的几个不等式是问题的约束条件,记为
s.t.(即 subject to)。
4/39
数学 建模
目标函数及约束条件均为线性函数,故被称为线性 规划问题。线性规划问题是在一组线性约束条件的限制 下,求一线性目标函数最大或最小的问题。
2/39
数学 建模
1.1.1 线性规划的实例与定义 例 1.1 某机床厂生产甲、乙两种机床,每台销售后的 利润分别为 4 千元与 3 千元。生产甲机床需用 A、B机器加 工,加工时间分别为每台 2 小时和 1 小时;生产乙机床需用 A、B、C 三种机器加工,加工时间为每台各一小时。若每天 可用于加工的机器时数分别为 A机器 10 小时、B机器 8 小 时和C 机器 7 小时,问该厂应生产甲、乙机床各几台,才能 使总利润最大? Nhomakorabea9/39
数学 建模
例 1.2 求解下列线性规划问题 max z = 2x1 + 3x2 - 5x3, s.t. x1 + x2 + x3 = 7, 2x1 - 5x2 + x3 ? 10, x1 + 3x2 + x3 ? 12, x1, x2 , x3 ³ 0.
10/39
数学 建模
解 (1)化成 Matlab 标准型
3/39
数学 建模
上述问题的数学模型:设该厂生产 x1台甲机床和 x2乙
机床时总利润 z 最大,则 x1, x2应满足
max z = 4x1 + 3x2,
s.t.ìïïïïïíïïïïïî
2 x1 + x2 ? 10, x1 + x2 ? 8, x2 £ 7, x1, x2 ³ 0.
(1.1) (1.2)
在解决实际问题时,把问题归结成一个线性规划数 学模型是很重要的一步,往往也是很困难的一步,模型 建立得是否恰当,直接影响到求解。而选适当的决策变 量,是我们建立有效模型的关键之一。
5/39
数学 建模
1.1.2 线性规划问题的解的概念
一般线性规划问题的(数学)标准型为
n
å max z = c j x j ,