北师版八年级数学下册同步精品讲义

合集下载

3-2-1 图形的旋转(第1课时)(课件)-八年级数学下册同步精品课堂(北师大版)

3-2-1 图形的旋转(第1课时)(课件)-八年级数学下册同步精品课堂(北师大版)

课堂小结
1. 旋转的定义:“三要素” 一个定点、一个方向、一个旋转角度. 2. 旋转的性质:“三特点” 每个对应点与旋转中心的连线所成的角等于旋转角; 对应点到旋转中心的距离相等; 旋转不改变图形的形状和大小。
谢谢~
随堂练习
7.如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上 一点(点D与A,B不重合),连接CD,将线段CD绕点C按逆时针方 向旋转90°得到线段CE,连接DE交BC于点F,连接BE.
求证:△ACD≌△BCE.
随堂练习
证明:∵线段CD绕点C按逆时针方向旋转90°得到线段CE, ∴∠DCE=90°,CD=CE. 又∵∠ACB=90°, ∴∠ACB=∠DCE. ∴∠ACD=∠BCE. ∵ AC=BC, ∴△ACD≌△BCE(SAS).
探究新知
核心知识点一: 旋转的概念
仔细观察钟表的指针运动:
你能得出旋 转的概念吗?
探究新知
归纳总结
在平面内,将一个图形绕着一个定点沿某个方向转动 一个角度,这样的图形运动称为旋转。
这个定点O称为旋转中心
o 旋转中心
转动的角∠POP称为旋转角
旋转角
P
P′
探究新知
确定一次图形的旋转时,
旋转中心 必须明确 旋转角
探究新知
2.如图所示,△ABC是直角三角形,延长AB到D, 使BD=BC,在BC上取BE=AB,连接DE.△ABC旋 转后能与△EBD重合,那么:旋转中心是_点__B___; 旋转的角度是__9_0_°____;AC的对应边是__E__D____; ∠A的对应角是__∠__B_E_D__; 点C的对应点是___点__D___.
旋转方向
旋转与平移类似,也属于 全等变换,即运动前后改 变的是图形的位置,图形 的形状和大小都不变

第11讲提公因式与公式法因式分解八年级数学下册同步讲义(北师大版)

第11讲提公因式与公式法因式分解八年级数学下册同步讲义(北师大版)

第11讲提公因式与公式法因式分解目标导航1.了解整式乘法与因式分解之间的互逆关系;2. 会用提公因式法、运用公式法分解因式.知识精讲知识点01 因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.【知识拓展1】(2021秋•莱阳市期末)若4a4﹣(b﹣c)2分解因式时有一个因式是2a2+b﹣c,则另一个因式是()A.2a2﹣b+c B.2a2﹣b﹣c C.2a2+b﹣c D.2a2+b+c【知识拓展2】(2022•沙坪坝区校级开学)下列从左到右的变形中,属于因式分解的是()A.x2﹣1=(x+1)(x﹣1)B.2xy2=2x•yC.(﹣x﹣1)2=x2+2x+1D.x2+2x+2=x(x+2)+2知识点02 公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.【知识拓展1】(2021秋•巴彦县期末)多项式8a3b2+12ab3c的公因式是()A.abc B.4ab2C.ab2D.4ab2c【知识拓展2】(2021秋•广饶县期中)n为正整数,若2a n﹣1﹣4a n+1的公因式是M,则M等于()A.a n﹣1B.2a n C.2a n﹣1D.2a n+1【即学即练1】(2021秋•莱阳市期末)多项式3x2y2﹣12x2y4﹣6x3y3的公因式是.【即学即练2】(2019春•邢台期末)已知:A=3x2﹣12,B=5x2y3+10xy3,C=(x+1)(x+3)+1,问多项式A、B、C是否有公因式?若有,求出其公因式;若没有,请说明理由.知识点03 因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.【知识拓展1】(2021秋•淮阳区期末)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.x(x﹣y)+y(y﹣x)=(x﹣y)2C.﹣2y2+4y=﹣2y(y+2)D.x2+xy+x=x(x+y)【即学即练1】(2021秋•兴城市期末)多项式m2﹣4m分解因式的结果是()A.m(m﹣4)B.(m+2)(m﹣2)C.m(m+2)(m﹣2)D.(m﹣2)2【即学即练2】(2021秋•番禺区期末)已知x+y=10,xy=1,则代数式x2y+xy2的值为.【即学即练3】(2021秋•启东市期末)分解因式:2a(y﹣z)﹣3b(z﹣y)=.【知识拓展2】(2021秋•讷河市期末)因式分解:m(a﹣3)+2(3﹣a).【即学即练1】.(2021秋•海口期末)把下列多项式分解因式.(1)﹣2a+32ab2;(2)x(y2+9)﹣6xy.【即学即练2】(2021秋•梅里斯区期末)因式分解(1)﹣3x3y2+6x2y3﹣3xy4;(2)3x(a﹣b)﹣6y(b﹣a).知识点04因式分解-运用公式法1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2;2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.【知识拓展1】(2021秋•铅山县期末)分解因式:(a+2b)(a+4b)+b2.【即学即练1】(2021秋•博兴县期末)分解因式:(1)(3x﹣2)2﹣(2x+7)2;(2)(x2+2)2﹣6(x2+2)+9.【即学即练2】(2021秋•沐川县期末)分解因式:(a+2)(a+4)+1.【即学即练3】(2022•德城区校级开学)把下列各式分解因式:(1)16﹣x4;(2)4x(y﹣x)﹣y2.【知识拓展2】(2021秋•虹口区校级期末)已知,求ab.【知识拓展3】(2021秋•虎林市校级期末)(1)20032﹣1999×2001(公式法);(2)16(a﹣b)2﹣9(a+b)2(分解因式).知识点05提公因式法与公式法的综合运用提公因式法与公式法的综合运用.【知识拓展1】(2021秋•大余县期末)因式分解:(1)a3b﹣ab3;(2)2a3+12a2+18a.【即学即练1】(2021秋•鱼台县期末)分解因式:(1)a3﹣2a2b+ab2.(2)a2(x﹣y)+4b2(y﹣x).【即学即练2】(2021秋•西平县期末)分解因式:(1)a3﹣10a2b+25ab2;(2)9a2(x﹣y)+4b2(y﹣x).例1. 把下列各式因式分解(1)-+--+++a x abx acx ax m m m m 2213 (2)a a b a b a ab b a ()()()-+---32222例2. 把下列各式因式分解(1)324x xy - (2)3223288x y x y xy ++例3. 已知多项式232x x m -+有一个因式是21x +,求m 的值。

第9讲 图形的旋转与中心对称八年级数学下册同步讲义(北师大版)

第9讲  图形的旋转与中心对称八年级数学下册同步讲义(北师大版)

第9讲图形的旋转与中心对称目标导航1、掌握旋转的概念,探索它的基本性质,能够按要求作出简单平面图形旋转后的图形;2、掌握旋转对称图形、中心对称图形和中心对称的概念,理解他们的区别和联系,并会判别给出的图形是旋转对称图形还是中心对称图形;3、会画出给定条件的旋转对称图形或中心对称图形以及会画已知图形关于已知点成中心对称的图形.知识精讲知识点01 生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点.【知识拓展1】(2021秋•建华区期末)时钟的时针从上午的8时到上午10时,时针旋转的旋转角为.【即学即练1】(2021秋•太原期中)几何图形由点、线、面组成,点动成线、线动成面、面动成体.下列现象中能反映“线动成面”的是()A.流星划过夜空B.笔尖在纸上快速滑动C.汽车雨刷的转动D.旋转门的旋转【即学即练2】(2021春•凤翔县期末)下列运动形式属于旋转的是()A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪知识点02 旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.【知识拓展2】(2021秋•泰山区期末)小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180°).若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A.15°或45°B.15°或45°或90°C.45°或90°或135°D.15°或45°或90°或135°【即学即练1】(2021秋•湖北期末)如图,在△ABC中,∠BAC=110°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则旋转角∠ACD的度数为()A.50°B.40°C.30°D.20°【即学即练2】(2021秋•莆田期末)“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图①所示的“三等分角仪”能三等分任意一角.如图②,这个“三等分角仪”由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,点C固定,点D,E可在槽中滑动,OC=CD=DE.若∠BDE=81°,则∠AOB的度数是()A.24°B.27°C.30°D.33°知识点03 旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.【知识拓展3】(2021秋•北仑区期末)下列正多边形,绕其中心旋转72°后,能和自身重合的是()A.B.C.D.【即学即练1】(2021秋•荆门期末)把如图的五角星绕着它的中心旋转一定角度后与自身重合,则这个旋转角度可能是()A.36°B.72°C.90°D.108°【即学即练2】(2021秋•丰润区期末)如图,五角星的五个顶点等分圆周,把这个图形绕着圆心顺时针旋转一定的角度后能与自身重合,那么这个角度至少为()A.60°B.72°C.75°D.90°知识点04中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.【知识拓展4】(2021秋•淮南月考)如图,△ABC与△A′B'C'关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.∠ABC=∠A'C'B'C.点B的对称点是B′D.BC∥B'C'【即学即练1】(2021秋•黄陂区期中)如图,点A,B分别是两个半圆的圆心,则该图案的对称中心是()A.点A B.点BC.线段AB的中点D.无法确定【即学即练2】(2021春•清苑区期末)如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′知识点05中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.【知识拓展5】(2021秋•交城县期末)下列交通标志中,是中心对称图形的是()A.向右和向左转弯B.靠左侧道路行驶C.禁止驶入D.环岛行驶【即学即练1】(2021秋•铅山县期末)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.知识点06关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.【知识拓展6】(2021秋•沙河口区期末)在平面直角坐标系中,点P、点Q关于原点对称,若点P的坐标是(2,3),则点Q的坐标是.【即学即练1】(2021秋•新吴区期末)若点P(a,2)点Q(﹣4,b)关于原点对称,则点M (a,b)在第象限.【即学即练2】(2021秋•开州区期末)平面直角坐标系中点P(7,﹣9)关于原点对称的点的坐标是()A.(﹣9,7)B.(﹣7,9)C.(7,9)D.(﹣7,﹣9)知识点07作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.【知识拓展7】(2021秋•南开区期末)如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等.(1)直接写出点D的坐标;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为.【即学即练1】(2021秋•南沙区期末)如图,将△ABC绕点A顺时针旋转α,得到△ADE,若点D 恰好在CB的延长线上,则∠CDE等于()A.αB.90°+C.90°﹣D.180°﹣2α【即学即练2】(2021秋•铅山县期末)如图,在平面直角坐标系中,点A、B的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)求四边形AOA1B1的面积.例题1.(2020·浙江八年级期末)如图,在Rt ABC 中,90C ∠=︒,点P 为AC 边上的一点,将线段AP 绕点A 顺时针方向旋转(点P 对应点'',P AP AP =).当AP 旋转至AP AB'⊥时,点'B P P ,,恰好在同一直线上,此时作'⊥P E AC 于点E .(1)求证:∠=∠CBP ABP ;(2)若4,8AB BC AC -==,求PBC 的面积;(3)在(2)的条件下,点N 为边BC 上一动点,点M 为边BP 上一个动点,连接MC MN ,,求MC MN +的最小值.能力拓展【变式1】(2021·河南郑州市·八年级期末)一副直角三角尺叠放如图1所示,现将45︒的三角尺ADE 固定不动,将含30的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角60CAE ∠=︒时,//BC DE .求其它所有可能符合条件的角()0180CAE CAE ∠︒<∠<︒的度数,画出对应的图形并证明.【变式2】(2021·内蒙古呼伦贝尔市·八年级期末)已知:如图1,AOB 和COD 都是等边三角形.(1)求证:①AC=BD ;②∠APB=60°;(2)如图2,在AOB 和COD 中,OA =OB ,OC =OD ,∠AOB=∠COD=α,则AC 与BD 间的等量关系为 ,∠APB的大小为模块三、中心对称例题1.(2020·辽宁锦州市·八年级期末)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上.请回答下列问题:(1)作出△ABC 向左平移4个单位长度后得到111A B C △,并写出1A 的坐标;(2)作出△ABC 关于原点O 对称的222A B C △并写出22B C ,点的坐标.【变式1】(2021·山东济南市·八年级期末)如图网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)△AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.【变式2】(2021·山东烟台市·八年级期末)如图所示,网格中每个小正方冠的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案.解答下列问题:(1)图①中的三个图案面积都是,且都具有一个共同特征:都是对称图形;(2)请在图②中设计出一个面积与图①阴影部分面积相同,且具备上述共同特征的图案,要求所画图案不能与图①中所给出的图案相同.分层提分题组A 基础过关练一.选择题(共8小题)1.(2021秋•澄海区期末)如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A.25°B.35°C.40°D.85°2.(2021秋•崆峒区期末)2022年2月4日﹣2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片.旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转()A.180°B.120°C.90°D.60°3.(2021秋•雨花区期末)如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是()A.点A与点D是对应点B.BO=EOC.∠ACB=∠FED D.AB∥DE4.(2021秋•沙河口区期末)下列图案是一些电视台的台标,是中心对称图形的是()A.B.C.D.5.(2021秋•澄海区期末)在平面直角坐标系中,点A(1,﹣2)和点B(m,2)关于原点对称,则m的值为()A.2B.﹣2C.1D.﹣16.(2021秋•铅山县期末)如图,将△ABC绕点A逆时针旋转80°,得到△ADE,若点D在线段BC的延长线上,则∠PDE的度数为()A.60°B.80°C.100°D.120°7.(2021秋•绥滨县期末)已知,如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长是()A.1.5cm B.3cm C.5cm D.2.5cm8.(2021秋•澄海区期末)如图,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′刚好落在BC边上,且AB′=CB′,若∠C=20°,则△ABC旋转的角度为()A.60°B.80°C.100°D.120°二.填空题(共1小题)9.(2021秋•杜尔伯特县期末)时针从数字“9”到“12”按时针方向旋转了90°.三.解答题(共9小题)10.(2021秋•大洼区期末)如图,将Rt△ABO绕点O顺时针旋转90°,在所给的直角坐标系中画出旋转后的Rt△A1B1O.11.(2021秋•昆明期末)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,3),B(﹣2,4),C(﹣1,1).(1)以x轴为对称轴画出△ABC的对称图形△A'B'C';(2)画出△ABC绕点C按顺时针旋转90°后的△A″B″C;(3)直接写出A'、A″点的坐标.12.(2021秋•尧都区期末)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1),(2,1),将△BOC绕点O逆时针旋转90度,得到△B1OC1,画出△B1OC1,并写出B、C两点的对应点B1、C1的坐标,13.(2021秋•富县期中)如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.若∠B=21°,∠ACB=26°,求出旋转的度数,并指出旋转中心.14.(2021秋•新丰县期中)如图,在边长为1的小正方形格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)以原点O为对称中心,画出△AOB关于原点对称的△A1OB1.15.(2020秋•定南县期末)已知点P(2x+y,1)与点Q(﹣7,x﹣y)关于原点对称,求x,y的值.16.(2021春•绿园区期末)如图,将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,过点A作AF∥BE,交DE的延长线于点F,试问:∠B与∠F相等吗?为什么?17.(2021春•商河县校级期末)如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.18.(2020春•肇源县期末)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C (4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于原点对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.题组B 能力提升练一.选择题(共5小题)1.(2021秋•椒江区期末)如图,△DEC是由△ABC绕点C顺时针旋转30°所得,边DE,AC相交于点F.若∠A=35°,则∠EFC的度数为()A.50°B.55°C.60°D.65°2.(2021秋•铜官区期末)如图,将△ABC绕点C逆时针旋转α,得到△DEC,若点A恰好在DE的延长线上,则∠BAD的度数为()A.α﹣30°B.180°﹣αC.90°D.3.(2021秋•句容市期末)如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是()A.B.1C.2D.4.(2021秋•宜州区期末)如图,将Rt△ABC绕点A顺时针旋转40°,得到Rt△AB′C′,点C′恰好落在斜边AB上,连接BB′,则∠ABB′的度数为()A.50°B.60°C.70°D.80°5.(2021秋•绵阳期末)如图,将△ABC绕点B顺时针旋转角α,得到△A1BC1,此时点A,点B,点C1在一条直线上,若∠A1BC=22°,则旋转角α=()A.79°B.80°C.78°D.81°二.填空题(共5小题)6.(2021秋•廉江市期末)如图,△DEC与△ABC关于点C成中心对称,AB=3,AC=1,∠D=90°,则AE的长是.7.(2021秋•山亭区期末)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为.8.(2021秋•滨城区期末)已知A(2x+1,3),B(﹣5,3y﹣3)关于原点对称,则x+y =.9.(2021秋•海门市期末)点M(﹣3,2)关于原点对称的点的坐标是.10.(2015秋•天津期末)点A(﹣2,3)与点B(a,b)关于坐标原点对称,则a+b的值为.三.解答题(共8小题)11.(2021秋•沙河口区期末)如图,正方形网格中每个小正方形的边长都是1.将△ABC绕点P逆时针旋转90°后得到△A'B'C',其中A和A',B和B',C和C'是对应点.(1)画出△A'B'C';(2)在该网格中建立平面直角坐标系,点P,A坐标分别为P(0,1),A(1,1),直接写出该坐标系下A',B',C'的坐标.12.(2021秋•喀什地区期末)如图,在每个小正方形边长都是1的方格纸中,点O,A,B都在格点上.(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)求线段OB旋转到OB1时所扫过的扇形面积.13.(2021秋•芝罘区期末)如图,△ABC的顶点坐标分别为A(4,5),B(2,2),C(5,2).(1)将△ABC绕点(0,1)顺时针旋转180°,请画出旋转后的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A对应点A2坐标为(1,﹣2),请画出平移后的△A2B2C2,若△ABC内部一点P的坐标为(a,b),则点P的对应点P2的坐标是;(3)将△A1B1C1绕某一点M旋转可得到△A2B2C2,请画出点M的位置(保留痕迹),并直接写出点M的坐标.14.(2021秋•晋安区校级月考)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O对称.求证:AE=CF.15.(2021•鄂温克族自治旗二模)如图,△ABC中,BC=2AB,D,E分别是边BC,AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=5,AD+BF=14,求四边形ABDF的面积S.16.(2021春•宽城区期末)如图,在△ABC中,AD是BC边上的中线,△A'BD与△ACD关于点D成中心对称.(1)直接写出图中所有相等的线段.(2)若AB=5,AC=3,求线段AD的取值范围.17.(2021秋•桓台县期末)如图,在直角坐标系内,已知点A(﹣1,0).(1)图中点B的坐标是;(2)点B关于原点对称的点D的坐标是;点A关于y轴对称的点C的坐标是;(3)四边形ABCD的面积是;(4)在y轴上找一点F,使S△ADF=S△ABC.那么点F的坐标为.18.(2021秋•建安区期中)数学兴趣小组活动时,提出了如下问题:如图1,在△ABC中若AB=5,AC=3,求BC边上的中线AD的取值范围.解决方法:延长AD到E.使得DE=AD.再连接BE(或将MCD绕点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.迁移应用:请参考上述解题方法,证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.(1)求证:BE+CF>EF;(2)若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.题组C 培优拔尖练一.填空题(共5小题)1.(2021秋•新抚区期末)如图,△ABC是边长为3的等边三角形,E在AC上且AE=2,D是直线BC 上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,连接DF,AF,下列结论:①DF的最小值为;②AF的最小值是1+;③当CD=1时,DE∥AB;④当DE∥AB时,DE=1.正确结论的题号是.2.(2021秋•思明区校级期中)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A、C的对应点分别为点A′、C′,连接AA′、CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.则DE的最小值为.3.(2021•西湖区校级三模)如图,已知Rt△ACB,∠ACB=90°,∠B=60°,AC=4,点D在CB所在直线上运动,以AD为边作等边三角形ADE,则CB=.在点D运动过程中,CE的最小值.4.(2021春•龙岗区期末)如图,等腰△ABC中,∠BAC=150°,D是AB上一点,AD=1,BD=4,E点在边BC上,若点E绕点D逆时针旋转15°的对应点F恰好在AC上,则BE的长度为.5.(2019春•市南区期中)如图,一“L”型纸片是由5个边长都是10cm的正方形拼接而成,过点I的直线分别与AE,JN交于点P,Q,且“L”型纸片被直线PQ分成面积相等的上下两部分,将该纸片沿BG,CH,DI,IJ折成一个无盖的正方体盒子后,点P,Q之间的距离为cm.二.解答题(共7小题)6.(2021秋•沙坪坝区校级期末)(1)如图1,在6×6正方形网格中,有一格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),其面积为7cm2,则这个方格纸的面积等于cm2;(2)若点M是图1中不同于点C的一个格点,且△ABC的面积与△ABM的面积相等,则满足条件的点M有个;(3)如图2,在12×12正方形网格中,每个小正方形的边长为1,给定了点D,E的位置,请先画一个△DEF,使DF,EF的长分别为,2,再画△DEF关于点O成中心对称的△D'E'F'.7.(2021秋•阳东区期中)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.8.(2019春•港南区期中)如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.9.(2017•中原区校级三模)有这样一个问题:探究函数y=的图象与性质.下面是小强的探究过程,请补充完整:(1)函数y=的自变量x的取值范围;(2)如表是y与x的几组对应值.x…﹣5 ﹣4 ﹣3 ﹣2 0 1 2 3 …y…﹣2 0 …﹣﹣﹣如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.①观察图中各点的位置发现:点A1和B1,A2和B2,A3和B3,A4和B4均关于某点中心对称,则该点的坐标为;②小文分析函数y=的表达式发现:当x<﹣1时,该函数的最大值为﹣2,则该函数图象在直线x=﹣1左侧的最高点的坐标为;(3)小强补充了该函数图象上两个点(﹣,),(﹣,﹣),①在上图中描出这两个点,并画出该函数的图象;②写出该函数的一条性质:.10.(2021秋•渝中区校级期末)已知,如图1,直线AB∥CD,E为直线AB上方一点,连接ED、BE,ED与AB交于P点.(1)若∠ABE=110°,∠CDE=70°,则∠E=;(2)如图1所示,作∠CDE的平分线交AB于点F,点M为CD上一点,∠BFM的平分线交CD于点H,过点H作HG⊥FH交FM的延长线于点G,GF∥BE,且2∠E=3∠DFH+20°,求∠EDF+∠G的度数.(3)如图2,在(2)的条件下,∠FDC=25°,将△FHG绕点F顺时针旋转,速度为每秒钟3°,记旋转中的△FHG为△FH′G′,同时∠FDE绕着点D顺时针旋转,速度为每秒钟5°,记旋转中的∠FDE为∠F′DE′,当∠FDE旋转一周时,整个运动停止.设运动时间为t(秒),则当△FH′G′其中一条边与∠F′DE′的其中一条边互相垂直时,直接写出t的值.11.(2021秋•南川区期中)在△ABC中,AB=10,AC=8,∠ACB=30°,将△ABC绕A按逆时针方向旋转,得到△ADE.(1)如图1,点F为BC与DE的交点,连接AF.求证:FA平分∠DFC;(2)如图2,点P为线段AB中点,点G是线段BC上的动点,在△ABC绕A按逆时针方向旋转的过程中,点G的对应点是点G1,求线段PG1长度的最大值与最小值.12.(2019春•宁波期中)知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四边形DEFC(填“>”“<”“=”);(2)如图②,两个正方形如图所示摆放,O为小正方形对角线的交点,求作过点O的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用三种方法分割).。

第16讲 分式方程八年级数学下册同步讲义(北师大版)

第16讲  分式方程八年级数学下册同步讲义(北师大版)

第16讲分式方程目标导航2.通过将简单的分式方程转化为整式方程进行求解,领会分式方程“整体化”的化归思想和方法;3.理解增根的概念,会检验分式方程的根;4.会用分式方程解决相关问题,并进行简单的应用.知识精讲知识点01 分式方程的定义分式方程的定义:分母中含有未知数的方程叫做分式方程.判断一个方程是否为分式方程主要是看这个方程的分母中是否含有未知数.【知识拓展】(2021秋•平罗县期末)下列方程中,不是分式方程的是()A.B.C.D.【即学即练】(2021秋•西峰区期末)下列关于x的方程是分式方程的是()A.B.C.D.知识点02 分式方程的解求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.【知识拓展】(2022春•北碚区校级月考)若实数a使关于x的分式方程有正整数解,且使关于y的一元一次不等式组至少有4个整数解,则符合条件的所有整数a之和为()A.12B.15C.19D.22【即学即练】(2022春•沙坪坝区校级月考)若关于x的不等式组有且只有四个整数解,且关于y的分式方程的解为非负整数,则所有满足条件的整数a的值的和是()A.2B.0C.1D.﹣1知识点03 解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.【知识拓展】(2022•德城区校级开学)方程的解为()A.B.﹣4或1C.﹣4D.无解【即学即练1】((2022•江汉区模拟)方程的解为.【即学即练2】((2021秋•利通区校级期末)若分式值相等,则x的值为.知识点04换元法解分式方程1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.【知识拓展】(2021春•淮安月考)用换元法解分式方程x2+2x﹣=8,若设x2+2x=y,则原方程可化为()A.20y2+8y﹣1=0B.y2﹣8y﹣20=0C.y2+8y﹣20=0D.8y2﹣20y+1=0【即学即练】(2021春•宝山区校级月考)用换元法解方程时,设,则原方程可变形为()A.y2+y=4B.y2+y=2C.y2+y=6D.y2﹣y=4知识点05分式方程的增根(1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.【知识拓展】(2021秋•开福区校级期末)若关于x的分式方程有增根,则m的值是()A.m=2或m=6B.m=2C.m=6D.m=2或m=﹣6【即学即练】(2021秋•德江县期末)关于x的方程有增根,则m的值是()A.0B.2或3C.2D.3知识点06由实际问题抽象出分式方程由实际问题抽象出分式方程的关键是分析题意找出相等关系.(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.【知识拓展】(2022•罗山县校级模拟)郑州市新冠肺炎疫情防控指挥部发布开展全市全员新冠病毒核酸检测的通告,某小区有3000人需要进行核酸检测,由于组织有序,居民也积极配合,实际上每小时检测人数比原计划增加50人,结果提前2小时完成检测任务.假设原计划每小时检测x人,则依题意,可列方程为()A.B.C.D.【即学即练】(2021秋•和硕县校级期末)在新农村建设中,为了美化乡村,八年级同学积极参加植树造林,已知八(1)班每天比八(2)班每天多植5棵树,八(1)班植80棵树所用的天数与八(2)班植70棵树所用的天数相等,若设八(1)班每天植x棵,根据题意列出的方程是()A.B.C.D.知识点07分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.【知识拓展】(2022•麻栗坡县校级模拟)根据云南省《关于加快推进城镇老旧小区改造工作的指导意见》,在2021年底要基本完成云南全省城镇老旧小区改造提升工作.某小区计划对面积为1200m2的区域进行停车位改造,经投标由甲、乙两个工程队来完成.已知甲队每天能完成改造的面积是乙队每天能完成改造面积的2倍,如果两队各自独立完成面积为400m2区域的改造时,甲队比乙队少用4天.求甲、乙两工程队每天各能完成多少面积的停车位改造?【即学即练1】(2021秋•利通区校级期末)“阅读陪伴成长,书香润泽人生,”吴忠市第四中学为了开展学生阅读活动,计划从书店购进若干本A、B两类图书(每本A类图书的价格相同,每本B类图书的价格也相同),且每本A类图书的价格比每本B类图书的价格多5元,用1200元购进的A类图书与用900元购进的B类图书册数相同,求每本A类图书和每本B类图书的价格各为多少元?【即学即练2】(2021秋•绵阳期末)精强硅谷,有众多高科技产业,红旗电子科技公司是通讯设备、电源设备及消费类电子产品生产厂商,提供各类高分子材料、热传导材料、绝缘材料、缓冲及防尘材料.该公司今年承包了一手机品牌某一热传导材料零部件的生产任务,原计划在规定时间内生产24000个热传导材料零部件,由于此零件紧缺,需要提前5天供货,该公司经商议后,决定将工作效率比原计划提高25%,结果按预期刚好提前5天完成任务,求原计划每天生产的零件个数和规定的天数.能力拓展一.选择题(共3小题)1.(2021•大渡口区自主招生)如果关于x 的分式方程+=1有非负整数解,关于y 的不等式组有且只有三个整数解,则所有符合条件的整数m的个数为()A.0B.1C.2D.32.(2020•渝北区自主招生)若a为整数,关于x 的不等式组有且只有两个整数解,且关于y的分式方程﹣=1有整数解,则满足上述条件的整数a的和为()A.﹣1B.﹣3C.﹣5D.﹣63.(2020•武昌区校级自主招生)若关于x 的方程++=0只有一个实数根,则实数a的所有可能取值的和为()A.7B.15C.31D.以上选项均不对二.填空题(共4小题)4.(2021•黄州区校级自主招生)黄冈首届半程马拉松于5月6日在遗爱湖公园起跑,小林与小雨两名同学为参加比赛,在学校运动场400米环形跑道上进行训练,两人各自以恒定的速度沿逆时针方向跑步,已知每隔12分钟小林追上小雨一次,小林每圈花费的时间比小雨少10秒,则小林跑步的速度为每秒米.5.(2019•顺庆区校级自主招生)已知x满足﹣x2﹣2x=1,那么x2+2x=.6.(2020•巴南区自主招生)若关于x的分式方程﹣=4有正整数解,且关于y的不等式组有解,则所有符合条件的整数a的值的积是.7.(2019•达州自主招生)已知a2﹣6a+1=0且=2,则m=.三.解答题(共5小题)8.(2020•宝山区校级自主招生)解关于x的方程a(x﹣1)++3=0.9.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?10.(2020•浙江自主招生)已知关于x的方程﹣=恰好有一个实数解,求k的值及方程的解.11.(2020•渝中区校级自主招生)2020年2月,因新冠肺炎确诊病例不断增加,湖北某医疗救治中心计划购买一批无创呼吸机和双向呼吸机,两款共200台,预算分别为56万元和156万元.已知每台双向呼吸机的售价是每台无创呼吸机售价的2倍少1000元.(1)求该救治中心计划分别购进无创呼吸机和双向呼吸机各多少台?(2)为了表达对湖北疫区人民支持,呼吸机生产厂家立即对两款呼吸机均进行打折零利润销售,实际售价均在原售价的基础上下降了a%,根据救治中心一线医护人员的实际需求,双向呼吸机的实际购买量比原计划增加了a%,结果购买双向呼吸机比购买无创呼吸机多花费了90.4万元,求a的值.12.(2020•谷城县校级自主招生)若关于x的方程只有一个解(相等的解也算作一个),试求k的值与方程的解.分层提分题组A 基础过关练一.选择题(共5小题)1.(2021秋•樊城区期末)随着电影《你好,李焕英》热映,其同名小说的销量也急剧上升.某书店分别用400元和600元两次购进该小说,第二次数量比第一次多1倍,且第二次比第一次进价便宜4元,设书店第一次购进x套,根据题意,下列方程正确的是()A .B .C .D .2.(2021秋•河西区期末)方程的解为()A.1B.3C.4D.无解3.(2021秋•惠州期末)把分式方程=转化成整式方程时,方程两边同乘()A.x B.x﹣2C.x(x﹣2)D.3x(x﹣2)4.(2021秋•公安县期末)已知关于x 的方程的解为正数,则k的取值范围为()A.k>﹣2且k≠﹣1B.k>﹣2C.k>0且k≠1D.k<﹣25.(2021秋•德江县期末)关于x 的方程有增根,则m的值是()A.0B.2或3C.2D.3二.填空题(共5小题)6.(2021秋•孟村县期末)现有6000米的钢轨需要铺设,为确保通车时间,实际施工时每天铺设的长度是原计划的2倍,结果提前15天完成任务.设原计划每天铺设钢轨x米.(1)根据题意,可列分式方程为;(2)实际施工时每天铺设钢轨的长度为米.7.(2022•仁寿县模拟)已知关于x的方程=5的解不是正数,则m的取值范围为.8.(2021秋•宜城市期末)若关于x的分式方程无解,则m的值为.9.(2021秋•新田县期末)解关于x的分式方程=时不会产生增根,则m的取值范围是.10.(2021秋•曲阳县期末)A、B两地相距1350km,两辆汽车从A开往B地,大汽车比小汽车晚到30min,已知小汽车与大汽车的速度之比为5:3,求两车的速度,设大汽车的速度为3xkm/h,小汽车的速度为5xkm/h,所列方程是.三.解答题(共2小题)11.(2021秋•昌吉市校级期末)解方程:(1)=;(2)﹣=1.12.(2022•淮北模拟)解分式方程:+3=.题组B 能力提升练一.选择题(共5小题)1.(2022•开州区模拟)若关于x的一元一次不等式组的解集为x<﹣2,且关于y的分式方程的解为负整数,则所有满足条件的整数a的值之和是()A.﹣15B.﹣13C.﹣7D.﹣52.(2021秋•钢城区期末)若关于x的分式方程有正数解,则m的取值范围为()A.m<2B.m≠3C.﹣3<m<﹣2D.m<2且m≠﹣33.(2021秋•平舆县期末)若关于x的方程=a无解,则a的值为()A.1B.﹣1C.0D.±14.(2022•北碚区校级开学)若关于x的一元一次不等式组的解集恰好有3个负整数解,且关于y的分式方程=1有非负整数解,则符合条件的所有整数a的和为()A.6B.9C.﹣1D.25.(2021秋•晋安区期末)若关于x的分式方程=无解,则k的值为()A.1或4或﹣6B.1或﹣4或6C.﹣4或6D.4或﹣6二.填空题(共2小题)6.(2022•任城区一模)关于x的分式方程的解是正数,则a的取值范围是.7.(2021秋•绵阳期末)若关于x的方程的解为整数,则满足条件的所有整数a的和等于.三.解答题(共8小题)8.(2021秋•江源区期末)学习分式方程应用时,老师板书的问题和两名同学所列的方程如下:15.3分式方程甲乙两个工程队,甲队修路400米与乙队修路600米所用时间相等,乙队每天比甲队多修20米,求甲队每天修路的长度?聪聪:=明明:﹣=20根据以上信息,解答下列问题:(1)选择:聪聪同学所列方程中的x表示,明明同学所列方程中的y表示;A.甲队每天修路的长度;B.乙队每天修路的长度;C.甲队修路400米所用的时间.(2)你喜欢列的方程,该方程的等量关系为;(3)解(2)中你所选择的方程,并回答老师提出的问题.9.(2021秋•濮阳期末)为了做好防疫工作,保障员工安全健康,某公司用480元购进一批某种型号的口罩.由于质量较好,公司又用720元购进第二批同一型号的口罩,已知第二批口罩的数量是第一批的2倍,且每包便宜4元,问第一批口罩每包的价格是多少元?公司前后两批一共购进多少包口罩?10.(2021秋•密山市期末)(1)已知x(x﹣1)﹣(x2﹣y)=﹣6,求﹣xy的值.(2)虎林市政府倡导开展“共建绿色家园”,八年级甲、乙两个班的同学参加植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?(用方程解答)11.(2021秋•青县期末)为响应“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲种足球2个,乙种足球1个,购买足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?12.(2021秋•老河口市期末)某商家预测一种商品能畅销市场,就用4000元购进一批这种商品,这种商品面市后果然供不应求,商家又用8800元购进了第二批这种商品,所购数量是第一批购进数量的2倍,但单价贵了4元.该商家购进的两批商品的数量分别是多少件?13.(2021秋•渌口区期末)某商场在端午节来临之际用3000元购进A、B两种玩具110个,购买A玩具与购买B玩具的费用相同.已知A玩具的单价是B玩具单价的1.2倍.(1)求A、B两种玩具的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种玩具共260个,已知A、B两种玩具的进价不变.求A种玩具最多能购进多少个?14.(2021秋•普兰店区期末)一项工程需要限期完成,若用甲工程队单独做正好如期完成,若用乙工程队单独做,需要逾期3天才能完成(比期限多3天).现在甲、乙两工程队合做2天,余下由乙工程队单独做,刚好如期完成,求甲、乙两工程队单独完成工程各需要多少天?15.(2021秋•民权县期末)某商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少4元,其用200元购进甲种牛奶的数量与用220元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的2倍少4件,该商场甲种牛奶的销售价格为每件45元,乙种牛奶的销售价格为每件50元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于364元,请通过计算求出该商场购进甲、乙两种牛奶各多少件?题组C 培优拔尖练一.选择题(共1小题)1.(2021春•福田区校级期中)如果关于x的不等式组有且仅有四个整数解,且关于y 的分式方程﹣=1有非负数解,则符合条件的所有整数m的和是()A.13B.15C.20D.22二.填空题(共2小题)2.(2022春•渝中区校级月考)某校在“3.12”植树节来临之际,特从初一、初二、高一、高二四个年级中抽调若干学生去植树.已知初一、初二抽调的人数之比为5:3,高一、高二抽调的人数之比为4:3.上午,初一、高一年级平均每人植树的棵树相同且大于3棵小于10棵,高二年级平均每人植树的棵树为初一、初二平均每人植树的棵树之和的2倍,上午四个年级平均每人植树的棵树总和大于30棵小于40棵,上午四个年级一共植树714棵.下午,初二年级因为要回校参加活动不再参与植树活动,高一、高二年级平均每人植树的棵树都有所降低,高一年级平均每人植树的棵树降低50%,高二年级平均每人植树的棵树降为原来的.若初一年级人数及人均植树的棵树不变,高一高二年级人数不变,且四个年级平均每人植树的棵树为整数,则四个年级全天一共植树棵.3.(2020秋•滨州月考)若=+++++,则a的值是.三.解答题(共10小题)4.(2021秋•望城区期末)已知,关于x的分式方程=1.(1)当a=2,b=1时,求分式方程的解;(2)当a=1时,求b为何值时分式方程=1无解;(3)若a=3b,且a、b为正整数,当分式方程=1的解为整数时,求b的值.5.(2021秋•临河区期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发10分钟后,乙班的乙车才出发,为了比甲车早到5分钟,乙车的平均速度是甲车的平均速度的1.2倍,求乙车的平均速度.7.(2021春•射洪市月考)已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.8.(2021秋•宜城市期末)有一项工作需要在规定日期内完成,如果甲单独做,刚好如期完成;如果乙单独做,就要超过规定日期3天.现在由甲、乙两人合做2天,剩下的工作由乙单独做,刚好如期完成,问规定日期是几天?为了提升阅读速度,某中学开设了“高效阅读”课.小敏经过一段时间的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小敏原来每分钟阅读的字数.10.(2021秋•饶平县期末)在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了y天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?11.(2021秋•上思县期末)为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?12.(2020秋•庆云县校级期末)进入防汛期后,某地驻军在河堤加固的工程中出色完成任务,下面是记者与驻军工程指挥官的对话:记者:“你们是用9天时间完成4800米长的大坝加固任务的?”驻军指挥官:“我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.”通过上面的对话,请你求出该驻军原来每天加固河堤的米数.13.(2021春•南浔区期末)某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶).(1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?。

第6讲 一元一次不等式的应用八年级数学下册同步讲义(北师大版)

第6讲  一元一次不等式的应用八年级数学下册同步讲义(北师大版)

第6讲一元一次不等式的应用目标导航2.能够利用观察一次函数图象直接求出不等式的解.3.有关一元一次不等式与一次函数的实际应用方案问题,必须熟练掌握.知识精讲知识点01 由实际问题抽象出一元一次不等式用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.【知识拓展1】(2020秋•海曙区期末)海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80D.5x﹣2(20﹣x)<80【即学即练1】(2021春•高新区期末)一次环保知识竞赛共有20道选择题,答对一题得5分;答错或不答,每题扣1分.要使总得分不少于88分,则至少要答对几道题?若设答对x道题,可列出的不等式为()A.5x﹣(20﹣x)>88B.5x﹣(20﹣x)<88C.5x﹣x≥88D.5x﹣(20﹣x)≥88【即学即练2】(2021春•宜州区期末)在“建党百年”知识抢答赛中,共有20道题,对于每一题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于95分?设答对x题,则可列不等式为()A.10x﹣5(20﹣x)≥95B.10x+5(20﹣x)≥95C.10x﹣5(20﹣x)>95D.10x+5(20﹣x)>95【即学即练3】(2021•桂林模拟)某次数学竞赛共有16道题,评分办法是:每答对一道题得6分,每答错一道题扣2分,不答的题不扣分也不得分.已知某同学参加了这次竞赛,成绩超过了60分,且只有一道题未作答.设该同学答对了x道题,根据题意,下面列出的不等式正确的是()A.6x﹣2(16﹣1﹣x)≥60B.6x﹣2(16﹣1﹣x)>60C.6x﹣2(16﹣x)≥60D.6x﹣2(16﹣x)>60知识点02 一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【知识拓展1】(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户【即学即练1】(2021•梁园区校级一模)某学校为响应政府号召,需要购买一批分类垃圾桶,分为蓝色(可回收),绿色(易腐),红色(有害垃圾)和黑色(其他)四类,学校打算买其中蓝色和黑色共100个(两种都得有),黑色的50元/个,蓝色的60元/个,总费用不超过5060元,则不同的购买方式有()A.6种B.7种C.8种D.9种【即学即练2】(2021秋•虎林市期末)某次知识竞赛共有20道题,答对一题得10分,答错或不答均扣5分,小玉得分超过95分,他至少要答对()道题.A.12B.13C.14D.15【即学即练3】(2021秋•永定区期末)某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件【知识拓展2】(2021秋•盐田区校级期末)超市要到厂家采购甲、乙两种工艺品共100个,付款总额不超(1)最多可采购甲种工艺品多少个?(2)若把100个工艺品全部以零售价售出,为使利润不低于2580元,则最少采购甲种工艺品多少个?【即学即练1】(2021秋•道里区期末)某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?【即学即练2】(2021秋•澧县期末)2021年冬季即将来临,德强学校准备组织七年级学生参观冰雪大世界.参观门票学生票价为160元,冰雪大世界经营方为学校推出两种优惠方案,方案一:“所有学生门票一律九折”;方案二:“如果学生人数超过100人,则超出的部分打八折”.(1)求参观学生为多少人时,两种方案费用一样.(2)学校准备租车送学生去冰雪大世界,如果单独租用45座的客车若干辆,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满,求我校七年级共有多少学生参观冰雪大世界?(司机不占用客车座位数)(3)在(2)的条件下,学校采用哪种优惠方案购买门票更省钱?【知识拓展3】(2021秋•上城区校级期中)我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题,抢答规定,抢答对1题得3分,抢答错1题扣1分,不抢答得0分,小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,那么小军至少要答对()道题?A.17B.18C.19D.20【即学即练1】(2021秋•滨江区校级期中)某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9B.8C.7D.6【即学即练2】(2021•嵊州市模拟)随看科技的进步,我们可以通过手机APP实时查看公交车到站情况.小明想乘公交车,可又不想静静地等在A站.他从A站往B站走了一段路,拿出手机查看了公交车到站情况,发现他与公交车的距离为720m(如图),此时有两种选择:(1)与公交车相向而行,到A公交站去乘车;(2)与公交车同向而行,到B公交站去乘车.假设小明的速度是公交车速度的,若要保证小明不会错过这辆公交车,则A,B两公交站之间的距离最大为()A.240m B.300m C.320m D.360m知识点03 一次函数与一元一次不等式(1)一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.(2)用画函数图象的方法解不等式kx+b>0(或<0)对应一次函数y=kx+b,它与x轴交点为(﹣,0).当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.【知识拓展1】(2021秋•瑶海区期末)如图,直线y=kx+b(k≠0)经过点A(﹣3,2),则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<2【即学即练1】(2021秋•蜀山区期末)一次函数y=kx+b(k,b为常数且k≠0)的图象如图所示,且经过点(﹣2,0),则关于x的不等式kx+b>0的解集为.【即学即练2】(2021秋•槐荫区期末)如图,一次函数y=2x+8的图象经过点A(﹣2,4),则不等式2x+8>4的解集是()A.x<﹣2B.x>﹣2C.x<0D.x>0【即学即练3】(2021秋•龙凤区期末)一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx ﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤3【即学即练4】直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则关于x的不等式kx+b<0的解集是.【知识拓展2】(2021•滨江区校级三模)一次函数y1=ax﹣a+1(a为常数,且a≠0).(1)若点(﹣1,3)在一次函数y1=ax﹣a+1的图象上,求a的值;(2)若a>0,当﹣1≤x≤2时,函数有最大值5,求出此时一次函数y1的表达式;(3)对于一次函数y2=kx+2k﹣4(k≠0),若对任意实数x,y1>y2都成立,求k的取值范围.【即学即练1】(2021•龙岩模拟)对于平面直角坐标系xOy中第一象限内的点P(x,y)和图形W,给出如下定义:过点P作x轴和y轴的垂线,垂足分别为M,N,若图形W中的任意一点Q(a,b)满足a≤x 且b≤y,则称四边形PMON是图形W的一个覆盖,点P为这个覆盖的一个特征点.例:若M(1,3),N(4,3),则点P(5,4)为线段MN的一个覆盖的特征点.已知A(1,4),B(4,1),C(2,4),求解下列问题:(1)在P1(2,4),P2(4,4),P3(5,5)中,是△ABC的覆盖特征点的有P2,P3;(2)若在一次函数y=mx+6(m≠0)的图象上存在△ABC的覆盖的特征点,求m的取值范围.【即学即练2】(2020秋•丰都县期末)问题:探究函数y=|x+1|﹣2的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)下表是y与x的几组对应值,请将表格补充完整:x…﹣5﹣4﹣3﹣2﹣10123…y…21m n﹣2﹣1012…表格中m的值为,n的值为.(2)如图,在平面直角坐标系中描点并画出此函数的图象;(提示:先用铅笔画图,确定后用签字笔画图)(3)进一步探究:观察函数的图象,可以得出此函数的如下结论:①当自变量时,函数y随x的增大而增大;②当自变量x的值为时,y=3;③解不等式|x+1|﹣2<0的结果为.能力拓展例1.(2020·黑龙江哈尔滨市·九年级一模)2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品.爱民药店库存一批N95和普通医用两种类型口罩,N95口罩进价是普通医用口罩进价的5倍,药店把N95口罩和普通医用口罩在进价基础上分别加价40%、50%做为零售价.某人在爱民药店用84元购买一种口罩,发现买普通医用口罩的数量恰好比买N95口罩的数量4倍还多4个.(1)求两种口罩的进价分别是多少元?(2)随着疫情的进一步恶化,爱民药店的口罩很快被抢购一空.该药店再去厂家进货时发现,由于原材料上涨,N95口罩进价上涨20%,普通医用口罩进价上涨了30%.爱民药店购进这两种口罩共1500个,在零售时,N95口罩保持原售价不变,而普通医用口罩在原售价基础上上调20%,该药店要想在这批口罩全部售出后的利润不少于2000元(不考虑其它因素),则这次至少购进N95口罩多少个?例2.(2020·黑龙江哈尔滨市·九年级三模)某加工厂甲、乙二人制造同一种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙作60个所用的时间相等.(1)求甲、乙每小时各做多少个机械零件.(2)该加工厂急需甲、乙二人制造该种机械零件228个,由于乙另有其它任务,所以先由甲工作若干小时后再由甲、乙共同完成剩余的任务,工厂要求必须不超过10小时完成任务,请你求出乙至少工作多少小时?【变式1】(2020·长沙市雅礼实验中学八年级月考)“四书五经”是中国的“圣经”,“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙.某学校计划分阶段引导学生读这些书,先购买《论语》和《孟子》供学生阅读.已知购进《孟子》和《论语》,已知一本《孟子》的进价与一本《论语》的进价的和为40元,用90元购进《孟子》的本数与用150元购进《论语》的本数相同.(1)求每本《孟子》、每本《论语》的进价分别是多少元?(2)今年《孟子》和《论语》的单价和去年相比保持不变,该学校计划购进《孟子》和《论语》共100本,但花费总额不超过1800元,求最少购进《孟子》多少本?【变式2】(2020·沙坪坝区·重庆八中八年级月考)受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.【变式3】(2020·和平县实验初级中学七年级月考)某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式表示:去甲店购买所需的费用;去乙店购买所需的费用.(结果要求化简)(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)试探究,当购买乒乓球的盒数x取什么值时,去哪家商店购买更划算?【变式4】(2020·浙江省杭州市萧山区高桥初级中学八年级期中)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B 种台灯多少盏?【变式5】(2020·舟山市第一初级中学八年级期中)在抗击新冠肺炎疫情期间,我校购买酒精和消毒液两种消毒物资,供师生使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于恰逢商城打折,酒精和消毒液每瓶价格分别打7折和8折,此次只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?【变式6】(2019·山西八年级期末)山西民间的雕刻艺术源远流长,主要以古代传统吉祥纹样为素材,以石雕、木雕砖雕等形式,来体现主人的高尚情操和文化修养以及人们的美好愿望.某木雕经销商购进“木象”和“木马”两种雕刻艺术品,购“木象”艺术品共用了2000元,“木马”艺术品共用了2400元已知“木马”每件的进价比“木象”每件的进价贵8元,且购进“木象”“木马”的数量相同.()1求每件“木象”、“木马”艺术品的进价;()2该经销商将购进的两种艺术品进行销售,“木象”的销售单价为60元,“木马”的销售单价为88元,销售过程中发现“木象”的销量不好,经销商决定:“木象”销售一定数量后,将剩余的“木象”按原销售单价的七折销售;“木马”的销售单价保持不变要使两种艺术品全部售完后共获利不少于2460元,问“木象”按原销售单价应至少销售多少件?题组A 基础过关练1.如图,一次函数y =kx+b (k ,b 为常数,且k ≠0)的图象过点A (0,﹣1),B (1,1),则不等式kx+b >1的解集为( )A .x >0B .x <0C .x >1D .x <12.如图,直线y =kx+b 与直线y =3x ﹣2相交于点(12,﹣12),则不等式3x ﹣2<kx+b 的解为( )A .x >12B .x <12C .x >﹣12D .x <﹣123.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <分层提分4.如图,射线1l反映了某棉业有限公司的加工销售收入与销售量的之间的函数关系,射线2l反映了该公司的加工成本与销售量之间的关系,当该公司盈利时,销售量应为()A.大于3t B.等于4t C.小于6t D.大于6t5.(2021秋•澧县期末)目前新冠变异毒株“奥密克戎”肆虐全球,疫情防控形势严峻.体温T超过37.3℃的必须如实报告,并主动到发热门诊就诊.体温“超过37.3℃”用不等式表示为()A.T>37.3℃B.T<37.3℃C.T≤37.3℃D.T≤﹣37.3℃6.(2020秋•海曙区期末)海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80D.5x﹣2(20﹣x)<807.(2021春•龙华区期末)某校拟用不超过2600元的资金在新华书店购买党史和改革开放史书籍共40套来供学生借阅,其中党史每套72元,改革开放史每套60元,那么学校最多可以购买党史书籍多少套?设学校可以购买党史书籍x套,根据题意得()A.72x+60(40﹣x)≤2600B.72x+60(40﹣x)<2600C.72x+60(40﹣x)≥2600D.72x+60(40﹣x)=26008.(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户9.(2021•梁园区校级一模)某学校为响应政府号召,需要购买一批分类垃圾桶,分为蓝色(可回收),绿色(易腐),红色(有害垃圾)和黑色(其他)四类,学校打算买其中蓝色和黑色共100个(两种都得有),黑色的50元/个,蓝色的60元/个,总费用不超过5060元,则不同的购买方式有( )A .6种B .7种C .8种D .9种.10.(2021•集美区模拟)小军到水果店买水果,他身上带的钱恰好可以购买15个苹果或21个橙子,若小军先买了9个苹果,则他身上剩下的钱最多可买橙子( )A .7个B .8个C .9个D .10个11.(2021春•无棣县期末)某种商品的进价为40元,出售时标价为60元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )折.A .7B .6C .8D .512.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式320kx b ->的解集为_____.13.(2021秋•温州期中)全国文明城市创建期间,某校组织开展“垃圾分类”知识竞赛,共有25道题.答对一题记4分,答错(或不答)一题记﹣2分.小明参加本次竞赛得分要超过60分,他至少要答对 道题.14.(2021春•老河口市期末)某种商品的进价为1000元,出售时标价为1500元,由于该商品积压,商店决定打折出售,但要保证利润率不低于20%,则至多可打 折.15.(2021春•平罗县期末)在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场扣1分,某队预计在2019﹣2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛,则这个队至少胜 场才有希望进入季后赛.16.(2021春•榆阳区期末)为加快“智慧校园”建设,某市准备为试点学校采购A 、B 两种型号的一体机共1100套,已知去年每套A 型一体机1.2万元每套、B 型一体机1.8万元,经过调查发现,今年每套A 型一体机的价格比去年上涨25%,每套B 型一体机的价格不变,若购买B 型一体机的总费用不低于购买A 型一体机的总费用,则该市最多可以购买 套A 型一体机.17.某工厂计划生产A,B两种产品共10件,其生产成本和利润如表.(1)若工厂计划获利14万元,则A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且生产A产品x件,请列出不等式.18.(2021•福建模拟)疫情期间为了满足测温的需求,某学校决定购进一批额温枪.经了解市场,购买A 种品牌的额温枪每支300元,B种品牌的额温枪每支350元.经与商家协商,A种品牌的额温枪降价15%,B种品牌的额温枪打八折销售.若购买两种品牌的额温枪共50支且总费用不超过13000元,则至少要购买A种品牌的额温枪多少支?19.(2021春•淮阳区校级期末)某市要创建“全国文明城市”.其小区为了响应号召,计划购进A,B两种树苗共23棵.已知A种树苗每棵100元,B种树苗每棵80元.(1)若购进A,B两种树苗共花费了2100元,问购进A,B两种树苗各多少棵?(2)若购进A种树苗的数量不少于B种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.题组B 能力提升练1.如图,一次函数y =kx +b(k ≠0)的图象经过点A(-2,4),则不等式kx +b >4的解集是( )A .x <-2B .x >-2C .x <0D .x >02.如图,若一次函数y =-2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式-2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <33.若一次函数y =kx +b(k ,b 为常数,且k ≠0)的图象经过点A(0,-1),B(1,1),则不等式kx +b >1的解集为( )A .x <0B .x >0C .x <1D .x >14.如图,直线y =kx +b(k ≠0)经过点(-1,3),则不等式kx +b ≥3的解集为( )A .x >-1B .x <-1C .x ≥3D .x ≥-15.如图,直线y=kx-b与横轴、纵轴的交点分别是(m,0),(0,n),则关于x的不等式kx-b≥0的解集为( )A.x≥m B.x≤mC.x≥n D.x≤n6.如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为___.7.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为____.8.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax +b≥kx的解集为___.9.已知一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③b<0;④关于x的方程kx+b=x+a的解为x=3;⑤x>3时,y1<y2.其中正确的结论是____.(只填序号)10.在坐标系中作出函数y =2x +6的图象,利用图象解答下列问题:(1)求方程2x +6=0的解;(2)求不等式2x +6>-2的解集;(3)若2≤y ≤6,求x 的取值范围.11.如图,一次函数1: 22l y x =-的图像与x 轴交于点D ;一次函数2: l y kx b =+的图像与x 轴交于点A ,且经过点()3,1B ,两函数图像交于点(),2C m .(1)求m ,k ,b 的值;(2)根据图象,直接写出122kx b x <+<-的解集.12.某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2 000的设计费;乙公司提出:每份材料收费35,不收设计费.(1)请用含x 代数式分别表示甲乙两家公司制作宣传材料的费用;(2)试比较哪家公司更优惠?说明理由.13.为响应市政府“创建国家森林城市”的号召,某小区计划购进A ,B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A ,B 两种树苗刚好用去1 220元,问购进A ,B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.14.如图,一次函数y kx b =+的图象经过点()1,5A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1(1)求AB 的函数表达式;(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标; (3)若3kx b x +<,请直接写出x 的取值范围.题组C 培优拔尖练一.填空题(共6小题)1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x 应满足的不等式为 . 2.(2021秋•江北区校级期中)据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为 元.3.(2021春•许昌期末)为了提高学校的就餐效率,巫溪中学实践小组对食堂就餐情况进行调研后发现:在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部的人数各是一个固定值,并且发现若开一个窗口,45分钟可使等待的人都能买到午餐,若同时开2个窗口,则需30分钟.还发现,若能在15分钟内买到午餐,那么在单位时间内,去小卖部就餐的人就会减少80%.在学校总人数一定且人人都要就餐的情况下,为方便学生就餐,总务处要求食堂在10分钟内卖完午餐,至少要同时开多少 个窗口.4.(2019春•沙坪坝区校级期末)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.5.(2019•沙坪坝区校级二模)临近端午,某超市准备购进某品牌的白粽、豆沙粽、蛋黄粽,三种品种的粽子共1000袋(每袋均为同一品种的粽子),其中白粽每袋12个,豆沙粽每袋8个,蛋黄粽每袋6个.为了推广,超市还计划将三个品种的粽子各取出来,拆开后重新组合包装,制成A、B两种套装进行特价销售:A套装为每袋白粽4个,豆沙粽4个;B套装为每袋白粽4个,蛋黄粽2个,取出的袋数和套装的袋数均为正整数.若蛋黄粽的进货袋数不低于总进货袋数的,则豆沙粽最多购进袋.6.(2020秋•东阳市期末)已知直线y=x+2与函数y=图象交于A,B两点(点A在点B 的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.二.解答题(共7小题)7.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.8.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.。

第1讲 等腰三角形八年级数学下册同步讲义(北师大版)

第1讲  等腰三角形八年级数学下册同步讲义(北师大版)

第1讲 等腰三角形 1. 掌握等腰三角形,等边三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形,等边三角形的判定定理.3. 熟练运用等腰三角形,等边三角形的判定定理与性质定理进行推理和计算. 知识点01 等腰三角形1.等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC 中,AB =AC ,则它叫等腰三角形,其中AB 、AC 为腰,BC 为底边,∠A 是顶角,∠B 、∠C 是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B ,∠B =∠C =1802A ︒-∠ . 2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).3.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.4.等腰三角形是轴对称图形 目标导航知识精讲等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.5.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.【知识拓展1】根据等边对等角求角度例1.(2021·贵州·思南县张家寨初级中学八年级阶段练习)如图,在等腰三角形ABC中,AB=AC,点D为AC上一点,且AD=BD=BC,则∠A等于多少?例2.(2021·黑龙江省八五一一农场中学八年级期末)如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中∠CAB 的度数例3.(2021·广东·广州市白云区广大附中实验中学九年级阶段练习)已知:如图所示,在Rt△ABC中,∠C =90°,D是BC上一点,且DA=DB,∠B=15°.求∠CAD的度数.例4.(2021·广西三江·八年级期中)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,求∠C的度数.【即学即练1】如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【即学即练2】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【知识拓展2】利用三线合一求解与证明例1.(2021·湖北武汉·八年级阶段练习)如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD =CE.⊥,垂足为D,E是BC延长线上的一点,例2.(2021·重庆·八年级期中)如图:已知等边ABC中,BD AC=,且CE CD(1)求证:BD DE=;(2)若M为BE中点,求证:DM平分BDE∠.例3.(2021·河南镇平·八年级阶段练习)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB 上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是_______(填序号).①SSS;②SAS;③AAS;④ASA;⑤HL(2)如图2,连接EF.①求证:△CEF ≌△DFE ;②求证:△PEF 是等腰三角形;③小军作图得到的射线OP 是∠AOB 的平分线吗?请判断并说明理由.例4.(2021·广东广州·八年级阶段练习)如图,在ABC 中,AB AC =,AD BC ⊥,垂足为D ,AB :AD :13BD =:12:5,ABC 的周长为36,求ABC 的面积.例5.(2022·黑龙江富裕·八年级期末)已知:在△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,点E 为CD 上一点,且DE =AD ,连接BE 并延长交AC 于点F ,连接DF .(1)求证:BE =AC ;(2)若AB =BC ,且BE =2cm ,则CF = cm .例6.(2021·江苏滨海·八年级期中)如图,厂房屋顶的人字架是等腰三角形,AB=AC,AD⊥BC,若跨度BC =16m,上弦长AB=10m,求中柱AD的长.【即学即练1】(2021·福建·福州三牧中学九年级阶段练习)如图,在△ABC中,∠A=40°,∠ABC=80°,BE 平分∠ABC交AC于点E,ED⊥AB于点D,求证:AD=BD.【即学即练2】(2021·黑龙江五常·八年级阶段练习)已知:以线段AB为边在线段的同侧作△ABC与△BAD,BC与AD交于点E,若AC=BD,BC=AD.(1)如图1,求证:CE=DE;AB的线段.(2)如图2,当∠C=90°,∠AEB=2∠AEC时,作EF⊥AB于F,请直接写出所有等于12【即学即练3】(2021·吉林·八年级期末)如图,在ABC 中,AB AC =,AD 为边BC 的中线,E 是边AB 上一点(点E 不与点A 、B 重合),过点E 作EF BC ⊥于点F ,交CA 的延长线于点G .(1)求证:AD //FG ;(2)求证:AG AE =;(3)若3AE BE =,且4AC =,直接写出CG 的长.【即学即练4】(2021·江苏·扬州市梅岭中学八年级阶段练习)在平面直角坐标系中,三角形△ABC 为等腰直角三角形,AC =BC ,BC 交x 轴于点D .(1)若A (﹣8,0),C (0,6),直接写出点B 的坐标 ;(2)如图2,三角形△OAB 与△ACD 均为等腰直角三角形,连OD ,求∠AOD 的度数;(3)如图3,若AD 平分∠BAC ,A (﹣8,0),D (m ,0),B 的纵坐标为n ,求2n +m 的值.【知识拓展3】等腰三角形中的分类讨论例1.在等腰三角形中,有一个角为40°,求其余各角.例2、已知等腰三角形的周长为13,一边长为3,求其余各边.【即学即练】如图,△ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,AB=5,AC=7,BC=8,△AEF 的周长为( )A .13B .12C .15D .20【知识拓展4】等腰三角形性质和判定综合应用例1、已知:如图,ABC △中,45ACB ∠=︒,AD⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E , BAD FCD ∠=∠.求证:(1)△ABD≌△CFD;(2)BE⊥AC.知识点02 等边三角形1.等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.2.等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.3.等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.【知识拓展4】等边三角形例1、如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.【即学即练】等边△ABC,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.如图,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.【知识拓展5】在直角三角形中,30°角所对的直角边等于斜边的一半。

第13讲 实数范围内分解因式与因式分解的应用八年级数学下册同步讲义(北师大版)

第13讲  实数范围内分解因式与因式分解的应用八年级数学下册同步讲义(北师大版)

第13讲实数范围内分解因式与因式分解的应用目标导航能充分运用因式分解和分解因式解决相关问题.知识精讲知识点01 实数范围内分解因式实数范围内分解因式是指可以把因式分解到实数的范围(可用无理数的形式来表示),一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.例如:x2﹣2在有理数范围内不能分解,如果把数的范围扩大到实数范围则可分解x2﹣2=x2﹣()2=(x+)(x﹣)【知识拓展1】(2021秋•杨浦区期中)下列关于x的二次三项式中,一定能在实数范围内因式分解的是()A.x2﹣x﹣m B.x2﹣mx+1C.x2+x+1D.x2﹣mx﹣1【即学即练1】(2021春•杨浦区期末)如果二次三项式x2+4x+p能在实数范围内分解因式,那么p取值范围是()A.p>4B.p<4C.p≥4D.p≤4【即学即练2】(2021秋•徐汇区期末)在实数范围内因式分解:2x2﹣3x﹣1=.【即学即练3】(2021秋•虹口区校级期末)在实数范围内分解因式:3x2y2﹣2xy﹣6=.【知识拓展2】(2021春•临泽县月考)在实数范围内分解因式:(1)am2﹣6ma+9a;(2)9a4﹣4b4.【即学即练1】(2021秋•奉贤区校级期中)在实数范围内分解因式:2x2﹣3xy﹣4y2.知识点02 因式分解的应用1、利用因式分解解决求值问题.2、利用因式分解解决证明问题.3、利用因式分解简化计算问题.【规律方法】因式分解在求代数式值中的应用1.因式分解是研究代数式的基础,通过因式分解将多项式合理变形,是求代数式值的常用解题方法,具体做法是:根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.2.用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.【知识拓展1】(2021秋•兴山县期末)已知a+b=3,ab=﹣5,则a2b+ab2=.【即学即练1】(2021秋•开封期末)小明是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a﹣b,5,x2+1,a,x+1,分别对应下列六个字:封,爱,我,数,学,开.现将5a(x2﹣1)﹣5b (x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱开封C.我爱开封D.开封数学【即学即练2】(2021秋•房县期末)已知x2+x+1=0,则x2021+x2020+x2019+…+x+1的值是()A.0B.1C.﹣1D.2【即学即练3】(2021秋•原阳县期末)已知a,b,c是△ABC的三边的长,且满足2a2+b2+c2﹣2a(b+c)=0,则△ABC的形状为三角形.【即学即练4】(2021秋•仁怀市期末)如果一个正整数能表示成两个连续偶数的平方差,那么这个正整数就被称为“和平数”.如:4=22﹣02,12=42﹣22,所以4和12都是“和平数”.介于1到350之间的最大“和平数”是.能力拓展1.(2022•开州区模拟)一个自然数能分解成A×B,其中A,B均为两位数,A的十位数字比B的十位数字少1,且A,B的个位数字之和为10,则称这个自然数为“双十数”.例如:∵4819=61×79,6比7小1,1+9=10,∴4819是“双十数”;又如:∵1496=34×44,3比4小1,4+4≠10,∴1496不是“双十数”.(1)判断357,836是否是“双十数”,并说明理由;(2)自然数N=A×B为“双十数”,将两位数A放在两位数B的左边,构成一个新的四位数M.例如:4819=61×79,M=6179,若A与B的十位数字之和能被5整除,且M能被7整除,求所有满足条件的自然数N.2.(2021秋•泗阳县期末)我们规定:对于数对(a,b),如果满足a+b=ab,那么就称数对(a,b)是“和积等数对”;如果满足a﹣b=ab,那么就称数对(a,b)是“差积等数对”,例如:×3,2﹣.所以数对(,3)为“和积等数对”,数对(2,)为“差积等数对”.(1)下列数对中,“和积等数对”的是②;“差积等数对”的是①.①(﹣,﹣2),②(,﹣2),③(,2).(2)若数对(,﹣2)是“差积等数对”,求x的值.(3)是否存在非零的有理数m,n,使数对(2m,n)是“和积等数对”,同时数对(2n,m)也是“差积等数对”,若存在,求出m,n的值,若不存在,说明理由.3.(2021秋•公安县期末)“幻方”最早记载于春秋时期的《大戴礼记》中,如图1所示,每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,现将﹣5,﹣3,﹣2,2,3,5,7,8填入如图2所示的“幻方”中,部分数据已填入,则(d﹣c)a+b的值为()A.﹣50B.﹣100000C.50D.100000分层提分题组A 基础过关练一.选择题(共4小题)1.(2021•凉山州模拟)下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣42.(2022•拱墅区模拟)下列多项式中,在实数范围内不能进行因式分解的是()A.a2﹣1B.a2+2a+1C.a2+4D.9a2﹣6a+13.(2021秋•广饶县期末)如图①,将边长为a的大正方形剪去一个边长为b的小正方形,并沿图中的虚线剪开,拼接后得到图②,根据图形的面积,甲同学写出了一个等式a2﹣b2=(a+b)(a﹣b),乙同学也写出了一个等式(a﹣b)2=a2﹣2ab+b2,则()A.甲乙都正确B.甲乙都不正确C.甲正确,乙不正确D.甲不正确,乙正确4.(2021秋•定西期末)小明是一位密码编译爱好者,在他的密码手册中有这样一条信息:a﹣1,x﹣y,2,a2+1,x,a+1分别对应下列六个字:西,爱,我,数,学,定.现将2x(a2﹣1)﹣2y(a2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱定西B.爱定西C.我爱学D.定西数学二.填空题(共4小题)5.(2021•天宁区校级一模)在实数范围内分解因式:12a2﹣3b2=.6.(2020秋•罗湖区校级月考)把多项式x3y﹣25xy分解因式的结果是.7.(2021秋•寻乌县期末)在实数范围内分解因式:4x3y﹣4xy=.8.(2021秋•濮阳期末)若x﹣y=2,xy=3,则x2y﹣xy2=.题组B 能力提升练一.选择题(共3小题)1.(2021秋•泉州期末)若实数a、b满足a2+b2=1,则ab+a+3b的最小值为()A.﹣3B.﹣2C.1D.32.(2021秋•江油市期末)已知x2+x=1,那么x4+2x3﹣x2﹣2x+2023的值为()A.2020B.2021C.2022D.20233.(2021秋•卧龙区校级月考)三角形的三边长分别为a,b,c,且满足a4﹣b4+b2c2﹣a2c2=0,则该三角形的形状是()A.任意等腰三角形B.等腰直角三角形C.等腰三角形或直角三角形D.任意直角三角形二.填空题(共3小题)4.(2021秋•江油市期末)在实数范围内因式分解:2x2+3x﹣4=.5.(2021秋•交城县期末)在实数范围内分解因式a4﹣64=.6.(2021•临沂一模)在实数范围内分解因式:4a3﹣8a=.三.解答题(共8小题)7.(2017秋•泸县期末)在实数范围内将下列各式分解因式:(1)3ax2﹣6axy+3ay2;(2)x3﹣5x.8.(2017春•武威月考)在实数范围内将下列各式因式分解(1)x2﹣2x+3(2)x8﹣16.9.(2016秋•南通月考)分解因式(1)a3﹣2a2+a(2)在实数范围内因式分解:x4﹣9.10.(2021秋•石城县期末)把代数式通过配方等手段,得到完全平方式,再运用完全平方式的非负性来增加题目的已知条件,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题等都有着广泛的应用.例如:①用配方法分解因式:a2+6a+8.原式=a2+6a+9﹣1=(a+3)2﹣1=(a+3+1)(a+3﹣1)=(a+4)(a+2).②利用配方法求最小值:求a2+6a+8最小值.解:a2+6a+8=a2+2a⋅3+32﹣32+8=(a+3)2﹣1.因为不论x取何值,(a+3)2总是非负数,即(a+3)2≥0.所以(a+3)2﹣1≥﹣1,所以当x=﹣3时,a2+6a+8有最小值,最小值是﹣1.根据上述材料,解答下列问题:(1)填空:x2﹣8x+=(x﹣)2;(2)将x2﹣10x+2变形为(x+m)2+n的形式,并求出x2﹣10x+2的最小值;(3)若M=6a2+19a+10,N=5a2+25a,其中a为任意实数,试比较M与N的大小,并说明理由.11.(2022春•大余县月考)三位数可表示为100a+10b+c,若三位数abc能被n整除,将其首位数字放到末尾,得到新数能被n+1整除,再次将其首位数字放到末尾,得到新数能被n+2整除,则称这个三位数是n的一个“派生数”(n≠1).对任意三位数,规定P()=.例如,201能被3整除,012能被4整除,120能被5整除,则三位数201是3的一个“派生数”;再如324能被2整除,243能被3整除,432能被4整除,则三位数324是2的一个“派生数”,且P)==9.(1)P()=,255 5的一个“派生数”;(2)若三位数4xy是3的一个“派生数”,且x≠0,请求出满足条件的所有,并求出P()的最大值.12.(2022春•九龙坡区校级月考)对于一个三位数m,若其各个数位上的数字都不为0且互不相等.则称这样的数为“行知数”.将“行知数”m任意两个数位上的数字取出组成两位数,则一共可以得到6个两位数.将这6个两位数的和记为D(m).例如,D(235)=23+25+35+32+52+53=220.(1)计算:D(123);(2)求证:D(m)能被22整除;(3)记F(m)=,例如F(235)===10.若“行知数”n满足个位上的数字是百位上数字的3倍,且F(n)除以7余1,请求出所有满足条件的“行知数”n的值.13.(2022春•北碚区校级月考)如果一个自然数M能分解成p2+q,其中p与q都是两位数,p与q的个位数字相同,十位数字之和为10,则称数M为“方加数”,并把数M=p2+q的过程,称为“方加分解”,例如:236=122+92,12与92的个位数字相同,十位数字之和等于10,所以236是“方加数”.(1)判断212是否是“方加数”?.并说明理由;(2)把一个四位“方加数”M进行“方加分解”,即M=p2+q,并将p放在q的左边组成一个新的四位数N,若N能被7整除,且N的各个数位数字之和能被3整除,求出所有满足条件的M.14.(2021秋•川汇区期末)因式定理:对于多项式f(x),若f(a)=0,则(x﹣a)是f(x)的一个因式,并且可以通过添减单项式从f(x)中分离出来.已知f(x)=x3﹣5x2+(k+4)x﹣k.(1)填空:当x=1时,f(1)=0,所以(x﹣1)是f(x)的一个因式.于是f(x)=x3﹣x2﹣4x2+4x+kx ﹣k=(x﹣1)×g(x).则g(x)=;(2)已知关于x的方程f(x)=0的三个根是一个等腰三角形的三边长,求实数k的值.题组C 培优拔尖练一.填空题(共1小题)1.(2021秋•龙凤区期末)已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是.二.解答题(共12小题)2.(2017春•庐阳区校级月考)在实数范围内分解因式﹣9x4+16.3.(2017春•钦南区校级月考)在实数范围内分解因式:(1)9a4﹣4b4;(2)x2﹣2 x+3.4.(2022春•渝中区校级月考)材料:对于一个四位自然数,满足十位数字与百位数字之和等于个位数字与千位数字之和的2倍,则称这个数为“和倍数”.若规定P(N)为千位数字的3倍与个位数字的差,Q (N)为千位数字与个位数字之和,令F(N)=.例如:3621,∵6+2=2×(1+3),∴3621是“和倍数”,F(3621)==2.再比如4271,∵2+7≠2×(1+4),∴4271不是“和倍数”.(1)判断3531,4682是否是“和倍数”,并说明理由;如果是,请计算F(N)的值;(2)若四位自然数是“和倍数”,其十位数字能被5整除,且个位数字与百位数字的和能被3整除,F (n)为整数,求出符合条件的n.5.(2022•渝中区校级开学)如果一个自然数M的个位数字不为0,且能分解成A×B,其中A与B都是两位数,A与B的十位数字相同,个位数字之和为8,则称数M为“团圆数”,并把数M分解成M=A×B 的过程,称为“欢乐分解”.例如:∵572=22×26,22和26的十位数字相同,个位数字之和为8,∴572是“团圆数”.又如:∵234=18×13,18和13的十位数字相同,但个位数字之和不等于8,∴234不是“团圆数”.(1)最小的“团圆数”是;(2)判断195,621是否是“团圆数”?并说明理由;(3)把一个“团圆数”M进行“欢乐分解”,即M=A×B,A与B之和记为P(M),A与B差的绝对值记为Q(M),令G(M)=,当G(M)能被8整除时,求出所有满足条件的M的值.6.(2022•九龙坡区校级开学)对于任意一个四位数m,若m满足各数位上的数字都不为0,且千位与百位上的数字不相等,十位与个位上的数字不相等,那么称这个数为“智慧数”.将一个“智慧数”m的任意一个数位上的数字去掉后可以得到四个新三位数,把这四个新三位数的和与3的商记为F(m).例如“智慧数”m=1234,去掉千位上的数字得到234,去掉百位上的数字得到134,去掉十位上的数字得到124,去掉个位上的数字得到123.这四个新三位数的和为234+134+124+123=615,615÷3=205,所以F(1234)=205.(1)计算:F(2131)=;F(5876)=;(2)若“智想数”n=7800+10x+y(1≤x≤5,1≤y≤9,x,y都是正整数),F(n)也是“智慧数”,且F(n)能被12整除,求满足条件的n的值.7.(2022•九龙坡区校级开学)对任意一个四位正整数m,如果m的百位数字等于个位数字与十位数字之和,m的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m为“筋斗数”.例如:m=5321,满足1+2=3,2×2+1=5,所以5321是“筋斗数”.例如:m=8523,满足2+3=5,但2×2+3=7≠8,所以8523不是“筋斗数”.(1)判断5413和9582是不是“筋斗数”,并说明理由;(2)若m是“筋斗数”,且m与25的和能被11整除,求满足条件的所有“筋斗数”m.8.(2017秋•洛江区期中)阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=5﹣3i.(1)填空:i3=,2i4=;(2)计算:①(2+i)(2﹣i);②(2+i)2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y)+3i=(1﹣x)﹣yi,(x,y为实数),求x,y的值.(4)试一试:请你参照i2=﹣1这一知识点,将m2+25(m为实数)因式分解成两个复数的积.9.(2021•沙坪坝区校级开学)阅读理解:若一个三位数m=100a+10b+c(1≤a,b,c≤9,且abc均为整数),a+b﹣c=6,则称这个三位数m为“牛数”.比如:341,3+4﹣1=6,则341为“牛数”.将三位数m的个位与百位交换位置得到新的三位数记为m′,并记F(m)=m+m′,G(m)=.(1)判断453是否为“牛数”,并说明理由;(2)已知m为“牛数”,当F(m)能被12整除时,求G(m)的最大值.10.(2021•潼南区一模)阅读理解:材料1:一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”,例如:2534,x=2+5,y=3+4,因为x=y,所以2534是“和平数”.材料2:若一个四位数满足个位和百位相同,十位和千位相同,我们称这个数为“双子数”.将“双子数”m的百位和千位上的数字交换位置,个位和十位上的数字也交换位置,得到一个新的“双子数”m′,记F(m)=为“双子数”的“双11数”例如:m=3232,m′=2323则F(m)==10.请你利用以上两个材料,解答下列问题:(1)直接写出:最小的“和平数”是,最大的“和平数”.(2)若S是“和平数”,它的个位数字是千位数字的2倍,且百位数字与十位数字之和是14的倍数,求满足条件的所有S的值.(3)已知两个“双子数”p、q,其中p=,q=(其中1≤a<b≤9,1≤c≤9,1≤d≤9,c≠d且a、b、c、d都为整数),若p的“双11数”F(p)能被17整除,且p、q的“双11数”满足F(p)+2F(q)﹣(4a+3b+2d+c)=0,求满足条件的p、q.11.(2021春•铜梁区期末)一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)请判断:2561(填“是”或“不是”)“和平数”.(2)直接写出:最小的“和平数”是,最大的“和平数”是;(3)如果一个“和平数”的个位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是14的倍数,求满足条件的所有“和平数”.12.(2021春•婺城区校级期末)材料一:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数”,a,b为x的一个平方差分解,在x的所有平方差分解中,若a2+b2最大,则称a,b 为x的最佳平方差分解,此时F(x)=a2+b2.例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解,32=92﹣72,32=62﹣22,因为92+72>62+22,所以9和7为32的最佳平方差分解,F(32)=92+72材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”.根据材料回答:(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;(2)试证明10不是雪松数;(3)若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中F(t)的最大值.13.(2021春•邗江区期中)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)a2+b2﹣2a+1=0,则a=.b=.(2)已知x2+2y2﹣2xy+6y+9=0,求x y的值.(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长.。

不等式的解集(1个课时,课件)-2021-2022学年八年级数学下册同步精品课件(北师大版)

不等式的解集(1个课时,课件)-2021-2022学年八年级数学下册同步精品课件(北师大版)

为0.02 m/s,人离开的速度为4 m/s,
那么导火线的长度应满足什么条件?
解:设引火100 4
根据不等式的基本性质,得x>5.
所以,引火线的长度应大于5cm.
探索&交流
想一想
探索&交流
1.x = 4,5,6,7.2能使不等式x > 5成立么? 2.你还能说出几个使不等式x > 5成立的x值吗?你认为不等 式 x > 5的解有几个?
第二章 一元一次不等 式与一元一次不等式组
3 不等式的解集
北师大版八年级数学下册
学习&目标
1. 理解不等式的解、解集和解不等式的概念; 2.准确掌握不等式的解集在数轴上的表示方法,能正确地 在数轴上表示出不等式的解集.(重点、难点)
情境&导入
1.什么是解方程? 求方程的解的过程叫做解方程. 2.什么是方程的解? 使方程左、右两边的值相等的未知数的值叫做方程的解. 类似地,你认为什么是不等式的解?
把表示5的点A画成空心圆 圈,表示解集不包括5.
A -1 0 1 2 3 4 5 6
问题2 在数轴上表示x-5 ≤-1的解集.
探索&交流
-1 0 1 2 3 4 5 6 解集x-5≤-1中包含4,所以在数轴上将表示4的点画成实心圆点.
符号“≤”表示“小于等于”, “≥”表示“大于等于”.
不等式的解集在数轴上的表示方法:
练习&巩固
练习&巩固
3.不等式x>-2与x ≥-2的解集有什么不同?在数轴上表示 它们时怎样区别?分别在数轴上把这两个解集表示出来.
小结&反思
1.不等式的解的定义: 能使不等式成立的未知数的值,叫做不等式的解。 2.不等式的解集的定义: 一个含有未知数的不等式的所有解,组成这个不等式的解集。 3.解不等式的定义: 求不等式解集的过程叫做解不等式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个性化教学辅导教案学生姓名年 级 八年级学 科 数学 上课时间 2018年 月 日 教师姓名课 题等腰三角形与直角三角形教学目标1.掌握等腰三角形、等边三角形、直角三角形的判定和性质,能够根据其判定和性质进行证明;2.清楚证明直角三角形全等的条件;3.能够利用等腰、等边三角形的判定和性质解决实际问题.教学过程 教师活动学生活动1.如图所示的正方形网格中,网格线的交点称为格点.已知A B 、是格点,若C 也是格点,且ABC △为等腰三角形,则满足条件的点C 的个数是( )A .6B .7C .8D .92.等腰三角形一腰上的高与另一腰的夹角为,则等腰三角形的底角为( )A.B.或C.3.如图,ABC △是等边三角形,点D 是BC 边上任意一点,DE AB ⊥于点E ,DF AC ⊥于点F .若2BC =,则DE DF +=_____________.F E CDBA4.如图,已知△ABC中,AB=AC=2,∠BAC=90º,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①图中只有2对全等三角形,②AE=CF;③△EPF是等腰直角三角形;④S四边形AEPF=S△ABC;⑤EF的最小值为.上述结论始终正确的有()A. 2B. 3C. 4D. 55.如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接DE,DF⊥AB于F.求证:(1)∠B=∠EDC(2)∠BDF=∠ADE.精讲1 等腰三角形的性质与判定学习目标:能证明等腰三角形的性质定理与判定定理,并能够根据性质定理解决实际问题.目标分解:掌握等腰三角形的性质定理与性质推论;理解等腰三角形判定定理,并能够熟练应用.教学过程:【知识详解】1.等腰三角形的概念有两边相等的三角形叫等腰三角形,其中相等的两条边叫腰,两腰的夹角叫顶角,底边和腰的夹角叫底角.2.等腰三角形的性质(1)性质1:等腰三角形的两个底角相等(简称:等边对等角).(2)性质2:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一).3.等腰三角形的其他性质(1)等腰直角三角形的两个底角相等且等于45°;(2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角);(3)三边关系:设腰长为a,底边长为b,则;(4)三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则,∠B=∠C =.4、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).(2)有两条边相等的三角形是等腰三角形.考点一:等腰三角形的性质【例1】(1)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm(2)如图,若D为△ABC的边BC上一点,且AC=BC,AB=AD=CD,则∠BAC= ___ .【例2】(1)已知如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于G,CD=AE.求证:CG=EG.(2)已知如图,在△ABC中,AB=AC,①如图(1),若∠α=35°,AD是BC上的高,AD=AE,则∠β= ______ ;②如图(2),若∠α=46°,AD是BC上的高,AD=AE,则∠β=_______;③如图(3),D为BC上任意一点.请你思考:在△ABC中,若AB=AC,AD=AE,则∠α和∠β之间有什么关系?如果有,请你写出来,并说明你的理由.考点二:等腰三角形的判定【例3】(1)如图,,在射线上截取,动点在射线上滑动,要使为等腰三角形,则满足条件的点共有( )A.个B.个C.个D.个(2)如图,是一辆钢架,且,为使钢架更加坚固,需在其内部加一些钢管……添加的钢管长度都与相等,则最多能添加这样的钢管____________根【例4】(1)如图,在中,AB=AC,P为内一点,且,,①求证:是等腰三角形;②连接,当时,求的度数.(2)如图,在中,,,平分,且交的延长线于点,求证(3)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.(4)在△ABC中,AB=8,BC=10,AC=6,动点P从点C出发,沿着CB运动,速度为每秒2个单位,到达点B时运动停止,设运动时间为t秒,请解答下列问题:①求BC上的高;②当t为何值时,△ACP为等腰三角形?精讲2 等边三角形的性质与判定学习目标:能证明等边三角形的性质定理与判定定理,并能够根据性质定理解决实际问题.目标分解:1.掌握等边三角形的性质定理与性质推论;2.理解等边三角形判定定理,并能够熟练应用.教学过程:【知识详解】1.等边三角形的概念三边都相等的三角形叫等边三角形.2.等边三角形的性质(1)性质1:等边三角形的三个角都相等,并且每个角都等于60°.(2)性质2:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一).3. 等边三角形的判定(1)三条边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.考点三:等边三角形的性质【例5】(1)如图,是等边三角线,于,延长至,使得,则的度数为()A.B.C.D.(2)如图,已知:,点在射线上,点在射线上,均为等边三角形,若,则的边长为()A.B.C.D.(3)已知:如图,点在一条直线上,且、都是等边三角形. 求证:①;②求的度数考点四:等边三角形的判定【例6】(1)如图:在中,,点在上,,,是延长线上一点,.试判断的形状,并证明你的结论.(2)如图,在等边三角形中,①若点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由.②若点在直线上,点在直线上,且,的边长为1,,则的长为____________.精讲3 直角三角形的性质学习目标:能够证明直角三角形的性质,并能够根据直角三角形的性质解决实际问题.教学过程:【知识详解】一、直角三角形的性质:1.直角三角形的两个锐角互余;2.在直角三角形中,30°角所对的直角边等于斜边的一半;3.直角三角形斜边上的中线等于斜边的一半;注意:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4.勾股定理:直角三角形两直角边,的平方和等于斜边的平方,即.5.其它性质:常用关系式:两直角边的积= 斜边与斜边上的高的积.考点五:直角三角形的性质【例7】(1)直角三角形的周长为,斜边长为,则其面积为()A.B.C.D.(2)是斜边上的高,若,,则的长为().A.B.C.D.(3)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的点,那么△ADC′的面积是____.(4)如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC =90°,则BC的长度为()A.12 B.13 C.14 D.15【例8】(1)将一个有角的三角板的直角顶点放在一张宽为的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成角,如图,则三角板的最大边的长为()A.B.C.D.(2)直角三角形中斜边上的中线长为,周长为,则三角形的面积为()A.B.C.D.(3)如图,、分别是的高,为的中点,,,则的周长是()A.B.C.D.(4)如图,在等腰三角形中,,为边上中点,过点作,交于,交于,若,,求长.精讲4 直角三角形全等的判定学习目标:清楚直角三角形与其他三角形的不同判断全等的方法,同时理解互逆命题以及互逆定理.教学过程:【知识详解】直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).考点六:直角三角形全等的判定【例9】(1)如图,中,,.若是经过点的直线,于,于.①如图⑴,当与线段没有公共点时,求证:;②图⑴中,线段、、有何关系?证明你的结论.③若将旋转至与线段相交于点,且,则线段、、有何关系?(写出结论,不必证明)(2)如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等.1、如图,点的坐标是,若点在轴上,且是等腰三角形,则点的坐标不可能是()A.B.C.D.2.等腰三角形一腰上的高与另一边的夹角为50°,则顶角的度数为__________. 3.如图,已知∠AOB=60°,点P在边OA上,OP=10,点M、N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.64.如图,在Rt△ABC中,∠ACB=90°,CD、CE分别是斜边上的高和中线,若AC=CE=6,则CD的长为()A.B.3C.6 D.65.如图,∠AOB=30°,OC平分∠AOB,P为OC上一点,PD∥OA交OB于点D,PE⊥OA于E,OD=4cm,则PE=.6.如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,若DE=5,AE=8,则BC的长度为__________.7.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=4,BC=10,则△EFM的周长= _______ .8.仔细阅读完成下面的推理说明如图,CD是△ABC的角平分线,ED=EC,∠ADE=40°,求∠ABC.解:∵CD是△ABC的角平分线()∴∠ECD=∠()又∵DE=DC()∴△CDE是等腰三角形()∴∠ECD=∠=∠()∴DE∥BC()∴∠ABC=∠ADE=40°()9.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【查漏补缺】1、如图,在3×3网格中,已知点A,B是网格顶点(也称格点),若点C也是图中的格点,且使得△ABC为等腰三角形,则满足条件的点C的个数为()A.3 B.4 C.5 D.62、如图所示,在△ABC中,AB =AC,E为AB上一点,F为AC延长线上一点,且BE=CF,EF交BC于D,求证:DE=DF.3、如图,为等边三角形,点在的延长线上,点在边上,且.若的边长为,,则的长为()A.B.C.D.4、如图,中,,若于,于,分别为的中点,若,则的长为_____________5、如图,在等腰直角三角形中,,在BC上截取,作的平分线与相交于点P,连结PC,若的面积为,则的面积为()A.B.C.D.6、已知:如图,为等腰直角三角形,是直角边的中点,在上,且.求证:【举一反三】1.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度数?(3)猜想∠EDC与∠BAD的数量关系?(不必证明)2、图①、图②、图③是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为 1.请在图①、图②、图③中分别画出符合要求的图形,所画图形各顶点必须与方各纸中的小正方形顶点重合.具体要求如下:⑴画一个底边长为4,面积为8的等腰三角形;⑵画一个面积为10的等腰直角三角形;⑶画一个边长为,面积为6的等腰三角形.3、如图,在等腰中,,为的中点,,垂足为,过点作交的延长线于点,连接⑴和互相垂直吗?请说明理由⑵连接,试判断的形状,并说明理由【方法总结】1.全等三角形的证明思路2.注意:1.“HL” 是判定两个直角三角形全等所独有的,在运用该判定定理时,要注意全等的前提条件是两个直角三角形.2. 要注意本章中的互逆命题,如直角三角形的性质和判定定理,勾股定理及其逆定理,角平分线的性质定理及其逆定理等,它们都是互为逆命题.3. 勾股定理及其逆定理都体现了数形结合的思想. 勾股定理体现了由形到数,而勾股定理的逆定理是用代数方法来研究几何问题,体现了由数到形.1、如图,在△ABC中,∠C=25°,AD⊥BC,垂足为D,且AB+BD=CD,则∠BAC的度数是_____度.2、如图,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,∠B=20°,则∠A4=度.3、如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B 两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有个.4、操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.5、如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,求证:△ABC是等腰三角形.6、如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从B 点出发以2cm/秒的速度向A点运动,点Q从A点出发以1cm/秒的速度向C点运动,设P、Q分别从B、A同时出发,运动时间为t秒.解答下列问题:(1)用含t的代数式表示线段AP,AQ的长;(2)当t为何值时△APQ是以PQ为底的等腰三角形?(3)当t为何值时PQ∥BC?1、如图,过边长为1的等边△的边上一点,作⊥于,为延长线上一点,当时,连交于,则的长为()A. B. C. D.不能确定2、如图,过边长为1的等边△的边上一点,作⊥于,为延长线上一点,当时,连交于,则的长为()A. B. C. D.不能确定3、在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分成12cm和15cm的两部分,求三角形各边的长.4、如图1,已知中,,,把一块含角的直角三角板的直角顶点放在的中点上(直角三角板的短直角边为,长直角边为),将直角三角板绕点按逆时针方向旋转。

相关文档
最新文档