用转化的策略解决问题练习题
用转化的策略解决问题

一、说教材
本单元是在学生已经学习了用画图和列表,以及列举、倒推、替换和假设等策略基础上进行教学的。本节课主要是让学生学会用转化的策略解决问题。转化是一种常见的、极其重要的解决问题的策略。通过转化能把较复杂的问题变成较简单的问题,把新问题变成旧问题。
二、说教学目标
本节课的教学目标拟定为:
四、说教学过程
分析本节课,纵观全程,既把平移,旋转运用到图形等积变化的问题中,又蕴涵探索图形面积公式的转化,还有计算小数乘法和分数除法时的转化,还有数量关系之间的转化等。通过回忆和交流,意识到转化是经常使用的策略,从而主动应用转化的策略解决问题。基于此,我采用以下步骤解决。
一、故事引入,感知策略。
数学是和生活密切联系的,课的开始,我先跟学生讲了一个爱迪生和他的助手测量灯泡体积的故事。助手花了几个小时的时间来计算灯泡的体积,也没有算出来,爱迪生能很快的算出来,让学生猜一猜爱迪生是用的什么方法?在本册书第28页的思考题中也有过把圆钢的体积转化成水的体积的经验,因而学生很容易接受,根据学生的回答,我适时小结:把灯泡的体积转化成水的体积,就是一种非常重要的解决问题的策略,叫做“转化”。通过有趣的故事引入教学,使学生感受策略的价值,激发学生的求知欲,并初步体会“转化”的策略。
四、回顾知识,体验转化。
为了进一步丰富学生对转化策略的认识,帮助学生进一步体会知识之间的联系。我让学生回忆以前学过的知识中,在哪些地方都运用到了转化的策略?我先给学生一个交流的机会,让他们把回忆的内容给小组成员说说,然后全班交流汇报。通过讨论交流学生会联想到圆柱的体积转化成长方体来计算,三角形转化成平行四边形计算面积,推导圆面积时,把圆面积转化成长方形等等……让学生具体说一说推导过程。边演示边叙述,比如……课件演示一句话概括。引导学生认识到在运用转化的策略解决问题的共同点:把新问题转化成熟悉的或者已经解决过的问题。这一环节的设计,有效地建立新旧知识之间联系,大量的学习材料,让学生感受到了转化的应用价值。
用转化的策略解决问题前置性学习单

《用转化的策略解决问题》前置性学习单班级小组姓名时间学习内容:书P71-72的例1、“试一试”和“练一练”、练习十四的第1 — 3题。
学习目标:1.通过阅读故事,能初步感受到使用转化的策略解决实际问题,并能运用这样的策略猜字谜。
2.通过学习例题,能感受到比较图形的大小,也可以运用转化的策略进行比较。
3.在理解转化策略的基础上,能够回顾以前在哪些数学知识中运用过这一策略。
学习重点:感受并理解转化的策略,初步掌握转化的方法和技巧。
学习难点:合理应用转化的策略解决问题上课时间:5月6日学习过程:一、阅读故事:阿普顿是美国普林斯顿大学数学系毕业的高材生,对没有大学文凭的爱迪生有点瞧不起。
有一次,爱迪生让他测算一只梨形灯泡的容积。
于是,他拿起灯泡,测出了他的直径高度,然后加以计算。
但是灯泡不具有规则形状:它像球形,又不像球形;像圆柱体,又不像圆柱体。
计算很复杂。
即使是近似处理也很繁琐。
他画了草图,在好几张白纸上写满了密密麻麻的数据算式,也没有算出来。
爱迪生等了很长时间,也不见阿普顿报告结果。
他走过来一看,便忍不住笑出了声,“你还是换种方法吧!”只见爱迪生取来一杯水。
轻轻地往阿普顿刚才反复测算的灯泡里倒满了水,然后把水倒进量筒,几秒种就测出了水的体积,当然也就算出了灯泡的容积。
这时羞红了脸的阿普顿傻呆呆地站在一旁,恨不得找条地缝钻下去。
这个故事让你想到了什么?二、猜字谜(根据谜面,各打一字)。
(1) 72 小时 (2) 15 天 (3) 100 厘米三、自主尝试:2.回顾:我们曾用转化的策略解决过哪些问题三、我的疑问: _____________________________________________________________课堂展示提升1. 交流阅读故事后的联想到什么? 预设:(1)爱迪生是用转化的策略把不规则的灯泡转化成水的体积来计算的;(2)转化的策略非常神奇(3)像这样的用转化的策略解决问题还有“曹冲称象”、“阿基米德测皇冠”等。
五年级数学《用转化的策略解决问题》练习题(分课时)

用转化的策略解决问题(1)1. 小明买一支钢笔和3支铅笔,小刚买了同样的7支铅笔,他们付出的钱数一样多,一支钢笔价钱等于()支铅笔。
2.求图中阴影部分的面积。
(单位:厘米)3. 一块草坪被4条2米宽的小路平均分成了9小块。
草坪的面积是多少平方米?参考答案1. 42. 5×7=35(平方厘米) 10×(10÷2)÷2=25(平方厘米)3. 2×2=4(米)(45-4)×(27-4)=41×23=943(平方米)答:草坪的面积是943平方米。
用转化的策略解决问题(2)1.2.求图中阴影部分的面积。
(单位:厘米)3. 4个圆的直径都是2厘米,阴影部分的面积是多少平方厘米?1281641321161814121++++++参考答案1.2.5×(5×2)=50(平方厘米)3.14×62 ÷2=56.52 (平方厘米)3. 4×4+3.14×(4÷2)2×3=53.68(平方厘米) 答:阴影部分的面积是53.68平方厘米。
1281641321161814121++++++12812712811=-=练习十六1. 9998+998+98+8=2.求图中阴影部分的面积。
(单位:厘米)3.如图,平行四边形ABCD的底BC长是12厘米,线段FE长是4厘米,那么平行四边形中的阴影部分面积是多少平方厘米?参考答案1. 9998+998+98+8=10000+1000+100+10-2×4=111022.5×8=40(平方厘米)3. 12×4÷2×2=48(平方厘米)答:平行四边形中的阴影部分面积是48平方厘米。
用“转化”的策略解决问题

用“转化”的策略解决问题引言在人生和工作中,我们常常会遇到各种问题和挑战。
解决这些问题的关键在于找到合适的策略和方法。
其中,一种被广泛应用的策略是“转化”策略。
本文将介绍什么是“转化”,以及如何利用它来解决问题。
什么是“转化”“转化”是一种心理策略,指的是改变对问题或挑战的看法和态度,从而达到解决问题的目的。
当我们用“转化”策略来解决问题时,我们不再将问题视为难题或障碍,而是将其视为一个机会或挑战。
这种转变的心态能够帮助我们更加积极主动地面对问题,并找到更好的解决方案。
如何使用“转化”策略解决问题以下是一些使用“转化”策略解决问题的实践方法:1. 重新定义问题当我们面临一个问题时,我们可以尝试重新定义这个问题。
我们可以从不同的角度思考问题,并找到不同的解决方法。
例如,如果我们遇到了一个复杂的技术问题,我们可以尝试将其视为一个学习机会,通过解决这个问题来提升自己的技术能力。
2. 寻找机会即使在困难和挑战之中,我们也可以找到一些机会。
通过用“转化”策略来看待问题,我们可以发现问题背后隐藏着的机会。
例如,如果我们在工作中遇到了一个团队合作的问题,我们可以将其视为一个机会,来提升团队协作和沟通能力。
3. 探索不同的解决方案当我们改变对问题的看法后,我们也应该尝试探索不同的解决方案。
这可以帮助我们发现新的思路和方法。
例如,如果我们在项目管理中遇到了一个进度延迟的问题,我们可以尝试采用不同的方法来组织和管理项目,以提高效率和准确性。
4. 鼓励创新在问题解决过程中,我们应该鼓励创新和尝试新的方法。
有时候,传统的解决方法可能不再适用,我们需要有勇气尝试一些新的想法和策略。
例如,如果我们在市场营销中遇到了一个销售下滑的问题,我们可以尝试使用新的营销手段和渠道,来吸引更多的客户。
结论“转化”策略是一种重要的解决问题的方法。
通过改变对问题的看法和态度,我们可以更加积极主动地面对问题,并找到更好的解决方案。
尝试用“转化”策略来解决问题,你将会发现它的积极影响。
新苏教版六年级下册第三单元解决问题的策略练习【精品】

知识梳理模块一转化法解决问题的策略一、用转化的策略解决问题分数与比、除法有着密切的关系,在解决实际问题的过程中,可根据实际情况把分数问题转化为较为熟悉的知识解题,使计算更加得心应手。
二、用假设法解决实际问题1、先假设只有一种数量,再观察假设后原数量的变化关系,从而求出另一种量;2、用假设法解决问题就是通过对假设后数量关系变化情况的分析解决问题。
三、拓展提升1、根据两个量的关系推导出其他相关量的关系;2、已知两个量的差倍关系的实际问题;3、鸡兔同笼题型中的得失问题。
5例1 修路队修一条路,已经修了全长的6,还剩160 米没修。
已经修了多少米?2例2 已知甲校学生人数是乙校人数的53,甲校的女生人数是甲校学生人数的10,乙校的男生人数是乙校学生人数的21。
求两校女生人数占两校学生总人数的百分之几?50例3 甲、乙两袋糖的质量比是4:3,从甲袋中取出26 千克糖放入乙袋,这时两袋糖的质量比是5:7。
这两袋糖共有多少千克?变式1 爸爸将整理书籍的任务按5:3 的分配给了兄弟两人,结果哥哥整理了1440 本书,超额完成了20%,剩下的是由弟弟整理的。
弟弟整理了多少本书?模块二 假设法变式 2 妈妈买了一台电视机和一台冰箱,共花了 5400 元,冰箱的单价是电视机的 80%,电视机和冰箱的单价各是多少?变式 3 A 、B 两城相距 600 千米。
甲、乙两车分别从 A 、B 两城同时出发,相向而行,甲车的速度是乙车 3 的 。
相遇时甲、乙两车各行驶了多少千米? 7例 4 小阳有 1 角、5 角的硬币共 5 枚,一共一元 7 角。
那么 1 角、5 角的硬币各有多少枚?例 5 一名篮球运动员在一场比赛中一共投中 12 个球,有 2 分球,也有 3 分球。
已知这名运动员一共得分 33 分,他投中 2 分球和 3 分球各有多少个?例 6 六年级有 8 名学生进行乒乓球比赛,如果每两名学生之间都进行一场比赛,那么一共要比赛多少场?变式 4 一次抢答竞赛中共 10 道题,答对一道题加 10 分,答错扣 5 分。
【题型突破】六年级上册数学第四单元题型专项训练-应用题(解题策略+专项秀场) 苏教版(含答案)

苏教版数学六班级上册题型专练第四单元解决问题的策略应用题专项训练解题策略数学应用题:学校数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。
任何一道应用题都由两部分构成。
第一部分是已知条件(简称条件),其次部分是所求问题(简称问题)。
应用题的条件和问题,组成了应用题的结构。
一、转化法。
解题时,假如用一般方法临时解答不出来,就可以变换一种方式去思考,或转变思考的角度,或转化为另外一种问题。
这就是转化思路。
运用转化思路解题就叫转化法。
【例1】(2021·江苏六班级期末)星光学校组织数学竞赛,共有20道竞赛题,规定做对一道题得5分,做错或不做一道题倒扣3分,结果小强得了60分。
小强做对了几道题?分析:依据“做对一道题得5分,做错或不做一道题倒扣3分”可知:做错或不做一题比做对一题少得3+5=8分;全部做对20道题共得20×5=100(分);假设小华全部做对得分是100分,比60分多得100-60=40(分),那么他做错了:40÷8=5(道);所以小华做对:20-5=15道题;据此解答。
(20×5-60)÷(3+5)=40÷8=5(道)20-5=15(道)答:小强做对了15道题。
二、方程法。
方程法就是在解决问题时,让未知量与已知量处于同样的地位,即把未知量当作一个已知量看待,然后依据题中已知量和未知量之间存在的等量关系,列出相应的方程,最终求未知量是多少。
【例1】(2021·南京六班级)丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?分析:设王阳原来有x本,依据(王阳本数-5)×10=丁晓本数-5,列出方程求出x的值是王阳原来本数,王阳原来本数×5=丁晓原来本数。
解:设王阳原来有x本。
(x-5)×10=5x-510x-50=5x-55x=45x=99×5=45(本)答:丁晓原来有45本,王阳原来有9本。
【典型例题系列】六年级数学下册典型例题系列之第三单元解决问题的策略(原卷版)苏教版

2021-2022学年六年级数学下册典型例题系列之第三单元解决问题的策略(原卷版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第三单元解决问题的策略。
本部分内容主要介绍五种常见的解决问题的策略,即线段法、列表法、转化法、假设法、方程法等,考点和题型综合性较强,建议作为本章重点内容进行讲解,一共划分为五个考点,欢迎使用。
【考点一】策略一:线段法解题。
【方法点拨】稍复杂的分数应用题,为了使量率看起来更直观,往往采用画线段图的方式解决问题。
【典型例题】李伯伯家的苹果园今年收苹果3000千克,今年比去年少收14,去年收苹果多少千克?(画出线段图再列式解答)【对应练习1】李叔叔饲养白兔和黑兔一共400只,白兔只数是黑兔只数的35。
李叔叔饲养白兔和黑兔各多少只?(先将下面的线段图补充完整,再列式解答。
)黑兔:白兔:【对应练习2】松树棵数是柏树棵数的60%,松树比柏树少48棵。
松树和柏树各有多少棵?(补全下面的图形,并填空)松树有()棵,柏树有()棵。
【对应练习3】学校图书馆里科技书比故事书少200册,已知科技书的册数是故事书的35,图书馆里科技书有多少册【对应练习4】聪聪读一本童话故事书,上午读了72页,下午读的页数是上午的89,聪聪这一天共读了多少页?【对应练习5】某车间有工人150名,已知这些工人人数的45,恰好是全厂人数的112,全厂共有工人多少名?【考点二】策略二:列表法解题。
【方法点拨】在解决“鸡兔同笼”问题时,可以使用列表的方式,通过假设各种情况,再列表一一找出符号题目的情况。
【典型例题】一名篮球运动员在一场比赛中一共投中11个球,有2分球,也有3分球。
用转化的策略解决实际问题

例2 学校美术组有35人,其中
男生人数是女生的
2 3
。女生
有多少人?
例2 学校美术组有35人,其中
男生人数是女生的
2 3
。女生
有多少人? χ人
解:设女生有χ人。
χ+ 23χ=35 53χ χ==3251
答:女生有21人。
例2 学校美术组有35人,其中
男生人数是女生的
2 3
用转化的策略解决实际问题2
红彩带比绿彩带长 ( 2 )。 这三堆棋子一共有白子多少枚?若每堆有60枚呢?每堆有240枚呢? ( 5 ) 用转化的策略解决实际问题2
7 只数是白兔的 ,黑兔有多少只?
例2 学校美术组有35人,女生
5
只数是白兔的 ,黑兔有多少只?
χ=35
人数是美术组总人数的 。
5.看图填空。
车的速度是每小时多少千米?
5.看图填空。 人数是美术组总人数的 。
35× =21(人) 4、有三堆围棋子,每堆9枚。
(1) 答:小明已经看了36页。
男生人数是女生的 。 男生人数是女生的 。
5
女生人数是美术组总人数的 合唱组人数是美术组人数的
7
35× =21(人)
χ+ χ=35
2 答:学校合唱组有56人。 绿彩带比红彩带短 , 例2 学校美术组有35人,其中 7 学校美术组有35人,是合唱组人数的 。
))。
40×
3 8
=15(只)
答:黑兔有15只。
小明已经看了多少页?
已经看的页数是没有看的页数
的
( (
3 4
) )
。
48×
3 4
=36(页)