去分母解一元一次方程教案.doc

合集下载

解一元一次方程(二)——去括号与去分母 优秀教案设计

解一元一次方程(二)——去括号与去分母  优秀教案设计
解一元一次方程(二)——去括号去分母
【第一课时】 【教学目标】
1.知识与技能: 进一步掌握列一元一次方程解应用题的方法步骤。 2.过程与方法: 通过分析行程问题中顺流速度、逆流速度、水流速度、静水中的速度的关系,以及零件 配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。 3.情感与价值观: 培养学生自主探究和合作交流意识和能力,体会数学的应用价值。
课堂小结: 通过以上问题的讨论,我们进 一步体会到列方程解决实际问题的 关键是正确地建立方程中的等量关 系,另外在求出 X 值后,一定要检 验它是否合理,虽然不必写出检验 过程,但这一步绝不是可有可无 的。
4/4
教师分析:(1)顺流行驶的速 度、逆流行驶的速度、水流速度, 船 静水中的速度之间的关系如何?
生:顺流行驶速度=船在静水的速 度+水流速度。 逆流行驶速度=船在静水中的速度 -水流速度
教师引导:设船在静水中的平 均速度为 X 千米/小时。
教师提问:问题中的相等关系 是什么?
生:一般情况下,船返回是按原 路线行驶的,因此,可以认为这船的 往返路程相等。由此,列方程: 2(X+3)=2.5(X-3)
【教学设想】
本课时主要在前一课时的基础上进一步学掌握去括号,并通过分析行程问题,零件配套 问题的等量关系,运用方程解决实际问题。
【教材分析】
本课时主要复习去括号的法则,并在这基础上列方程解决实际问题。
【教学重点】
分析问题中的数量关系,找出能够表示问题全部含义的相等关系,列出一元一次方程, 并会解方程。
【教学难点】
找出能够表示问题会部含义的相等关系,列出方程。
【教学方法】
引导式。
【教学过程】

人教版七年级数学上册3.3解一元一次方程去分母教学设计

人教版七年级数学上册3.3解一元一次方程去分母教学设计
1.通过小组合作、讨论交流等方式,探索一元一次方程去分母的方法。
2.学会运用等式性质,将复通过典型例题的分析与讲解,培养学生分析问题、解决问题的能力。
4.通过课后练习和拓展,提高学生的运算速度和准确率。
(三)情感态度与价值观
1.增强对数学学科的兴趣,激发学习热情。
1.学生对方程去分母方法的掌握程度,针对不同水平的学生进行分层教学,使每个学生都能在原有基础上得到提高。
2.注重培养学生的运算能力和逻辑思维能力,引导学生运用等式性质,逐步解决复杂问题。
3.关注学生的学习兴趣和动力,通过生动的实例和有趣的教学方法,激发学生的学习热情。
4.强化学生的合作意识,鼓励学生积极参与小组讨论,提高学生的交流与协作能力。
(二)讲授新知
在讲授新知环节,我将详细讲解一元一次方程去分母的方法,并通过示例进行演示。
1.讲解原理:等式两边同时乘以分母的最小公倍数,可以将方程中的分数消去。
2.演示示例:假设有一个方程(3x + 2)/4 = 5,如何去掉分母?
a.找到分母的最小公倍数,这里是4。
b.将方程两边同时乘以4,得到3x + 2 = 20。
c.解这个整式方程,得到x = 6。
3.强调注意事项:在去分母的过程中,一定要确保等式两边同时乘以相同的数,保持等式的平衡。
(三)学生小组讨论
在此环节,我将组织学生进行小组讨论,共同探讨去分母的方法和应用。
1.分组讨论:请同学们分组讨论,如何去掉以下方程中的分母?
a. (2x - 3)/5 = 7
b. (4x + 1)/3 = (2x - 1)/6
(二)教学设想
1.创设情境:通过生活实例引出一元一次方程去分母的问题,让学生认识到数学与现实生活的紧密联系,激发学生的学习兴趣。

解一元一次方程 去分母与去括号 教案

解一元一次方程  去分母与去括号 教案

解一元一次方程 去分母与去括号一、知识点概括1、方程中有带括号的式子时,去括号是常用的化简步骤,去括号的法则:(1) 。

(2) 。

2、去括号:(1)a-(b-c)=(2)a+(b-c)=3、解一元一次方程的过程中,去分母的具体步骤 ,依据是 。

4、解一元一次方程的一般步骤: (1) ,(2) ,(3) ,(4) ,(5) ,二、解一元一次方程方程去分母与去括号例题讲解例1、解方程:(1)95)3(+=--x x ; (2))212(22--=-x x例2、解方程:43312-=-x x 解:两边都乘以 ,去分母,得 ,去括号,得 ,移项,得 ,合并同类项,得 ,系数化为1,得 。

同步练习 解方程:655314+=-x x 13121=--+x x1213323x x x --+=- 151423=+--x x例3、解方程:1213323x x x --+=-+2x 解: 两边都乘以 ,去分母,得去括号,得移项, 得合并同类项,得系数化为1, 得同步练习632141+-=+-x x 323221+-=--x x x5131+=-x x ; 51131+=--x x三、去分母、去括号法的应用例题讲解例1.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为多少?例2、一船由A 地开往B 地,顺水航行用4小时,逆水航行比顺水航行多用30分钟,已知船在静水中的速度为16km/h ,求水流的速度。

例3、某供电公司分时电价执行时段分为平、谷两个时段,平段为8:00—10:00,14小时,谷段为22:00—次日8:00小时,平段用电价格在原销售基础上每千瓦时上浮0、03元,谷段电价在原销售基础上每千瓦时下浮0、25元,小明家5月份平段电量40千瓦,谷段电量60千瓦时,按每时电价付费42、73元。

(1)问小明该月支付的平段、谷段电价每千瓦时各位多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?同步练习1、一个两位数,十位上的数字比个位上的数字小4,如果把十位上与个位上的数对调,那么,所得的两位数比原两位数的2倍少12,求原来两位数。

去分母解一元一次方程教案

去分母解一元一次方程教案

去分母解一元一次方程教案教案标题:解一元一次方程——去分母法教学目标:1. 理解一元一次方程的概念和性质;2. 掌握使用去分母法解一元一次方程的方法;3. 能够应用去分母法解决实际问题。

教学准备:1. 教师准备:黑板、白板、彩色粉笔/白板笔、教学PPT、实例题和练习题;2. 学生准备:课本、笔、纸。

教学过程:一、导入(5分钟)1. 引入话题:请学生回顾一元一次方程的概念,并简要介绍一元一次方程的基本形式;2. 提问:如果方程中含有分数,我们该如何解决呢?二、讲解去分母法(10分钟)1. 通过教学PPT,简要介绍去分母法的基本思路和步骤;2. 通过一个示例方程,详细讲解如何使用去分母法解一元一次方程;3. 强调解题过程中的注意事项和常见错误。

三、练习与讲解(15分钟)1. 分发练习题,让学生在纸上尝试解决;2. 引导学生逐步解题,解答学生提出的问题;3. 讲解解题思路和方法,解答学生练习题中的疑惑。

四、巩固与拓展(15分钟)1. 继续分发一些实例题和练习题,让学生独立解答;2. 鼓励学生将所学方法应用到实际问题中,提高解决问题的能力;3. 随堂检测:抽取几道题目,让学生上黑板解答,然后进行讲解和点评。

五、总结与展望(5分钟)1. 总结去分母法的基本步骤和要点;2. 引导学生思考,如何将所学方法应用到更复杂的方程中;3. 展望下节课内容,鼓励学生预习相关知识。

教学反思:通过本节课的教学,学生能够理解并掌握去分母法解一元一次方程的基本方法。

通过实例题和练习题的讲解与解答,学生的解题能力和思维能力得到了提高。

在教学过程中,教师应重点关注学生的解题思路和方法,及时纠正错误,帮助学生建立正确的解题思维方式。

同时,教师还应鼓励学生将所学方法应用到实际问题中,培养学生解决实际问题的能力。

3.3解一元一次方程-去分母解一元一次方程(教案)

3.3解一元一次方程-去分母解一元一次方程(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“去分母解一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调最小公倍数的计算和方程去分母的步骤这两个重点。对于难点部分,我会通过具体例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与去分母解方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过实际操作去除方程分母的基本原理。
1.通过分析一元一次方程的分母特点,让学生掌握数学抽象思维,提高对数学概念的理解。
2.运用等式性质和最小公倍数去分母解方程,培养学生逻辑推理能力和严谨的数学态度。
3.结合实际问题,引导学生发现、提出、解决问题,提高问题解决能力和创新意识。
4.通过小组讨论和互动,培养学生的合作意识和交流表达能力,增强团队协作能力。
(2)在实际问题中,如何将问题转化为含有分母的一元一次方程,并成功去除分母。
(3)对于部分学生,如何克服对分数的恐惧心理,增强解题信心。
举例:
(1)最小公倍数的识别与计算:对于上述方程,需要找到分母3、4、6的最小公倍数,即12。学生在这一步可能难以理解如何快速找到最小公倍数,需要教师指导。
(2)问题转化:在实际问题中,学生可能难以将问题抽象成含有分母的一元一次方程,如行程问题、浓度问题等。教师需引导学生逐步分析问题,帮助他们完成方程的建立。

解一元一次方程去分母教案

解一元一次方程去分母教案

解一元一次方程去分母教案教案:一、教学目标:1. 掌握解一元一次方程时需要去分母的方法。

2. 理解分母为0时的特殊情况。

3. 学会将方程中的分母去除,得到形如ax+b=0的方程进行求解。

二、教学准备:1. 教师准备展示屏或黑板/白板。

2. 学生准备纸和笔。

三、教学过程:1. 引入讲解:a. 提问:我们在解一元一次方程时,什么情况下需要去分母呢?b. 学生回答后,教师引导学生得出结论:当方程中出现分母时,我们需要将方程中的分母去除,得到一个无分母的一元一次方程。

c. 引导学生思考:为什么要去分母呢?分母表示除法,我们将分母去除可以将方程转化为只涉及乘法和加减法的形式,更易求解。

2. 去分母方法的介绍:a. 当方程中只有一个分式且分母不为0时,我们可以将方程两边乘以分母,将分母消去。

b. 当方程中出现多个分式或分母为0时,我们需要找到最小公倍数作为通分的方法,将各个分式相加,然后将分母消去。

c. 强调特殊情况:当分母为0时,需要讨论该方程的可解性,并进行特殊处理。

3. 解一元一次方程去分母的例题演练:a. 出示示例方程1:\( \frac{2x}{3} + \frac{3x+1}{2} =\frac{x+5}{6} \),引导学生进行去分母操作,得到无分母的一元一次方程。

b. 出示示例方程2:\( \frac{3}{2x} + \frac{2}{x+1} = 2 \),引导学生进行去分母操作,得到无分母的一元一次方程。

c. 出示示例方程3:\( \frac{2}{x-3} + \frac{3}{x-2} =\frac{5}{x-1} \),引导学生进行去分母操作,得到无分母的一元一次方程。

d. 带领学生一起求解以上三个例题,解得方程的解集。

4. 拓展训练:a. 出示更复杂的方程,引导学生自主解题,训练解一元一次方程去分母的能力。

b. 提示学生如果方程中的分母较复杂,可以通过找最小公倍数减少运算复杂度。

《解一元一次方程(二)——去括号与去分母》公开课教案

《解一元一次方程(二)——去括号与去分母》公开课教案

《解一元一次方程(二)——去括号与去分母》公开课教案XX中学王老师教学目标1. 知识与技能:掌握一元一次方程中去括号与去分母的基本方法与步骤。

2. 过程与方法:通过实际例子和互动,培养学生的逻辑思维能力和问题解决能力。

3. 情感态度与价值观:增强学生学习数学的兴趣和信心,体会数学在日常生活中的应用。

教学重点与难点教学重点:理解并掌握去括号和去分母的方法。

教学难点:灵活运用去括号和去分母解决实际问题。

教学过程一、导入故事引入:讲述一个生活中的小故事,比如小华和小刚分饼干,小华分了两次,每次分一半,结果发现总量没有变化。

引导学生思考:这和我们今天要学习的去括号与去分母有什么关系?二、新课讲授1. 去括号定义:去括号是指把括号内的项通过分配律展开。

举例:例如3(2x + 4),我们可以展开为6x + 12。

互动:提问学生:如果是4(3y 2),我们该如何去括号?2. 去分母定义:去分母是指通过乘以方程的最小公倍数,使分母消失。

举例:例如方程1/2x + 1/3 = 5,如何去分母?步骤:1. 找到最小公倍数:62. 方程两边都乘以6:6(1/2x + 1/3) = 653. 化简:3x + 2 = 30互动:让学生尝试解方程2/(3x) 1/4 = 1,讨论他们的步骤和方法。

3. 实际应用情境设置:假设你和朋友一起做了一个项目,收入按比例分配。

你们一起赚了240元,你得到的比例是1/3,你朋友得到的比例是1/2。

设你朋友的收入为x元,列出方程并解答。

学生讨论:x/2 + x/3 = 240,解方程。

三、练习巩固1. 课堂练习解以下方程,并去括号与去分母:1. 5(2x 3) = 42. 1/3y + 1/2 = 5互动:学生解答后,同桌互相检查,并讨论解决过程中的难点。

2. 教师讲解针对学生易错点进行讲解和纠正。

四、回顾反思、课堂小结总结:今天我们学习了去括号和去分母的方法,这些方法在解一元一次方程中非常重要。

数学人教版七年级上册解一元一次方程——去分母教案

数学人教版七年级上册解一元一次方程——去分母教案

《一元一次方程的解法----去分母》教案湖北省松滋市沙道观初级中学——周友芬教学目标1、知识目标:(1).掌握解一元一次方程中“去分母”的方法,并能解这种类型的方程;(2).了解一元一次方程解法的一般步骤。

(3).会处理分母中含有小数的方程。

2、能力目标:经历“把实际问题抽象为方程”的过程,发展用方程方法分析问题、解决问题的能力。

3、情感目标:(1).通过具体情境引入新问题(如何去分母),激发学生的探究欲望;(2).通过埃及古题的情境感受数学文明。

(3).多表扬、多鼓励、营造学生快乐学习的课堂氛围。

教学重点:通过"去分母"解一元一次方程。

教学难点:探究通过“去分母”的方法解一元一次方程(①不漏乘不含分母的项②注意给分子添加括号。

)教学活动流程:活动1:复习回顾——活动2:典故引入解含有分母且方程一边是多项式的一元一次方程——活动3:突破难点,去分母时多项式一边要添括号——活动4:典例精讲,分子是多项式去分母时要添括号——活动5:突破多项式分子添括号难点,评选最优互助组——活动6:如何查错。

——活动7:学生练习演板, 学生点评。

——活动8:归纳总结解方程的一般步骤和各步变形时的注意点——活动9:实战演练竞赛快准解方程——活动10:拓展,解含小数的方程——活动11:反馈化整得——活动12:教学小结——活动13:在乐曲中完成作业第98页练习,习题第3题。

教学设计一、复习回顾1、解方程①7X=6X-4 ;②8-2(X-7)=X-(X-4)鼓励两名同学板演,其余同学在练习本上自主完成解题,看哪组同学全对的人数最多。

从简单到复杂,巩固所学的解方程知识为去分母做铺垫,并让学生回忆解一元一次方程的基本程序。

①去括号②移项③合并同类项④两边同除以未知数的系数1、求下列各组数的最小公倍数:10,5与15 4,6与9二、典故导入,激情引趣,探索新知:1、国伦敦博物馆保存着一部极其珍贵的文物----纸莎草文书.这是古代埃及人用象形文字写在一种特殊的草上的著作,至今已有三千七百多年.书中记载了许多与方程有关的数学问题.其中有如下一道著名的求未知数的问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个数是多少?【师】你能帮古人解决这个问题吗?【生】设未知数列方程来求这个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 解一元一次方程———去分母教学设计
教学目标:
1. 掌握解一元一次方程中“去分母”的方法,并能解此类型的方程。

2. 能归纳一元一次方程解法的一般步骤
3. 通过去分母解一元一次方程,体会化归的数学思想方法。

教学重点:会通过“去分母”解一元一次方程。

教学难点:通过探究“去分母”的方法解一元一次方程。

教具:多媒体课件
教学过程:
一、新课导入:
1、等式性质:
2、解带括号的一元一次方程的步骤?
二、感悟新知:
观察方程(2),(3), 与前面所学的方程相比出现了什么?你们组打算怎么解决这个问题?
解方程:
(1) 3x 1 (2x 3) (2) 3x 1 (2x
2 2
3)
(3) 3x 1 (2x
2 3
3)
归纳:在去分母的过程中,我们应注意哪些问题?
小结:解方程的一般步骤是什么?
小试牛刀:1、将方程x
1 两边乘6,得_______
2 x
3 2
2 、将方程3x 1 x
4 5 1两边乘___,得到
5(3 x1) 4( x 1) 。

三、小组合作,巩固新知:
数学接力赛(将下列方程中的分母去掉):
轻松尝试(1)5a
8 17
4
(2) 5 3x 3 5x
2 3
(3)x(4)
2 2x 3
2 3 2x 2 x 3 3
巩固提高
x 1 x
1
(1) 2 4
1 1 (2)x x
1 3
2 6
x 3 2x 1 (3) 3
2 3 (4)
1
3 x 7 x 17
4 5
能力提升
2x 1 10x 1 2x 1
(1) 1
(2)
3 6
4 3x 1 3x 2 2x
2
2 10 5
3
四、小组展示
解方程:3x 5 2x
2 3
1 x 3 3x 4
,15
5
y 1 2 y
y
五、再次挑战: 5
2
六、你能当小老师吗?改错:
3x 1 4x 2
解方程: 1
2 5
解: 15x 5 8x 4 1 这样解,对吗?
15x 8x 4 1 5
7x 8
x 7
8
2x 1 10x 1 2x 1
七、看看谁的能力强:解方程: 1
3 6 4
八| 、拓展延伸解方程:
0.4 x0.8 0. 3x
0.5 0. 40.4
1
●达标检测
一、选择题
1.解方程的值是()。

A. B . C . D .
2.解方程,下列变形较简便的是()。

A.方程两边都乘以 2 0,得
B.方程两边都除以,得
C.去括号,得
D.方程整理,得
二、填空题
3.方程,去分母可变形为__________。

4.若,那么。

三、解下列方程:
5.
九:归纳总结:
1、掌握解一元一次方程中“去分母”的方法,并能解此类型的方程
2、归纳一元一次方程解法的一般步骤
3、通过本节课的学习,你有哪些收获和疑问,同学之间相互讨论。

相关文档
最新文档