三因素方差分析.

合集下载

方差分析(包括三因素)讲解

方差分析(包括三因素)讲解

2、CLASS 变量表;
CLASS必须的MODEL之前。
3、MODEL 因变量表=效应;
输出因变量均数,对主效应均数间的检
4、MEANS 效应[/选择项];
验。
5、ALPHA=p 显著性水平(缺省值为0.05)
是指因变量与自变量效应,模型如下:
1、主效应模型 MODEL y=a b c; (a b c是主效应,y是因变量)
计判断,得出结论。
5
方差分析的基本思想:把全部数据关于总均值的离差平方和 分解成几部分,每一部分表示某因素诸水平交互作用所产生 的效应,将各部分均方与误差均方相比较,从而确认或否认 某些因素或交互作用的重要性。
用公式概括为:
各因素引起
由个体差异 引起(误差)
总变异=组间变异+组内变异
种类:常用方差分析法有以下4种 1、完全随机设计资料的方差分析(单因素方差分析) 2、随机区组设计资料的方差分析(二因素方差分析) 3、拉丁方设计资料的方差分析(三因素方差分析) 4、R*C析因设计资料的方差分析(有交互因素方差分析)
3
第一节 概述
因素(因子)—— 可以控制的试验条件 因素的水平 —— 因素所处的状态或等级 单(双)因素方差分析——讨论一个(两个) 因素对试验结果有没有显著影响。
4
例如:某厂对某种晴棉漂白工艺中酸液浓度(g/k)进 行试验,以观察酸液浓度对汗布冲击强力有无显著影 响。
冲击强力 序号
1
浓度
2 3 4 56
计算出F值:
QA
4217.3
(3 1) 2 28.38
QE
1114.7
(3(6 1))
5
15
列表:
方差来源 因素A 试验误差 总误差

三因素方差分析的原理及应用

三因素方差分析的原理及应用
分析 的相 关 内容.本 文详 细推 导 了无 交 互影 响 的 三 因素方 差分 析 的 原 理及 偏 差 平 方 和 分解 式 , 由 此给 出 了三 因素 方 差 分 析表 , 利用 该 分 析 表 解 决
应, 为 因 素 B 的第 J个水 平 的效 应 , 为 因 素 C 的第 k个水 平 的效应 .显然 , a , , 满 足如 下
作者简介 :郭
萍( 1 9 8 1 一 ) , 女, 山西 阳泉人 , 青 岛理工大学琴 岛学 院讲 师.
第1 期
郭 萍 :三 因素方 差分 析 的原理及 应 用
4 1


・一

SC z
∑(









i 1
一 ^ 一 x 一 去 d i 一 1 i 一 1 x
1 一1 一 1
S 一∑ ∑ ∑ ( x 驰一叉 一 一
一 1 J一 1 k一 1
引 入s T 一 ∑ ∑ ∑( x 驰 一 ) 一 s + s A + s +
i 一1
X. 咄+ 2 X) 。一 S 了 ' 一S a— S B— S c ,
关 系式 :
∑a 一 0 , ∑ 一 0 , ∑ 一 0 .
若 毋一 +a + + , 则数学 模 型为
了一个 具 体 的 数 学 建 模 案 例 , 并 通 过 MAT L AB
实现 了该 案例 的求 解 .求 解结 果 的一 致 性说 明 了
原理 推导 的 正确性 .
f x 一 +∞+ + +e ( = = = 1 , 2 , …, r ;
I J一 1 , 2 , …, s ; 是 = = = 1 , 2 , …, ) ;

方差分析的三个前提

方差分析的三个前提

方差分析的三个前提
方差分析是一种常见的统计分析方法,通常被用来比较两组及两组以上的实验数据,以及评估不同因素对结果和产出的影响。

这项统计分析要求有三个基本前提,包括可变性、等变性和正态分布。

首先,方差分析需要可变性,即变量(或因素)之间可以相互区分,而不存在重复或重叠的情况。

如果变量(或因素)没有充分的可变性,那么方差分析的结果将更加难以识别出每个变量(或因素)的独特作用。

其次,如果要进行方差分析,则需要满足等变性。

即所有变量(或因素)应具有相同的变异范围,以便精确地比较这些变量(或因素)之间的关系。

如果变量(或因素)没有达到等变性,那么可能会导致被检索出错误的结论,从而影响到统计分析的准确性和可靠性。

最后,方差分析还需要正态分布,这就要求试验单位在每个参与者测量的变量(或因素)上具有独立的性质。

正态分布的特征是,数据的分布在高维度实空间中服从对称性质,这就意味着数据在实质上是可比较的,从而可以进行评估和比较。

此外,数据在正态分布形状中也尽可能接近也就是说,峰、谷和颠峰部分之间的差异应该最小化,而不是有明显的趋势和噪音。

综上所述,方差分析的三个基本前提是可变性、等变性和正态分布。

这些前提的基础要求是必须满足的,以保证统计分析的正确性、可靠性和准确性。

因此,在实施方差分析前,必须充分考虑这三个规则,以确定因素的可变性、等变性和正态分布的程度,以确保分析结
果的准确性和可靠性。

Excel数据处理之三 方差分析

Excel数据处理之三 方差分析
Excel数据处理之三 方差分析
第三节方差分析
在数据分析工具库中提供了3种基本类型的方差分析:单因素方差分析、双因素无重复试验和可重复试验的方差分析,本节将分别介绍这三种方差分析的应用:
单因素方差分析
在进行单因素方差分析之前,须先将试验所得的数据按一定的格式输入到工作表中,其中每种水平的试验数据可以放在一行或一列内,具体的格式如图3-1,图中每个水平的试验数据结果放在同一行内。
图3-4
数据输入完成以后,操作工具〉数据分析,选择数据分析工具库中的双因素无重复方差分析,出现如图3-5的对话框,对话框的内容如下:
1.输入区域:选择数据所在区域,可以包含因素水平标志。
2.果数据输入时选择了因素水平标志,请选择标志按钮。
3.显著性水平α:根据实际情况输入,一般选择0.05。
4.输出选项:按需要选择分析结果存储的位置。
1.输入区域:选取图4-1数据表中的绿色和黄色区域,表示标志与数据。
2.分组方式:根据数据输入的方式选择逐行或逐列,此例选择逐列。
3.由于数据选择时包含了标志,所以要勾选标志位于第一行。
4.根据需要选择输出的位置。
图4-2
将信息按图4-2输入对话框后,选择确定,输出结果如图4-3所示。
图4-3
协方差分析
图3-5
分析图3-4中的数据,对话框如图3-5输入,分析结果输出如图3-6:
图3-6
双因素可重复方差分析
双因素可重复方差分析与双因素无重复方差分析数据输入的区别在于对重复试验数据的处理,如图3-7所示,就是将重复试验的数据叠加起来。
图3-7
数据输入完成以后,操作工具〉数据分析,选择数据分析工具库中的双因素可重复方差分析,出现如图3-8的对话框,对话框的内容基本与双因素无重复方差分析相同,区别在于每一样本的行数选项,在此输入重复试验的次数即可。

spssau三因素方差分析操作

spssau三因素方差分析操作

三因素方差当X为定类数据,Y为定量数据时,通常使用的是方差分析进行差异研究。

X的个数为一个时,我们称之为单因素方差;X为2个时则为双因素方差;X为3个时则称作三因素方差,依次下去。

当X超过1个时,统称为多因素方差。

在实验研究中,比如研究者测试某新药对于胆固醇水平是否有疗效;研究者共招募72名被试,男女分别为36名,以及男女分别再细分使用新药和普通药物;同时高血压患者对于新药可能有干扰,因而研究者将被试是否患高血压也纳入考虑范畴中。

因而最终,X共分为三个,分别是药物(旧药和新药)、性别,是否患高血压;Y为胆固醇水平。

因而需要进行三因素方差分析即多因素方差分析。

特别提示:对于双因素方差,三因素方差分析;SPSSAU单独提供研究方法,并且提供更多指标输出比如交互效应或图形等;如果是实验研究,建议使用双因素,或者三因素方差分析等;针对X超过3个时,只能直接使用多因素方差分析;X均为定类数据,Y为定量数据。

SPSSAU分析结果表格示例如下:多因素方差分析结果平方和df F P 截距511.325 1 4397.621 0.000**性别0.340 1 2.925 0.092 是否高血压7.825 1 67.300 0.000** 药物0.824 1 7.091 0.010**残差7.907 68 null nullR²=0.547三因素方差案例Contents1背景 (2)2理论 (2)3操作 (2)4 SPSSAU输出结果 (4)5文字分析 (6)6剖析 (6)1背景某研究者测试新药对于胆固醇水平是否有疗效;研究者共招募72名被试,男女分别为36名,并且男性或女性中是否高血压患者各为18名,并且当前被试的胆固醇水平基本均保持在6.5左右。

最终X共分为三个,分别是药物(旧药和新药)、性别,是否患高血压;Y为胆固醇水平。

同时,明显的可以想到,实验前的胆固醇水平基数,很可能会影响到最终的胆固醇水平,因此“实验前胆固醇水平”是一个干扰因素,因此将其作为协变量纳入模型中。

三因素混合方差分析事后简单效应多重比较语法

三因素混合方差分析事后简单效应多重比较语法

概念笔记Main effect 一个因素的独立效应,即其不同水平引起的方差变异。

三因素的实验有三个主效应。

把某一因素的一个水平同该因素的其他水平比较,不考虑其他因素。

Interaction 多个因素的联合效应,A因素的作用受到B因素的影响,即有交互——two-way interaction. 当一因素作用受到另外两个因素影响,即三因素交互three-way interaction.重复测量一个因素的三因素混合设计3*2*2的混合设计A3*B2*R2 【A, B为被试间因素】需要分析的有——A, B, R 各自主效应二重交互作用,A*B, A*R, B*R三重交互作用,A*B*C结果发现,A, B为被试间因素,交互作用SIG当二重交互作用SIG,需要进行simple effect检验。

A因素水平在B因素某一水平上的变异。

A在B1水平上的简单效应A在B2水平上的简单效应B在A1水平上的简单效应B在A2水平上的简单效应B在A3水平上的简单效应如果三重交互作用SIG,需要进行三因素的简单简单效应分析simple simple effect. 某一因素的水平在另外两个因素的水平结合上的效应在A1B1水平结合上,R1 与R2 差异在A1B2水平结合上,R1 与R2 差异在A2B1水平结合上,R1 与R2 差异在A2B2水平结合上,R1 与R2 差异在A3B1水平结合上,R1 与R2 差异在A3B2水平结合上,R1 与R2 差异重复测量方差分析之后,如果三重交互作用显著,需要编辑语法,得出三个因素各自的简单效应某一因素在其他两个因素的某一实验条件内的简单效应检验三因素重复测量方差分析对应的会有3种简单效应检验结果SPSS在输出简单效应检验结果的同时,也会报告多重比较结果,会有更直观的对比结果。

如果三重交互作用SIG,需要进行简单简单效应检验。

固定某两个因素水平组合,考察研究者最感兴趣的那个变量的效应。

MANOV A R1 R2 BY A(1,3) B(1,2)/WSFACTORS=R(2)/PRINT=CELLINFO(MEANS)/WSDESIGN/DESIGN/WSDESIGN=R/DESIGN=MWITHIN B(1) WITHIN A(1)MWITHIN B(2) WITHIN A(1)MWITHIN B(1) WITHIN A(2)MWITHIN B(2) WITHIN A(2)MWITHIN B(1) WITHIN A(3)MWITHIN B(2) WITHIN A(3)上述语法内容是检验被试内变量R在被试间变量A, B 上的简单简单效应。

方差分析-统计学原理

方差分析-统计学原理

H0 :a1 =a2 =…=ar =0
第三节 两因素方差分析 随机区组设计资料的方差分析
一、 随机区组设计 随机区组设计( randomized block design ),又称 配伍组设计,是配对设计的扩展。 具体做法是:先按影响试验结果的非处理因素 将受试对象配成区组(block),再将各区组内的受 试对象随机分配到不同的处理组,各处理组分别接 受不同的处理,试验结束后比较各组均数之间差别 有无统计学意义,以推断处理因素的效应。
各种变异之间的关系是:
SS总 SS处理 SS区组 SS误差
其中:
v总 v处理 v区组 v误差
v区组 n 1
v误差 (n 1)(g 1)
v总 N 1 v处理 g 1
(1)总变异:反映全部试验数据间大小不等的状况,
SS总 X 2 C
方差分析的基本概念
将衡量试验结果的标志称为试验指标。 将影响试验结果的条件称为因素。 因素在试验中所处的不同状态称为该因 素的水平。
只考察一个影响条件即因素的试验称为单因素 试验,相应的方差分析称为单因素方差分析。
二、变异分解 完全随机设计资料的方差分析表 变异来源 自由度 SS MS F 总变异
单因子方差分析的统计模型:
yij i ij , j 1, 2,..., mi , i 1, 2,..., r , 2 诸 ij 相互独立,且都服从N (0, )
模型可以改写为
yij ai ij , j 1, 2,..., mi , i 1, 2,..., r , r mi ai 0 i 1 相互独立,且都服从N(0, 2 ) ij
均数间的差异没有统计学意义;反 之,如果处理有作用,则组间变异 不仅包含随机误差,还有处理因素

方差分析(包括三因素)

方差分析(包括三因素)

2
15.1 17.5 20.1
3
15.8 17.1 18.9
4
14.8 15.9 18.2
5
17.1 18.4 20.5
6
15.0 17.7 19.7
A1 A2 A3
方差分析就是把总的 试验数据的波动分成
1、反映因素水平改变引起的波动。 2、反映随机因素所引起的波动。
然后加以比较进行统 计判断,得出结论。
2 ij 2 2 ij
m
n
m
n
T2 X mn i 1 j 1
m n 2 ij
12
同样可推出:
1 m 2 QE X Ti n i 1 i 1 j 1
2 ij
m
n
1 m 2 T2 QA Ti n i 1 mn
2、数据的简化: 试验数据经过变换
' X ij b( X ij a)
3
离差平方和 1.56 11.56 3.1 16.22
3
自由度 2 2 4 8
F值 FA=1.01 FB=7.46
F0.05(2,4) F0.01(2,4) 6.94 6.94 18.0 18.0
显著性
*
Q X
i 1 j 1
2 ij
T2 16.22 3 3
1 3 T2 2 QA Ti. 1.56 3 i 1 3 3
试验结果
假设:美中不足组合水平下服从正态分布、互相独立、方差相等。 所需要解决的问题是:所有Xij的均值是否相等。
18
假设检验:
1)在假设H0成立的条件下。 2)统计量
T2 Q X ml i 1 j 1
m l 2 ij
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
三因素方差分析举例

残差的正态性检验结果:P=0.9422>0.05
Skewness/Kurtosis tests for Normality ------- joint -----Variable | Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 -------------+------------------------------------------------------e | 0.915 0.743 0.12 0.9422
8
三因素方差分析举例

Full model结果:二级交互作用项P=0.0214<0.05
Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------Model | .347361264 7 .049623038 1.55 0.2202 a | .00201666 1 .00201666 0.06 0.8049 b | .044490835 1 .044490835 1.39 0.2554 c | .048001913 1 .048001913 1.50 0.2382 a*b | .0244907 1 .0244907 0.77 0.3944 a*c | .003112983 1 .003112983 0.10 0.7591 b*c | .017424103 1 .017424103 0.54 0.4711 a*b*c | .207824069 1 .207824069 6.50 0.0214 Residual | .511622125 16 .031976383 -----------+---------------------------------------------------Total | .858983389 23 .037347104
6
三因素方差分析举例
1.
Stata命令: anova y a b c a*b a*c b*c a*b*c predict e,residual 计算残差 sktest e 残差的正态性检验 gen ee=abs(e) 计算残差的绝对值 anova ee a b c a*b a*c b*c a*b*c 方差 齐性检验
三因素方差分析
赵耐青 复旦大学卫生统计教研室
1 * Yes not geese…
三因素方差分析的基本概念
三因素方差分析要求资料服从正态分布,方差齐 性,三个因素的不同水平组合样本资料独立, 要求三个因素的不同水平组合情况的样本量相 同。 三因素方差分析的模型:
abc ... a c c ( )ab ( )ac ( )bc ( )abc
9
三因素方差分析举例

Reduced Model 1:b*c项的P=0.5761,故剔除
Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------Model | 4.16958384 6 .694930641 4.32 0.0079 a | .002016672 1 .002016672 0.01 0.9121 b | .077066736 1 .077066736 0.48 0.4981 c | .79935039 1 .79935039 4.97 0.0395 a*b | 1.9040668 1 1.9040668 11.84 0.0031 a*c | 1.33481659 1 1.33481659 8.30 0.0104 b*c | .052266656 1 .052266656 0.33 0.5761 Residual | 2.73359971 17 .160799983 -----------+---------------------------------------------------Total | 6.90318355 23 .300138415
称 ( )abc 为二级交互作用,称 ( )ab ,( )ac ,( )bc 为一级交互作用, 称 a , c , c 为主效应,如果三因 素方差分析模型中没有二级交互作用,则称该 模型为reduced model,反之称为Full model
2
三因素方差分析举例

某研究者以大白鼠作试验,观察指标是肝 重与体重之比(%),研究正氟醚与观察指 标的作用,同时要考察用生理盐水和用戊 巴比妥作为诱导药对正氟醚毒性作用的影 响,并且考略不同性别大白鼠对诱导物的 作用和正氟醚毒性作用。因此共有3个因 素:(1)是否用正氟醚,(2)诱导物 (3) 性别
5
三因素方差分析举例
1. 2.
3.
分析策略: 由于样本量较小,所以先考察残差正态性和用 levene检验方差齐性 如果资料满足方差齐性和正态性,则首先考察 是否存在二级交互作用,如果二级交互作用项 的P0.05,则用角模型进行简单效应比较 如果二级交互作用项的P>0.05,则剔除二级 交互作用项,考察一级交互作用项,剔除 P>0.05的一级交互作用项,如果还存在一级 交互作用项,则用用角模型进行简单效应比较. 如果不存在一级交互作用的P0.05,则根据 主效应进行统计推断。
3
三因素方差分析举例

资料和变量定义如下
B 因素 生理盐水 生理盐水 戊巴比妥 戊巴比妥 生理盐水 生理盐水 戊巴比妥 戊巴比妥 C 因素 肝重与体重比 yijkt 雌 雄 雌 雄 雌 雄 雌 雄 5.26 5.68 5 5.52 5.87 5.5 6.13 6.46 5.42 5.6 6.3 7.02 4.64 4.6 6.02 5.7 5.83 5.38 6.2 5.21 5.7 5.9 5.44 5.48
A 因素 不用正氟醚 不用正氟醚 不用正氟醚 不用正氟醚 用正氟醚 用正氟醚 用正氟醚 用正氟醚
变量定义 不用正氟醚 用正氟醚 用生理盐水 用戊巴比妥 雌 雄 A=1 A=2 B=1 B=tata数据格式
y 5.26 5.68 5.83 5 5.52 5.38 5.87 5.5 a 1 1 1 1 1 1 1 1 b 1 1 1 1 1 1 2 2 c 1 1 1 2 2 2 1 1

方差齐性检验的主要结果:P=0.2202>0.10
Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------Model | .347361264 7 .049623038 1.55 0.2202
相关文档
最新文档